<
From version < 38.12 >
edited by Xiaoling
on 2022/10/25 16:35
To version < 25.1 >
edited by David Huang
on 2022/09/07 17:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,46 +1,31 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 +**~1. Introduction**
8 8  
7 +**1.1 ​What is NLMS01 **Leaf Moisture Sensor
9 9  
10 -= 1.  Introduction =
9 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
11 11  
11 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
12 12  
13 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 -
15 -
16 -(((
17 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
18 -
19 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
20 -
21 21  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
14 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
15 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
16 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
22 22  
23 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
24 -
25 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
26 -
27 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
28 -)))
29 -
30 -
31 31  ​[[image:image-20220907171221-2.png]]
32 32  
33 -
34 34  ​ [[image:image-20220907171221-3.png]]
35 35  
22 +**​1.2 Features**
36 36  
37 -
38 -== ​1.2  Features ==
39 -
40 -
41 41  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
42 42  * Monitor Leaf moisture
43 -* Monitor Leaf temperature
26 +
27 +* Monitor Leaf temperature
28 +
44 44  * Moisture and Temperature alarm function
45 45  * Monitor Battery Level
46 46  * Uplink on periodically
... ... @@ -52,21 +52,14 @@
52 52  * Micro SIM card slot for NB-IoT SIM
53 53  * 8500mAh Battery for long term use
54 54  
55 -(((
56 -
40 +**1.3  Specification**
57 57  
58 -
59 -)))
42 +**Common DC Characteristics:**
60 60  
61 -== 1.3  Specification ==
62 -
63 -
64 -(% style="color:#037691" %)**Common DC Characteristics:**
65 -
66 66  * Supply Voltage: 2.1v ~~ 3.6v
67 67  * Operating Temperature: -40 ~~ 85°C
68 68  
69 -(% style="color:#037691" %)**NB-IoT Spec:**
47 +**NB-IoT Spec:**
70 70  
71 71  * - B1 @H-FDD: 2100MHz
72 72  * - B3 @H-FDD: 1800MHz
... ... @@ -75,13 +75,11 @@
75 75  * - B20 @H-FDD: 800MHz
76 76  * - B28 @H-FDD: 700MHz
77 77  
56 +**1.4 Probe Specification**
78 78  
79 79  
80 -== 1.4  Probe Specification ==
59 +**Leaf Moisture: percentage of water drop over total leaf surface**
81 81  
82 -
83 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
84 -
85 85  * Range 0-100%
86 86  * Resolution: 0.1%
87 87  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -88,7 +88,7 @@
88 88  * IP67 Protection
89 89  * Length: 3.5 meters
90 90  
91 -(% style="color:#037691" %)**Leaf Temperature:**
67 +**Leaf Temperature:**
92 92  
93 93  * Range -50℃~80℃
94 94  * Resolution: 0.1℃
... ... @@ -96,44 +96,30 @@
96 96  * IP67 Protection
97 97  * Length: 3.5 meters
98 98  
75 +**~ 1.5 ​Applications**
99 99  
100 -
101 -== 1.5 ​ Applications ==
102 -
103 -
104 104  * Smart Agriculture
105 105  
79 +**1.6 Pin mapping and power on**
106 106  
107 -
108 -== 1.6  Pin mapping and power on ==
109 -
110 -
111 111  ​[[image:image-20220907171221-4.png]]
112 112  
113 113  **~ **
114 114  
85 +**2.  Use NLMS01 to communicate with IoT Server**
115 115  
116 -= 2.  Use NLMS01 to communicate with IoT Server =
87 +**2.1  How it works**
117 117  
118 -
119 -== 2.1  How it works ==
120 -
121 -
122 122  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
123 123  
124 124  The diagram below shows the working flow in default firmware of NLMS01:
125 125  
126 -
127 127  [[image:image-20220907171221-5.png]]
128 128  
95 +**2.2 ​ Configure the NLMS01**
129 129  
97 +**2.2.1 Test Requirement**
130 130  
131 -== 2.2 ​ Configure the NLMS01 ==
132 -
133 -
134 -=== 2.2.1 Test Requirement ===
135 -
136 -
137 137  To use NLMS01 in your city, make sure meet below requirements:
138 138  
139 139  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -140,114 +140,90 @@
140 140  * The local NB-IoT network used the band that NLMS01 supports.
