<
From version < 38.20 >
edited by Xiaoling
on 2023/05/24 08:56
To version < 33.1 >
edited by Xiaoling
on 2022/09/13 09:07
>
Change comment: Uploaded new attachment "image-20220913090720-1.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -9,24 +9,20 @@
9 9  
10 10  = 1.  Introduction =
11 11  
12 +
12 12  == 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
13 13  
14 14  
15 -(((
16 16  The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 17  
18 18  NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 19  
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 +\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 +\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
21 21  
22 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
23 23  
24 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
25 -
26 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
27 -)))
28 -
29 -
30 30  ​[[image:image-20220907171221-2.png]]
31 31  
32 32  
... ... @@ -33,6 +33,7 @@
33 33  ​ [[image:image-20220907171221-3.png]]
34 34  
35 35  
32 +
36 36  == ​1.2  Features ==
37 37  
38 38  
... ... @@ -53,6 +53,7 @@
53 53  (((
54 54  
55 55  
53 +
56 56  
57 57  )))
58 58  
... ... @@ -64,20 +64,23 @@
64 64  * Supply Voltage: 2.1v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
65 +
67 67  (% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -* B1 @H-FDD: 2100MHz
70 -* B3 @H-FDD: 1800MHz
71 -* B8 @H-FDD: 900MHz
72 -* B5 @H-FDD: 850MHz
73 -* B20 @H-FDD: 800MHz
74 -* B28 @H-FDD: 700MHz
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
75 75  
76 -== 1.4  Probe Specification ==
77 77  
78 78  
79 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
77 +== 1.4 Probe Specification ==
80 80  
79 +
80 +**Leaf Moisture: percentage of water drop over total leaf surface**
81 +
81 81  * Range 0-100%
82 82  * Resolution: 0.1%
83 83  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -84,7 +84,7 @@
84 84  * IP67 Protection
85 85  * Length: 3.5 meters
86 86  
87 -(% style="color:#037691" %)**Leaf Temperature:**
88 +**Leaf Temperature:**
88 88  
89 89  * Range -50℃~80℃
90 90  * Resolution: 0.1℃
... ... @@ -92,14 +92,12 @@
92 92  * IP67 Protection
93 93  * Length: 3.5 meters
94 94  
95 -== 1.5 ​ Applications ==
96 +== 1.5 ​Applications ==
96 96  
97 -
98 98  * Smart Agriculture
99 99  
100 -== 1.6  Pin mapping and power on ==
100 +== 1.6 Pin mapping and power on ==
101 101  
102 -
103 103  ​[[image:image-20220907171221-4.png]]
104 104  
105 105  **~ **
... ... @@ -108,20 +108,16 @@
108 108  
109 109  == 2.1  How it works ==
110 110  
111 -
112 112  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
113 113  
114 114  The diagram below shows the working flow in default firmware of NLMS01:
115 115  
116 -
117 117  [[image:image-20220907171221-5.png]]
118 118  
119 -
120 120  == 2.2 ​ Configure the NLMS01 ==
121 121  
122 122  === 2.2.1 Test Requirement ===
123 123  
124 -
125 125  To use NLMS01 in your city, make sure meet below requirements:
126 126  
127 127  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -128,88 +128,72 @@
128 128  * The local NB-IoT network used the band that NLMS01 supports.
129 129  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 130  
131 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
126 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
132 132  
133 -
134 134  [[image:image-20220907171221-6.png]] ​
135 135  
136 -
137 137  === 2.2.2 Insert SIM card ===
138 138  
139 -
140 140  Insert the NB-IoT Card get from your provider.
