<
From version < 38.2 >
edited by Xiaoling
on 2022/10/14 18:11
To version < 25.1 >
edited by David Huang
on 2022/09/07 17:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,41 +1,31 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 +**~1. Introduction**
8 8  
7 +**1.1 ​What is NLMS01 **Leaf Moisture Sensor
9 9  
10 -= 1.  Introduction =
9 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
11 11  
11 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
12 12  
13 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 -
15 -
16 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 -
18 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 -
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
14 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
15 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
16 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
24 24  
25 -
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 -
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
22 +**​1.2 Features**
31 31  
32 -
33 -== ​1.2  Features ==
34 -
35 -
36 36  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 37  * Monitor Leaf moisture
38 -* Monitor Leaf temperature
26 +
27 +* Monitor Leaf temperature
28 +
39 39  * Moisture and Temperature alarm function
40 40  * Monitor Battery Level
41 41  * Uplink on periodically
... ... @@ -47,21 +47,14 @@
47 47  * Micro SIM card slot for NB-IoT SIM
48 48  * 8500mAh Battery for long term use
49 49  
50 -(((
51 -
40 +**1.3  Specification**
52 52  
53 -
54 -)))
42 +**Common DC Characteristics:**
55 55  
56 -== 1.3  Specification ==
57 -
58 -
59 -(% style="color:#037691" %)**Common DC Characteristics:**
60 -
61 61  * Supply Voltage: 2.1v ~~ 3.6v
62 62  * Operating Temperature: -40 ~~ 85°C
63 63  
64 -(% style="color:#037691" %)**NB-IoT Spec:**
47 +**NB-IoT Spec:**
65 65  
66 66  * - B1 @H-FDD: 2100MHz
67 67  * - B3 @H-FDD: 1800MHz
... ... @@ -70,13 +70,11 @@
70 70  * - B20 @H-FDD: 800MHz
71 71  * - B28 @H-FDD: 700MHz
72 72  
56 +**1.4 Probe Specification**
73 73  
74 74  
75 -== 1.4  Probe Specification ==
59 +**Leaf Moisture: percentage of water drop over total leaf surface**
76 76  
77 -
78 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
79 -
80 80  * Range 0-100%
81 81  * Resolution: 0.1%
82 82  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -83,7 +83,7 @@
83 83  * IP67 Protection
84 84  * Length: 3.5 meters
85 85  
86 -(% style="color:#037691" %)**Leaf Temperature:**
67 +**Leaf Temperature:**
87 87  
88 88  * Range -50℃~80℃
89 89  * Resolution: 0.1℃
... ... @@ -91,44 +91,30 @@
91 91  * IP67 Protection
92 92  * Length: 3.5 meters
93 93  
75 +**~ 1.5 ​Applications**
94 94  
95 -
96 -== 1.5 ​ Applications ==
97 -
98 -
99 99  * Smart Agriculture
100 100  
79 +**1.6 Pin mapping and power on**
101 101  
102 -
103 -== 1.6  Pin mapping and power on ==
104 -
105 -
106 106  ​[[image:image-20220907171221-4.png]]
107 107  
108 108  **~ **
109 109  
85 +**2.  Use NLMS01 to communicate with IoT Server**
110 110  
111 -= 2.  Use NLMS01 to communicate with IoT Server =
87 +**2.1  How it works**
112 112  
113 -
114 -== 2.1  How it works ==
115 -
116 -
117 117  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
118 118  
119 119  The diagram below shows the working flow in default firmware of NLMS01:
120 120  
121 -
122 122  [[image:image-20220907171221-5.png]]
123 123  
95 +**2.2 ​ Configure the NLMS01**
124 124  
97 +**2.2.1 Test Requirement**
125 125  
126 -== 2.2 ​ Configure the NLMS01 ==
127 -
128 -
129 -=== 2.2.1 Test Requirement ===
130 -
131 -
132 132  To use NLMS01 in your city, make sure meet below requirements:
133 133  
134 134  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -135,114 +135,90 @@
135 135  * The local NB-IoT network used the band that NLMS01 supports.
136 136  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
105 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
139 139  
140 -
141 141  [[image:image-20220907171221-6.png]] ​
142 142  
109 +**2.2.2 Insert SIM card**
143 143  
144 -
145 -=== 2.2.2 Insert SIM card ===
146 -
147 -
148 148  Insert the NB-IoT Card get from your provider.