141 141  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
142 142  
143 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
105 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
144 144  
145 -
146 146  [[image:image-20220907171221-6.png]] ​
147 147  
109 +**2.2.2 Insert SIM card**
148 148  
149 -
150 -=== 2.2.2 Insert SIM card ===
151 -
152 -
153 153  Insert the NB-IoT Card get from your provider.
154 154  
155 155  User need to take out the NB-IoT module and insert the SIM card like below:
156 156  
157 -
158 158  [[image:image-20220907171221-7.png]] ​
159 159  
117 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
160 160  
119 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
161 161  
162 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
121 +**Connection:**
163 163  
123 + USB TTL GND <~-~-~-~-> GND
164 164  
165 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
125 + USB TTL TXD <~-~-~-~-> UART_RXD
166 166  
127 + USB TTL RXD <~-~-~-~-> UART_TXD
167 167  
168 -(% style="color:blue" %)**Connection:**
169 -
170 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
171 -
172 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
173 -
174 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
175 -
176 -
177 177  In the PC, use below serial tool settings:
178 178  
179 -* Baud:  (% style="color:green" %)**9600**
180 -* Data bits:**  (% style="color:green" %)8(%%)**
181 -* Stop bits:  (% style="color:green" %)**1**
182 -* Parity:  (% style="color:green" %)**None**
183 -* Flow Control: (% style="color:green" %)**None**
131 +* Baud:  **9600**
132 +* Data bits:** 8**
133 +* Stop bits: **1**
134 +* Parity:  **None**
135 +* Flow Control: **None**
184 184  
185 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
137 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
186 186  
187 -​[[image:image-20220913090720-1.png]]
139 +​[[image:image-20220907171221-8.png]]
188 188  
141 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
189 189  
190 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
143 +**2.2.4 Use CoAP protocol to uplink data**
191 191  
145 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
192 192  
147 +**Use below commands:**
193 193  
194 -=== 2.2.4 Use CoAP protocol to uplink data ===
149 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
150 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
151 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
195 195  
196 -
197 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
198 -
199 -
200 -(% style="color:blue" %)**Use below commands:**
201 -
202 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
203 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
204 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
205 -
206 206  For parameter description, please refer to AT command set
207 207  
208 208  [[image:image-20220907171221-9.png]]
209 209  
157 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
210 210  
211 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
212 -
213 213  [[image:image-20220907171221-10.png]] ​
214 214  
161 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
215 215  
216 -
217 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
218 -
219 -
220 220  This feature is supported since firmware version v1.0.1
221 221  
222 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
223 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
224 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
165 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
166 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
167 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
225 225  
226 226  ​ [[image:image-20220907171221-11.png]]
227 227  
228 -
229 229  [[image:image-20220907171221-12.png]]
230 230  
231 231  ​
232 232  
175 +**2.2.6 Use MQTT protocol to uplink data**
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 -
236 -
237 237  This feature is supported since firmware version v110
238 238  
239 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
240 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
241 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
242 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
243 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
244 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
245 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
179 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
180 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
181 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
182 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
183 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
184 +* **AT+PUBTOPIC=NSE01_PUB                    **~/~/Set the sending topic of MQTT
185 +* **AT+SUBTOPIC=NSE01_SUB          ** ~/~/Set the subscription topic of MQTT
246 246  
247 247  ​ [[image:image-20220907171221-13.png]]
248 248  
249 -
250 -
251 251  [[image:image-20220907171221-14.png]]
252 252  
253 253  ​
... ... @@ -254,115 +254,81 @@
254 254  
255 255  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 256  
195 +**2.2.7 Use TCP protocol to uplink data**
257 257  
258 -
259 -=== 2.2.7 Use TCP protocol to uplink data ===
260 -
261 -
262 262  This feature is supported since firmware version v110
263 263  
264 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
265 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
199 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
200 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
266 266  
267 267  ​ [[image:image-20220907171221-15.png]]
268 268  
269 -
270 -
271 271  [[image:image-20220907171221-16.png]]
272 272  
273 273  ​
274 274  
208 +**2.2.8 Change Update Interval**
275 275  
276 -=== 2.2.8 Change Update Interval ===
277 -
278 -
279 279  User can use below command to change the **uplink interval**.