141 141  
142 142  User need to take out the NB-IoT module and insert the SIM card like below:
143 143  
144 -
145 145  [[image:image-20220907171221-7.png]] ​
146 146  
147 -
148 148  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
149 149  
140 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
150 150  
151 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
142 +**Connection:**
152 152  
144 + USB TTL GND <~-~-~-~-> GND
153 153  
154 -(% style="color:blue" %)**Connection:**
146 + USB TTL TXD <~-~-~-~-> UART_RXD
155 155  
156 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
148 + USB TTL RXD <~-~-~-~-> UART_TXD
157 157  
158 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
159 -
160 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
161 -
162 -
163 163  In the PC, use below serial tool settings:
164 164  
165 -* Baud:  (% style="color:green" %)**9600**
166 -* Data bits:**  (% style="color:green" %)8(%%)**
167 -* Stop bits:  (% style="color:green" %)**1**
168 -* Parity:  (% style="color:green" %)**None**
169 -* Flow Control: (% style="color:green" %)**None**
152 +* Baud:  **9600**
153 +* Data bits:** 8**
154 +* Stop bits: **1**
155 +* Parity:  **None**
156 +* Flow Control: **None**
170 170  
171 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
158 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
172 172  
173 -​[[image:image-20220913090720-1.png]]
160 +​[[image:image-20220907171221-8.png]]
174 174  
162 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
175 175  
176 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
177 -
178 -
179 179  === 2.2.4 Use CoAP protocol to uplink data ===
180 180  
166 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 181  
182 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
168 +**Use below commands:**
183 183  
170 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
171 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
172 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
184 184  
185 -(% style="color:blue" %)**Use below commands:**
186 -
187 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
188 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
189 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
190 -
191 191  For parameter description, please refer to AT command set
192 192  
193 193  [[image:image-20220907171221-9.png]]
194 194  
178 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
195 195  
196 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
197 -
198 198  [[image:image-20220907171221-10.png]] ​
199 199  
200 -
201 201  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
202 202  
203 -
204 204  This feature is supported since firmware version v1.0.1
205 205  
206 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
207 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
208 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
186 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
187 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
188 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
209 209  
210 210  ​ [[image:image-20220907171221-11.png]]
211 211  
212 -
213 213  [[image:image-20220907171221-12.png]]
214 214  
215 215  ​
... ... @@ -216,21 +216,18 @@
216 216  
217 217  === 2.2.6 Use MQTT protocol to uplink data ===
218 218  
219 -
220 220  This feature is supported since firmware version v110
221 221  
222 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
223 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
224 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
225 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
226 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
227 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
228 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
200 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
201 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
202 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
203 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
204 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
205 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
206 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
229 229  
230 230  ​ [[image:image-20220907171221-13.png]]
231 231  
232 -
233 -
234 234  [[image:image-20220907171221-14.png]]
235 235  
236 236  ​
... ... @@ -237,108 +237,79 @@
237 237  
238 238  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
239 239  
240 -
241 241  === 2.2.7 Use TCP protocol to uplink data ===
242 242  
243 -
244 244  This feature is supported since firmware version v110
245 245  
246 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
247 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
220 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
221 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
248 248  
249 249  ​ [[image:image-20220907171221-15.png]]
250 250  
251 -
252 -
253 253  [[image:image-20220907171221-16.png]]
254 254  
255 255  ​
256 256  
257 -
258 258  === 2.2.8 Change Update Interval ===
259 259  
260 -
261 261  User can use below command to change the **uplink interval**.
262 262  
263 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
233 +* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
264 264  
265 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
235 +**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
266 266  
267 267  
268 268  == 2.3  Uplink Payload ==
269 269  
270 -
271 271  In this mode, uplink payload includes 87 bytes in total by default.
272 272  
273 273  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
274 274  
244 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
245 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
275 275  
276 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
277 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**8**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**4**
278 -|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
279 -
280 280  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
281 281  
282 -
283 283  [[image:image-20220907171221-17.png]]
284 284  
285 -
286 286  The payload is ASCII string, representative same HEX:
287 287  
288 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
253 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
289 289  
290 -where:
255 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
256 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0
257 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
258 +* (% style="color:red" %)Singal: 0x17 = 23
259 +* (% style="color:blue" %)Mod: 0x01 = 1
260 +* (% style="color:green" %)Interrupt: 0x00= 0
261 +* Leaf moisture: 0x0225= 549 = 54.9%
262 +* Leaf Temperature:0x010B =267=26.7 °C
263 +* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
264 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
265 +* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
291 291  
292 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
293 -
294 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
295 -
296 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
297 -
298 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
299 -
300 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
301 -
302 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
303 -
304 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
305 -
306 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
307 -
308 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
309 -
310 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
311 -
312 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
313 -
314 314  == 2.4  Payload Explanation and Sensor Interface ==
315 315  
316 316  === 2.4.1  Device ID ===
317 317  
318 -
319 319  By default, the Device ID equal to the last 15 bits of IMEI.
320 320  
321 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
273 +User can use **AT+DEUI** to set Device ID
322 322  
275 +**Example:**
323 323  
324 -(% style="color:blue" %)**Example**:
325 -
326 326  AT+DEUI=868411056754138
327 327  
328 328  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
329 329  
330 -
331 331  === 2.4.2  Version Info ===
332 332  
333 -
334 334  Specify the software version: 0x64=100, means firmware version 1.00.