149 149  
150 150  User need to take out the NB-IoT module and insert the SIM card like below:
151 151  
152 -
153 153  [[image:image-20220907171221-7.png]] ​
154 154  
117 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
155 155  
119 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
156 156  
157 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
121 +**Connection:**
158 158  
123 + USB TTL GND <~-~-~-~-> GND
159 159  
160 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
125 + USB TTL TXD <~-~-~-~-> UART_RXD
161 161  
127 + USB TTL RXD <~-~-~-~-> UART_TXD
162 162  
163 -(% style="color:blue" %)**Connection:**
164 -
165 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
166 -
167 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
168 -
169 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
170 -
171 -
172 172  In the PC, use below serial tool settings:
173 173  
174 -* Baud:  (% style="color:green" %)**9600**
175 -* Data bits:**  (% style="color:green" %)8(%%)**
176 -* Stop bits:  (% style="color:green" %)**1**
177 -* Parity:  (% style="color:green" %)**None**
178 -* Flow Control: (% style="color:green" %)**None**
131 +* Baud:  **9600**
132 +* Data bits:** 8**
133 +* Stop bits: **1**
134 +* Parity:  **None**
135 +* Flow Control: **None**
179 179  
180 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
137 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
181 181  
182 -​[[image:image-20220913090720-1.png]]
139 +​[[image:image-20220907171221-8.png]]
183 183  
141 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
184 184  
185 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
143 +**2.2.4 Use CoAP protocol to uplink data**
186 186  
145 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
187 187  
147 +**Use below commands:**
188 188  
189 -=== 2.2.4 Use CoAP protocol to uplink data ===
149 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
150 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
151 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
190 190  
191 -
192 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
193 -
194 -
195 -(% style="color:blue" %)**Use below commands:**
196 -
197 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
198 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
199 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
200 -
201 201  For parameter description, please refer to AT command set
202 202  
203 203  [[image:image-20220907171221-9.png]]
204 204  
157 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
205 205  
206 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
207 -
208 208  [[image:image-20220907171221-10.png]] ​
209 209  
161 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
210 210  
211 -
212 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
213 -
214 -
215 215  This feature is supported since firmware version v1.0.1
216 216  
217 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
218 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
219 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
165 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
166 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
167 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
220 220  
221 221  ​ [[image:image-20220907171221-11.png]]
222 222  
223 -
224 224  [[image:image-20220907171221-12.png]]
225 225  
226 226  ​
227 227  
175 +**2.2.6 Use MQTT protocol to uplink data**
228 228  
229 -=== 2.2.6 Use MQTT protocol to uplink data ===
230 -
231 -
232 232  This feature is supported since firmware version v110
233 233  
234 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
235 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
236 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
237 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
238 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
239 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
240 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
179 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
180 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
181 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
182 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
183 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
184 +* **AT+PUBTOPIC=NSE01_PUB                    **~/~/Set the sending topic of MQTT
185 +* **AT+SUBTOPIC=NSE01_SUB          ** ~/~/Set the subscription topic of MQTT
241 241  
242 242  ​ [[image:image-20220907171221-13.png]]
243 243  
244 -
245 -
246 246  [[image:image-20220907171221-14.png]]
247 247  
248 248  ​
... ... @@ -249,115 +249,81 @@
249 249  
250 250  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
251 251  
195 +**2.2.7 Use TCP protocol to uplink data**
252 252  
253 -
254 -=== 2.2.7 Use TCP protocol to uplink data ===
255 -
256 -
257 257  This feature is supported since firmware version v110
258 258  
259 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
260 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
199 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
200 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
261 261  
262 262  ​ [[image:image-20220907171221-15.png]]
263 263  
264 -
265 -
266 266  [[image:image-20220907171221-16.png]]
267 267  
268 268  ​
269 269  
208 +**2.2.8 Change Update Interval**
270 270  
271 -=== 2.2.8 Change Update Interval ===
272 -
273 -
274 274  User can use below command to change the **uplink interval**.