280 280  
281 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
212 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
282 282  
283 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
214 +**NOTE:**
284 284  
216 +**~1. By default, the device will send an uplink message every 2 hour.**
285 285  
218 +**2.3  Uplink Payload**
286 286  
287 -== 2.3  Uplink Payload ==
288 -
289 -
290 290  In this mode, uplink payload includes 87 bytes in total by default.
291 291  
292 292  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
293 293  
224 +|**Size(bytes)**|**8**|**2**|**2**|**1**|**1**|1|2|2|2|4   
225 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Soil PH|Time stamp  .....
294 294  
295 -(% border="1" style="background-color:#ffffcc; color:green; width:520px" %)
296 -|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:20px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:50px" %)**2**|(% style="width:50px" %)**4**|(% style="width:50px" %)**2**|(% style="width:40px" %)**2**|(% style="width:40px" %)**4**
297 -|=(% style="width: 96px;" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
298 -
299 299  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
300 300  
301 -
302 302  [[image:image-20220907171221-17.png]]
303 303  
304 -
305 305  The payload is ASCII string, representative same HEX:
306 306  
307 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
233 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
308 308  
309 -where:
235 +* Device ID: 0xf868411056754138 = f868411056754138
236 +* Version: 0x0064=100=1.0.0
310 310  
311 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
238 +* BAT: 0x0c78 = 3192 mV = 3.192V
239 +* Singal: 0x17 = 23
240 +* Mod: 0x01 = 1
241 +* Interrupt: 0x00= 0
242 +* Leaf moisture: 0x0225= 549 = 54.9%
243 +* Leaf Temperature:0x010B =267=26.7 °C
244 +* Time stamp : 0x6315537b =1662342011
245 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
246 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
312 312  
313 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
248 +**2.4  Payload Explanation and Sensor Interface**
314 314  
315 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
250 +**2.4.1  Device ID**
316 316  
317 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
318 -
319 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
320 -
321 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
322 -
323 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
324 -
325 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
326 -
327 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
328 -
329 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
330 -
331 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
332 -
333 -
334 -
335 -== 2.4  Payload Explanation and Sensor Interface ==
336 -
337 -
338 -=== 2.4.1  Device ID ===
339 -
340 -
341 341  By default, the Device ID equal to the last 15 bits of IMEI.
342 342  
343 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
254 +User can use **AT+DEUI** to set Device ID
344 344  
256 +**Example:**
345 345  
346 -(% style="color:blue" %)**Example**:
347 -
348 348  AT+DEUI=868411056754138
349 349  
350 350  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
351 351  
262 +**2.4.2  Version Info**
352 352  
353 -
354 -=== 2.4.2  Version Info ===
355 -
356 -
357 357  Specify the software version: 0x64=100, means firmware version 1.00.
358 358  
359 359  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
360 360  
268 +**2.4.3  Battery Info**
361 361  
362 -
363 -=== 2.4.3  Battery Info ===
364 -
365 -
366 366  Check the battery voltage for NLMS01.
367 367  
368 368  Ex1: 0x0B45 = 2885mV
... ... @@ -369,16 +369,12 @@
369 369  
370 370  Ex2: 0x0B49 = 2889mV
371 371  
276 +**2.4.4  Signal Strength**
372 372  
373 -
374 -=== 2.4.4  Signal Strength ===
375 -
376 -
377 377  NB-IoT Network signal Strength.
378 378  
280 +**Ex1: 0x1d = 29**
379 379  
380 -(% style="color:blue" %)**Ex1: 0x1d = 29**
381 -
382 382  **0**  -113dBm or less
383 383  
384 384  **1**  -111dBm
... ... @@ -389,49 +389,37 @@
389 389  
390 390  **99**    Not known or not detectable
391 391  
292 +**2.4.5  Leaf** moisture
392 392  
294 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
393 393  
394 -=== 2.4.5  Leaf moisture ===
296 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
395 395  
298 +**0229(H) = 549(D) /100 = 54.9.**
396 396  
397 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
300 +**2.4.6  Leaf Temperature**
398 398  
399 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
302 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
400 400  
401 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
304 +**Example**:
402 402  
306 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
403 403  
308 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
404 404  
405 -=== 2.4.6  Leaf Temperature ===
310 +**2.4.7  Timestamp**
406 406  
407 -
408 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
409 -
410 -(% style="color:blue" %)**Example**:
411 -
412 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
413 -
414 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
415 -
416 -
417 -
418 -=== 2.4.7  Timestamp ===
419 -
420 -
421 421  Time stamp : 0x6315537b =1662342011
422 422  
423 423  Convert Unix timestamp to time 2022-9-5 9:40:11.