335 335  
336 336  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
337 337  
338 -
339 339  === 2.4.3  Battery Info ===
340 340  
341 -
342 342  Check the battery voltage for NLMS01.
343 343  
344 344  Ex1: 0x0B45 = 2885mV
... ... @@ -345,15 +345,12 @@
345 345  
346 346  Ex2: 0x0B49 = 2889mV
347 347  
348 -
349 349  === 2.4.4  Signal Strength ===
350 350  
351 -
352 352  NB-IoT Network signal Strength.
353 353  
299 +**Ex1: 0x1d = 29**
354 354  
355 -(% style="color:blue" %)**Ex1: 0x1d = 29**
356 -
357 357  **0**  -113dBm or less
358 358  
359 359  **1**  -111dBm
... ... @@ -364,45 +364,37 @@
364 364  
365 365  **99**    Not known or not detectable
366 366  
367 -
368 368  === 2.4.5  Leaf moisture ===
369 369  
313 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
370 370  
371 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
315 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
372 372  
373 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
317 +**0229(H) = 549(D) /100 = 54.9.**
374 374  
375 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
376 -
377 -
378 378  === 2.4.6  Leaf Temperature ===
379 379  
321 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
380 380  
381 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
323 +**Example**:
382 382  
383 -(% style="color:blue" %)**Example**:
325 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
384 384  
385 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
327 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
386 386  
387 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
388 -
389 -
390 390  === 2.4.7  Timestamp ===
391 391  
392 -
393 393  Time stamp : 0x6315537b =1662342011
394 394  
395 395  Convert Unix timestamp to time 2022-9-5 9:40:11.
396 396  
397 -
398 398  === 2.4.8  Digital Interrupt ===
399 399  
337 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
400 400  
401 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
402 -
403 403  The command is:
404 404  
405 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
341 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
406 406  
407 407  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
408 408  
... ... @@ -412,15 +412,13 @@
412 412  
413 413  0x(01): Interrupt Uplink Packet.
414 414  
415 -
416 416  === 2.4.9  ​+5V Output ===
417 417  
418 -
419 419  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
420 420  
421 421  The 5V output time can be controlled by AT Command.
422 422  
423 -(% style="color:blue" %)**AT+5VT=1000**
357 +**AT+5VT=1000**
424 424  
425 425  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
426 426  
... ... @@ -427,22 +427,14 @@
427 427  
428 428  == 2.5  Downlink Payload ==
429 429  
430 -
431 431  By default, NLMS01 prints the downlink payload to console port.
432 432  
433 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
434 -|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
435 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
436 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
437 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
366 +[[image:image-20220907171221-18.png]] ​
438 438  
439 -
368 +**Examples:**
440 440  
441 -(% style="color:blue" %)**Examples:**
370 +* **Set TDC**
442 442  
443 -
444 -* (% style="color:#037691" %)**Set TDC**
445 -
446 446  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
447 447  
448 448  Payload:    01 00 00 1E    TDC=30S
... ... @@ -449,22 +449,16 @@
449 449  
450 450  Payload:    01 00 00 3C    TDC=60S
451 451  
378 +* **Reset**
452 452  
453 -
454 -* (% style="color:#037691" %)**Reset**
455 -
456 456  If payload = 0x04FF, it will reset the NLMS01
457 457  
382 +* **INTMOD**
458 458  
459 -
460 -* (% style="color:#037691" %)**INTMOD**
461 -
462 462  Downlink Payload: 06000003, Set AT+INTMOD=3
463 463  
464 -
465 465  == 2.6  ​LED Indicator ==
466 466  
467 -
468 468  The NLMS01 has an internal LED which is to show the status of different state.
469 469  
470 470  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -472,22 +472,18 @@
472 472  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
473 473  * For each uplink probe, LED will be on for 500ms.