275 275  
276 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
212 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
277 277  
278 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
214 +**NOTE:**
279 279  
216 +**~1. By default, the device will send an uplink message every 2 hour.**
280 280  
218 +**2.3  Uplink Payload**
281 281  
282 -== 2.3  Uplink Payload ==
283 -
284 -
285 285  In this mode, uplink payload includes 87 bytes in total by default.
286 286  
287 287  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
288 288  
224 +|**Size(bytes)**|**8**|**2**|**2**|**1**|**1**|1|2|2|2|4   
225 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Soil PH|Time stamp  .....
289 289  
290 -(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
291 -|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
292 -|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
293 -
294 294  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
295 295  
296 -
297 297  [[image:image-20220907171221-17.png]]
298 298  
299 -
300 300  The payload is ASCII string, representative same HEX:
301 301  
302 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
233 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
303 303  
304 -where:
235 +* Device ID: 0xf868411056754138 = f868411056754138
236 +* Version: 0x0064=100=1.0.0
305 305  
306 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
238 +* BAT: 0x0c78 = 3192 mV = 3.192V
239 +* Singal: 0x17 = 23
240 +* Mod: 0x01 = 1
241 +* Interrupt: 0x00= 0
242 +* Leaf moisture: 0x0225= 549 = 54.9%
243 +* Leaf Temperature:0x010B =267=26.7 °C
244 +* Time stamp : 0x6315537b =1662342011
245 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
246 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
307 307  
308 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
248 +**2.4  Payload Explanation and Sensor Interface**
309 309  
310 -* (% style="color:#037691" %)**BAT:**  (%%)0x0c78 = 3192 mV = 3.192V
250 +**2.4.1  Device ID**
311 311  
312 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
313 -
314 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
315 -
316 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
317 -
318 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
319 -
320 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
321 -
322 -* (% style="color:#037691" %)**Time stamp :**  (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
323 -
324 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
325 -
326 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
327 -
328 -
329 -
330 -== 2.4  Payload Explanation and Sensor Interface ==
331 -
332 -
333 -=== 2.4.1  Device ID ===
334 -
335 -
336 336  By default, the Device ID equal to the last 15 bits of IMEI.
337 337  
338 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
254 +User can use **AT+DEUI** to set Device ID
339 339  
256 +**Example:**
340 340  
341 -(% style="color:blue" %)**Example**:
342 -
343 343  AT+DEUI=868411056754138
344 344  
345 345  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 346  
262 +**2.4.2  Version Info**
347 347  
348 -
349 -=== 2.4.2  Version Info ===
350 -
351 -
352 352  Specify the software version: 0x64=100, means firmware version 1.00.
353 353  
354 354  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
355 355  
268 +**2.4.3  Battery Info**
356 356  
357 -
358 -=== 2.4.3  Battery Info ===
359 -
360 -
361 361  Check the battery voltage for NLMS01.
362 362  
363 363  Ex1: 0x0B45 = 2885mV
... ... @@ -364,16 +364,12 @@
364 364  
365 365  Ex2: 0x0B49 = 2889mV
366 366  
276 +**2.4.4  Signal Strength**
367 367  
368 -
369 -=== 2.4.4  Signal Strength ===
370 -
371 -
372 372  NB-IoT Network signal Strength.
373 373  
280 +**Ex1: 0x1d = 29**
374 374  
375 -(% style="color:blue" %)**Ex1: 0x1d = 29**
376 -
377 377  **0**  -113dBm or less
378 378  
379 379  **1**  -111dBm
... ... @@ -384,49 +384,37 @@
384 384  
385 385  **99**    Not known or not detectable
386 386  
292 +**2.4.5  Leaf** moisture
387 387  
294 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
388 388  
389 -=== 2.4.5  Leaf moisture ===
296 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
390 390  
298 +**0229(H) = 549(D) /100 = 54.9.**
391 391  
392 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
300 +**2.4.6  Leaf Temperature**
393 393  
394 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
302 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
395 395  
396 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
304 +**Example**:
397 397  
306 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
398 398  
308 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
399 399  
400 -=== 2.4.6  Leaf Temperature ===
310 +**2.4.7  Timestamp**
401 401  
402 -
403 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
404 -
405 -(% style="color:blue" %)**Example**:
406 -
407 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
408 -
409 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
410 -
411 -
412 -
413 -=== 2.4.7  Timestamp ===
414 -
415 -
416 416  Time stamp : 0x6315537b =1662342011
417 417  
418 418  Convert Unix timestamp to time 2022-9-5 9:40:11.