424 424  
316 +**2.4.8  Digital Interrupt**
425 425  
318 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
426 426  
427 -=== 2.4.8  Digital Interrupt ===
428 -
429 -
430 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
431 -
432 432  The command is:
433 433  
434 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
322 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
435 435  
436 436  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
437 437  
... ... @@ -441,34 +441,27 @@
441 441  
442 442  0x(01): Interrupt Uplink Packet.
443 443  
332 +**2.4.9  ​+5V Output**
444 444  
445 -
446 -=== 2.4.9  ​+5V Output ===
447 -
448 -
449 449  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
450 450  
451 451  The 5V output time can be controlled by AT Command.
452 452  
453 -(% style="color:blue" %)**AT+5VT=1000**
338 +**AT+5VT=1000**
454 454  
455 455  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
456 456  
457 457  
343 +**2.5  Downlink Payload**
458 458  
459 -== 2.5  Downlink Payload ==
460 -
461 -
462 462  By default, NLMS01 prints the downlink payload to console port.
463 463  
464 464  [[image:image-20220907171221-18.png]] ​
465 465  
349 +**Examples:**
466 466  
467 -(% style="color:blue" %)**Examples:**
351 +* **Set TDC**
468 468  
469 -
470 -* (% style="color:#037691" %)**Set TDC**
471 -
472 472  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
473 473  
474 474  Payload:    01 00 00 1E    TDC=30S
... ... @@ -475,23 +475,16 @@
475 475  
476 476  Payload:    01 00 00 3C    TDC=60S
477 477  
359 +* **Reset**
478 478  
479 -
480 -* (% style="color:#037691" %)**Reset**
481 -
482 482  If payload = 0x04FF, it will reset the NLMS01
483 483  
363 +* **INTMOD**
484 484  
485 -
486 -* (% style="color:#037691" %)**INTMOD**
487 -
488 488  Downlink Payload: 06000003, Set AT+INTMOD=3
489 489  
367 +**2.6  ​LED Indicator**
490 490  
491 -
492 -== 2.6  ​LED Indicator ==
493 -
494 -
495 495  The NLMS01 has an internal LED which is to show the status of different state.
496 496  
497 497  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -499,23 +499,18 @@
499 499  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
500 500  * For each uplink probe, LED will be on for 500ms.
501 501  
502 -== 2.7  Installation ==
376 +**2.7 Installation**
503 503  
504 -
505 505  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
506 506  
507 -
508 508  [[image:image-20220907171221-19.png]]
509 509  
382 +**2.8 Moisture and Temperature alarm function**
510 510  
384 +➢ AT Command:
511 511  
512 -== 2.8  Moisture and Temperature alarm function ==
386 +AT+ HUMALARM =min,max
513 513  
514 -
515 -(% style="color:blue" %)**➢ AT Command:**
516 -
517 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
518 -
519 519  ² When min=0, and max≠0, Alarm higher than max
520 520  
521 521  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -522,9 +522,8 @@
522 522  
523 523  ² When min≠0 and max≠0, Alarm higher than max or lower than min
524 524  
394 +Example:
525 525  
526 -(% style="color:blue" %)**Example:**
527 -
528 528  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
529 529  
530 530  AT+ TEMPALARM=min,max
... ... @@ -535,53 +535,42 @@
535 535  
536 536  ² When min≠0 and max≠0, Alarm higher than max or lower than min
537 537  
406 +Example:
538 538  
539 -(% style="color:blue" %)**Example:**
540 -
541 541  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
542 542  
543 543  
411 +**2.9 Set the number of data to be uploaded and the recording time**
544 544  
545 -== 2.9  Set the number of data to be uploaded and the recording time ==
413 + AT Command:
546 546  
415 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
547 547  
548 -(% style="color:blue" %)**➢ AT Command:**
549 549  
550 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
551 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
418 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
552 552  
553 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
420 +**2.10 Read or Clear cached data**
554 554  
555 -[[image:image-20221009001002-1.png||height="706" width="982"]]
422 +➢ AT Command:
556 556  