474 474  
475 -== 2.7  Installation ==
395 +== 2.7 Installation ==
476 476  
477 -
478 478  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
479 479  
480 -
481 481  [[image:image-20220907171221-19.png]]
482 482  
401 +== 2.8 Moisture and Temperature alarm function ==
483 483  
484 -== 2.8  Moisture and Temperature alarm function ==
403 + AT Command:
485 485  
405 +AT+ HUMALARM =min,max
486 486  
487 -(% style="color:blue" %)**➢ AT Command:**
488 -
489 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
490 -
491 491  ² When min=0, and max≠0, Alarm higher than max
492 492  
493 493  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -494,9 +494,8 @@
494 494  
495 495  ² When min≠0 and max≠0, Alarm higher than max or lower than min
496 496  
413 +Example:
497 497  
498 -(% style="color:blue" %)**Example:**
499 -
500 500  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
501 501  
502 502  AT+ TEMPALARM=min,max
... ... @@ -507,199 +507,201 @@
507 507  
508 508  ² When min≠0 and max≠0, Alarm higher than max or lower than min
509 509  
425 +Example:
510 510  
511 -(% style="color:blue" %)**Example:**
512 -
513 513  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
514 514  
515 515  
516 -== 2.9  Set the number of data to be uploaded and the recording time ==
430 +== 2.9 Set the number of data to be uploaded and the recording time ==
517 517  
432 +➢ AT Command:
518 518  
519 -(% style="color:blue" %)**➢ AT Command:**
434 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
520 520  
521 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
522 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
436 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
523 523  
524 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
438 +== 2.10 Read or Clear cached data ==
525 525  
526 -[[image:image-20221009001002-1.png||height="706" width="982"]]
440 +➢ AT Command:
527 527  
442 +AT+CDP    ~/~/ Read cached data
528 528  
529 -== 2.10  Read or Clear cached data ==
444 +[[image:image-20220907171221-20.png]]
530 530  
531 531  
532 -(% style="color:blue" %)**➢ AT Command:**
447 +AT+CDP=0    ~/~/ Clear cached data
533 533  
534 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
535 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
536 536  
537 -[[image:image-20220907171221-20.png]]
450 +== 2.11  ​Firmware Change Log ==
538 538  
452 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
539 539  
540 -== 2.11  Firmware Change Log ==
454 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
541 541  
456 +== 2.12  ​Battery Analysis ==
542 542  
543 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
458 +=== 2.12.1  ​Battery Type ===
544 544  
545 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
460 +The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
546 546  
462 +The battery is designed to last for several years depends on the actually use environment and update interval. 
547 547  
548 -== 2.12 Battery & Power Consumption ==
464 +The battery related documents as below:
549 549  
466 +* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
467 +* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
468 +* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
550 550  
551 -NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
470 +[[image:image-20220907171221-21.png]]
552 552  
553 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
472 +=== 2.12.2  Power consumption Analyze ===
554 554  
474 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
555 555  
556 -= 3. ​ Access NB-IoT Module =
476 +Instruction to use as below:
557 557  
478 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
558 558  
559 -Users can directly access the AT command set of the NB-IoT module.
480 +**Step 2: ** Open it and choose
560 560  
561 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
482 +* Product Model
483 +* Uplink Interval
484 +* Working Mode
562 562  
486 +And the Life expectation in difference case will be shown on the right.
563 563  
564 -[[image:image-20220907171221-23.png]] ​
488 +[[image:image-20220907171221-22.jpeg]] ​
565 565  
490 +=== 2.12.3  ​Battery Note ===
566 566  
567 -= 4.  Using the AT Commands =
492 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
568 568  
569 -== 4.1  Access AT Commands ==
494 +=== 2.12.4  Replace the battery ===
570 570  
496 +The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
571 571  
572 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
498 += 3. Access NB-IoT Module =
573 573  
574 -AT+<CMD>?  Help on <CMD>
500 +Users can directly access the AT command set of the NB-IoT module.
575 575  
576 -AT+<CMD>  Run <CMD>
502 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
577 577  
578 -AT+<CMD>=<value>:  Set the value
504 +[[image:image-20220907171221-23.png]] ​
579 579  
580 -AT+<CMD>= :  Get the value
506 += 4.  Using the AT Commands =
581 581  
508 +== 4.1  Access AT Commands ==
582 582  
583 -(% style="color:#037691" %)**General Commands**      
510 +See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
584 584  
585 -AT  Attention       
512 +AT+<CMD>?  : Help on <CMD>