419 419  
316 +**2.4.8  Digital Interrupt**
420 420  
318 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
421 421  
422 -=== 2.4.8  Digital Interrupt ===
423 -
424 -
425 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
426 -
427 427  The command is:
428 428  
429 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
322 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
430 430  
431 431  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
432 432  
... ... @@ -436,34 +436,27 @@
436 436  
437 437  0x(01): Interrupt Uplink Packet.
438 438  
332 +**2.4.9  ​+5V Output**
439 439  
440 -
441 -=== 2.4.9  ​+5V Output ===
442 -
443 -
444 444  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
445 445  
446 446  The 5V output time can be controlled by AT Command.
447 447  
448 -(% style="color:blue" %)**AT+5VT=1000**
338 +**AT+5VT=1000**
449 449  
450 450  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
451 451  
452 452  
343 +**2.5  Downlink Payload**
453 453  
454 -== 2.5  Downlink Payload ==
455 -
456 -
457 457  By default, NLMS01 prints the downlink payload to console port.
458 458  
459 459  [[image:image-20220907171221-18.png]] ​
460 460  
349 +**Examples:**
461 461  
462 -(% style="color:blue" %)**Examples:**
351 +* **Set TDC**
463 463  
464 -
465 -* (% style="color:#037691" %)**Set TDC**
466 -
467 467  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
468 468  
469 469  Payload:    01 00 00 1E    TDC=30S
... ... @@ -470,23 +470,16 @@
470 470  
471 471  Payload:    01 00 00 3C    TDC=60S
472 472  
359 +* **Reset**
473 473  
474 -
475 -* (% style="color:#037691" %)**Reset**
476 -
477 477  If payload = 0x04FF, it will reset the NLMS01
478 478  
363 +* **INTMOD**
479 479  
480 -
481 -* (% style="color:#037691" %)**INTMOD**
482 -
483 483  Downlink Payload: 06000003, Set AT+INTMOD=3
484 484  
367 +**2.6  ​LED Indicator**
485 485  
486 -
487 -== 2.6  ​LED Indicator ==
488 -
489 -
490 490  The NLMS01 has an internal LED which is to show the status of different state.
491 491  
492 492  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -494,23 +494,18 @@
494 494  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
495 495  * For each uplink probe, LED will be on for 500ms.
496 496  
497 -== 2.7  Installation ==
376 +**2.7 Installation**
498 498  
499 -
500 500  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
501 501  
502 -
503 503  [[image:image-20220907171221-19.png]]
504 504  
382 +**2.8 Moisture and Temperature alarm function**
505 505  
384 +➢ AT Command:
506 506  
507 -== 2.8  Moisture and Temperature alarm function ==
386 +AT+ HUMALARM =min,max
508 508  
509 -
510 -(% style="color:blue" %)**➢ AT Command:**
511 -
512 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
513 -
514 514  ² When min=0, and max≠0, Alarm higher than max
515 515  
516 516  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -517,9 +517,8 @@
517 517  
518 518  ² When min≠0 and max≠0, Alarm higher than max or lower than min
519 519  
394 +Example:
520 520  
521 -(% style="color:blue" %)**Example:**
522 -
523 523  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
524 524  
525 525  AT+ TEMPALARM=min,max
... ... @@ -530,53 +530,42 @@
530 530  
531 531  ² When min≠0 and max≠0, Alarm higher than max or lower than min
532 532  
406 +Example:
533 533  
534 -(% style="color:blue" %)**Example:**
535 -
536 536  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
537 537  
538 538  
411 +**2.9 Set the number of data to be uploaded and the recording time**
539 539  
540 -== 2.9  Set the number of data to be uploaded and the recording time ==
413 + AT Command:
541 541  
415 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
542 542  
543 -(% style="color:blue" %)**➢ AT Command:**
544 544  
545 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
546 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
418 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
547 547  
548 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
420 +**2.10 Read or Clear cached data**
549 549  
550 -[[image:image-20221009001002-1.png||height="706" width="982"]]
422 +➢ AT Command:
551 551  
424 +AT+CDP    ~/~/ Read cached data
552 552  
553 -== 2.10  Read or Clear cached data ==
554 -
555 -
556 -(% style="color:blue" %)**➢ AT Command:**
557 -
558 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
559 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
560 -
561 561  [[image:image-20220907171221-20.png]]
562 562  
563 563  
429 +AT+CDP=0    ~/~/ Clear cached data
564 564  
565 -== 2.11  ​Firmware Change Log ==
566 566  
432 +**2.8  ​Firmware Change Log**
567 567  
568 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
434 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
569 569  
570 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
436 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
571 571  
438 +**2.9  ​Battery Analysis**
572 572  
440 +**2.9.1  ​Battery Type**
573 573  
574 -== 2.12  ​Battery Analysis ==
575 -
576 -
577 -=== 2.12.1  ​Battery Type ===
578 -
579 -
580 580  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
581 581  
582 582  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -589,18 +589,15 @@
589 589  
590 590  [[image:image-20220907171221-21.png]] ​
591 591  
454 +**2.9.2  Power consumption Analyze**
592 592  
593 -
594 -=== 2.12.2  Power consumption Analyze ===
595 -
596 -
597 597  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
598 598  
599 599  Instruction to use as below:
600 600  
601 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
460 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
602 602  
603 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
462 +**Step 2: ** Open it and choose
604 604  
605 605  * Product Model
606 606  * Uplink Interval
... ... @@ -610,171 +610,131 @@
610 610  
611 611  [[image:image-20220907171221-22.jpeg]] ​
612 612  
472 +**2.9.3  ​Battery Note**
613 613  
614 -=== 2.12.3  ​Battery Note ===
615 -
616 -
617 617  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
618 618  
476 +**2.9.4  Replace the battery**
619 619  
620 -
621 -=== 2.12.4  Replace the battery ===
622 -
623 -
624 624  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
625 625  
480 +**3. ​ Access NB-IoT Module**
626 626  
627 -
628 -= 3. ​ Access NB-IoT Module =
629 -
630 -
631 631  Users can directly access the AT command set of the NB-IoT module.
632 632  
633 633  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
634 634  
635 -
636 636  [[image:image-20220907171221-23.png]] ​
637 637  
488 +**4.  Using the AT Commands**
638 638  
490 +**4.1  Access AT Commands**
639 639  
640 -= 4.  Using the AT Commands =
641 -
642 -
643 -== 4.1  Access AT Commands ==
644 -
645 -
646 646  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
647 647  
648 -AT+<CMD>?  :  Help on <CMD>
494 +AT+<CMD>?  : Help on <CMD>
649 649  
650 -AT+<CMD>  Run <CMD>
496 +AT+<CMD>         : Run <CMD>
651 651  
652 -AT+<CMD>=<value>:  Set the value
498 +AT+<CMD>=<value> : Set the value
653 653  
654 -AT+<CMD>=?  Get the value
500 +AT+<CMD>=?  : Get the value
655 655  
502 +**General Commands**      
656 656  
657 -(% style="color:#037691" %)**General Commands**      
504 +AT  : Attention       
658 658  
659 -AT  Attention       
506 +AT?  : Short Help     
660 660  
661 -AT?  Short Help     
508 +ATZ  : MCU Reset    
662 662  
663 -ATZ  :  MCU Reset    
510 +AT+TDC  : Application Data Transmission Interval
664 664  
665 -AT+TDC  :  Application Data Transmission Interval
512 +AT+CFG  : Print all configurations
666 666  
667 -AT+CFG  :  Print all configurations
514 +AT+CFGMOD           : Working mode selection
668 668  
669 -AT+CFGMOD  :  Working mode selection
516 +AT+INTMOD            : Set the trigger interrupt mode
670 670  
671 -AT+INTMOD  Set the trigger interrupt mode
518 +AT+5V : Set extend the time of 5V power  
672 672  
673 -AT+5VT  Set extend the time of 5V power  
520 +AT+PRO  : Choose agreement
674 674  
675 -AT+PRO :  Choose agreement
522 +AT+RXDL  : Extend the sending and receiving time
676 676  
677 -AT+RXDL:  Extend the sending and receiving time