586 586  
587 -AT?  :  Short Help     
514 +AT+<CMD>         : Run <CMD>
588 588  
589 -AT MCU Reset    
516 +AT+<CMD>=<value> : Set the value
590 590  
591 -AT+TD Application Data Transmission Interval
518 +AT+<CMD>=?  : Get the value
592 592  
593 -AT+CFG  :  Print all configurations
520 +**General Commands**      
594 594  
595 -AT+CFGMOD  Working mode selection
522 +AT  : Attention       
596 596  
597 -AT+INTMOD  Set the trigger interrupt mode
524 +AT?  : Short Help     
598 598  
599 -AT+5VT  Set extend the time of 5V power  
526 +ATZ  : MCU Reset    
600 600  
601 -AT+PRO :  Choose agreement
528 +AT+TDC  : Application Data Transmission Interval
602 602  
603 -AT+RXDL:  Extend the sending and receiving time
530 +AT+CFG  : Print all configurations
604 604  
605 -AT+SERVADDR :  Server Address
532 +AT+CFGMOD           : Working mode selection
606 606  
607 -AT+APN :  Get or set the APN
534 +AT+INTMOD            : Set the trigger interrupt mode
608 608  
609 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
536 +AT+5VT  : Set extend the time of 5V power  
610 610  
611 -AT+DNSCFG : Get or Set DNS Server
538 +AT+PRO  : Choose agreement
612 612  
613 -AT+GETSENSORVALUE   : Returns the current sensor measurement
540 +AT+RXD : Extend the sending and receiving time
614 614  
615 -AT+TR :  Get or Set record time"
542 +AT+SERVADDR  : Server Address
616 616  
617 -AT+NOUD :  Get or Set the number of data to be uploaded
544 +AT+AP    : Get or set the APN
618 618  
619 -AT+CDP :  Read or Clear cached data
546 +AT+FBAN  : Get or Set whether to automatically modify the frequency band
620 620  
621 -AT+TEMPALARM :  Get or Set alarm of temp
548 +AT+DNSCFG  : Get or Set DNS Server
622 622  
623 -AT+HUMALARM :  Get or Set alarm of humidity
550 +AT+GETSENSORVALUE   : Returns the current sensor measurement
624 624  
552 +AT+TR      : Get or Set record time"
625 625  
626 -(% style="color:#037691" %)**COAP Management**      
554 +AT+NOUD      : Get or Set the number of data to be uploaded
627 627  
628 -AT+URI :  Resource parameters
556 +AT+CDP     : Read or Clear cached data
629 629  
558 +AT+TEMPALARM      : Get or Set alarm of temp
630 630  
631 -(% style="color:#037691" %)**UDP Management**
560 +AT+HUMALARM     : Get or Set alarm of PH
632 632  
633 -AT+CFM :  Upload confirmation mode (only valid for UDP)
634 634  
563 +**COAP Management**      
635 635  
636 -(% style="color:#037691" %)**MQTT Management**
565 +AT+URI            : Resource parameters
637 637  
638 -AT+CLIENT  :  Get or Set MQTT client
567 +**UDP Management**
639 639  
640 -AT+UNAME  : Get or Set MQTT Username
569 +AT+CF         : Upload confirmation mode (only valid for UDP)
641 641  
642 -AT+PWD  :  Get or Set MQTT password
571 +**MQTT Management**
643 643  
644 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
573 +AT+CLIENT               : Get or Set MQTT client
645 645  
646 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
575 +AT+UNAME  : Get or Set MQTT Username
647 647  
577 +AT+PWD                  : Get or Set MQTT password
648 648  
649 -(% style="color:#037691" %)**Information**          
579 +AT+PUBTOPIC  : Get or Set MQTT publish topic
650 650  
651 -AT+FDR :  Factory Data Reset
581 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
652 652  
653 -AT+PWORD :  Serial Access Password
583 +**Information**          
654 654  
585 +AT+FDR  : Factory Data Reset
655 655  
587 +AT+PWORD  : Serial Access Password
588 +
656 656  = ​5.  FAQ =
657 657  
658 658  == 5.1 ​ How to Upgrade Firmware ==
659 659  
660 -
661 661  User can upgrade the firmware for 1) bug fix, 2) new feature release.
662 662  
663 663  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
664 664  
597 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
665 665  
666 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
667 -
668 -
669 669  = 6.  Trouble Shooting =
670 670  
671 671  == 6.1  ​Connection problem when uploading firmware ==
672 672  
673 -
674 674  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
675 675  
676 -
677 677  == 6.2  AT Command input doesn't work ==
678 678  
607 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
679 679  
680 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
681 -
682 -
683 -== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
684 -
685 -
686 -This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
687 -
688 -
689 689  = 7. ​ Order Info =
690 690  
691 -
692 692  Part Number**:** NLMS01
693 693  
694 -
695 695  = 8.  Packing Info =
696 696  
615 +**Package Includes**:
697 697  
698 -(% style="color:#037691" %)**Package Includes:**
699 -
700 700  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
701 701  
702 -(% style="color:#037691" %)**Dimension and weight**:
619 +**Dimension and weight**:
703 703  
704 704  * Device Size: cm
705 705  * Device Weight: g
... ... @@ -708,7 +708,6 @@
708 708  
709 709  = 9.  Support =
710 710  
711 -
712 712  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
713 713  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
714 714  
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0