524 +AT+SERVADDR  : Server Address
678 678  
679 -AT+SERVADDR :  Server Address
526 +AT+TR      : Get or Set record time"
680 680  
681 -AT+APN :  Get or set the APN
682 682  
683 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
529 +AT+NOUD      : Get or Set the number of data to be uploaded
684 684  
685 -AT+DNSCFG : Get or Set DNS Server
686 686  
687 -AT+GETSENSORVALUE   : Returns the current sensor measurement
532 +AT+CDP     : Read or Clear cached data
688 688  
689 -AT+TR :  Get or Set record time"
690 690  
691 -AT+NOUD :  Get or Set the number of data to be uploaded
535 +AT+TEMPALARM      : Get or Set alarm of temp
692 692  
693 -AT+CDP :  Read or Clear cached data
537 +AT+HUMALARM     : Get or Set alarm of PH
694 694  
695 -AT+TEMPALARM :  Get or Set alarm of temp
696 696  
697 -AT+HUMALARM :  Get or Set alarm of humidity
540 +**COAP Management**      
698 698  
542 +AT+URI            : Resource parameters
699 699  
700 -(% style="color:#037691" %)**COAP Management**      
544 +**UDP Management**
701 701  
702 -AT+URI :  Resource parameters
546 +AT+CFM          : Upload confirmation mode (only valid for UDP)
703 703  
548 +**MQTT Management**
704 704  
705 -(% style="color:#037691" %)**UDP Management**
550 +AT+CLIENT               : Get or Set MQTT client
706 706  
707 -AT+CFM :  Upload confirmation mode (only valid for UDP)
552 +AT+UNAME  : Get or Set MQTT Username
708 708  
554 +AT+PWD                  : Get or Set MQTT password
709 709  
710 -(% style="color:#037691" %)**MQTT Management**
556 +AT+PUBTOPIC  : Get or Set MQTT publish topic
711 711  
712 -AT+CLIEN Get or Set MQTT client
558 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
713 713  
714 -AT+UNAME  : Get or Set MQTT Username
560 +**Information**          
715 715  
716 -AT+PW Get or Set MQTT password
562 +AT+FDR  : Factory Data Reset
717 717  
718 -AT+PUBTOPIC  Get or Set MQTT publish topic
564 +AT+PWORD  : Serial Access Password
719 719  
720 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
566 +**​5.  FAQ**
721 721  
568 +**5.1 ​ How to Upgrade Firmware**
722 722  
723 -(% style="color:#037691" %)**Information**          
724 -
725 -AT+FDR :  Factory Data Reset
726 -
727 -AT+PWORD :  Serial Access Password
728 -
729 -
730 -
731 -= ​5.  FAQ =
732 -
733 -
734 -== 5.1 ​ How to Upgrade Firmware ==
735 -
736 -
737 737  User can upgrade the firmware for 1) bug fix, 2) new feature release.
738 738  
739 739  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
740 740  
574 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
741 741  
742 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
576 +**6.  Trouble Shooting**
743 743  
578 +**6.1  ​Connection problem when uploading firmware**
744 744  
745 -
746 -= 6.  Trouble Shooting =
747 -
748 -
749 -== 6.1  ​Connection problem when uploading firmware ==
750 -
751 -
752 752  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
753 753  
582 +**6.2  AT Command input doesn't work**
754 754  
584 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
755 755  
756 -== 6. AT Command input doesn't work ==
586 +**7. Order Info**
757 757  
758 -
759 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
760 -
761 -
762 -
763 -= 7. ​ Order Info =
764 -
765 -
766 766  Part Number**:** NLMS01
767 767  
590 +**8.  Packing Info**
768 768  
592 +**Package Includes**:
769 769  
770 -= 8.  Packing Info =
771 -
772 -
773 -(% style="color:#037691" %)**Package Includes:**
774 -
775 775  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
776 776  
777 -(% style="color:#037691" %)**Dimension and weight**:
596 +**Dimension and weight**:
778 778  
779 779  * Device Size: cm
780 780  * Device Weight: g
... ... @@ -782,11 +782,11 @@
782 782  * Weight / pcs : g
783 783  
784 784  
604 +**9.  Support**
785 785  
786 -= 9.  Support =
787 -
788 -
789 789  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
790 790  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
791 791  
792 792  ​
610 +
611 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0