424 +AT+CDP    ~/~/ Read cached data
557 557  
558 -== 2.10  Read or Clear cached data ==
559 -
560 -
561 -(% style="color:blue" %)**➢ AT Command:**
562 -
563 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
564 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
565 -
566 566  [[image:image-20220907171221-20.png]]
567 567  
568 568  
429 +AT+CDP=0    ~/~/ Clear cached data
569 569  
570 -== 2.11  ​Firmware Change Log ==
571 571  
432 +**2.8  ​Firmware Change Log**
572 572  
573 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
434 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
574 574  
575 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
436 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
576 576  
438 +**2.9  ​Battery Analysis**
577 577  
440 +**2.9.1  ​Battery Type**
578 578  
579 -== 2.12  ​Battery Analysis ==
580 -
581 -
582 -=== 2.12.1  ​Battery Type ===
583 -
584 -
585 585  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
586 586  
587 587  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -594,18 +594,15 @@
594 594  
595 595  [[image:image-20220907171221-21.png]] ​
596 596  
454 +**2.9.2  Power consumption Analyze**
597 597  
598 -
599 -=== 2.12.2  Power consumption Analyze ===
600 -
601 -
602 602  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
603 603  
604 604  Instruction to use as below:
605 605  
606 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
460 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
607 607  
608 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
462 +**Step 2: ** Open it and choose
609 609  
610 610  * Product Model
611 611  * Uplink Interval
... ... @@ -615,171 +615,131 @@
615 615  
616 616  [[image:image-20220907171221-22.jpeg]] ​
617 617  
472 +**2.9.3  ​Battery Note**
618 618  
619 -=== 2.12.3  ​Battery Note ===
620 -
621 -
622 622  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
623 623  
476 +**2.9.4  Replace the battery**
624 624  
625 -
626 -=== 2.12.4  Replace the battery ===
627 -
628 -
629 629  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
630 630  
480 +**3. ​ Access NB-IoT Module**
631 631  
632 -
633 -= 3. ​ Access NB-IoT Module =
634 -
635 -
636 636  Users can directly access the AT command set of the NB-IoT module.
637 637  
638 638  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
639 639  
640 -
641 641  [[image:image-20220907171221-23.png]] ​
642 642  
488 +**4.  Using the AT Commands**
643 643  
490 +**4.1  Access AT Commands**
644 644  
645 -= 4.  Using the AT Commands =
646 -
647 -
648 -== 4.1  Access AT Commands ==
649 -
650 -
651 651  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
652 652  
653 -AT+<CMD>?  :  Help on <CMD>
494 +AT+<CMD>?  : Help on <CMD>
654 654  
655 -AT+<CMD>  Run <CMD>
496 +AT+<CMD>         : Run <CMD>
656 656  
657 -AT+<CMD>=<value>:  Set the value
498 +AT+<CMD>=<value> : Set the value
658 658  
659 -AT+<CMD>=?  Get the value
500 +AT+<CMD>=?  : Get the value
660 660  
502 +**General Commands**      
661 661  
662 -(% style="color:#037691" %)**General Commands**      
504 +AT  : Attention       
663 663  
664 -AT  Attention       
506 +AT?  : Short Help     
665 665  
666 -AT?  Short Help     
508 +ATZ  : MCU Reset    
667 667  
668 -ATZ  :  MCU Reset    
510 +AT+TDC  : Application Data Transmission Interval
669 669  
670 -AT+TDC  :  Application Data Transmission Interval
512 +AT+CFG  : Print all configurations
671 671  
672 -AT+CFG  :  Print all configurations
514 +AT+CFGMOD           : Working mode selection
673 673  
674 -AT+CFGMOD  :  Working mode selection
516 +AT+INTMOD            : Set the trigger interrupt mode
675 675  
676 -AT+INTMOD  Set the trigger interrupt mode
518 +AT+5V : Set extend the time of 5V power  
677 677  
678 -AT+5VT  Set extend the time of 5V power  
520 +AT+PRO  : Choose agreement
679 679  
680 -AT+PRO :  Choose agreement
522 +AT+RXDL  : Extend the sending and receiving time
681 681  
682 -AT+RXDL:  Extend the sending and receiving time
524 +AT+SERVADDR  : Server Address
683 683  
684 -AT+SERVADDR :  Server Address
526 +AT+TR      : Get or Set record time"
685 685  
686 -AT+APN :  Get or set the APN
687 687  
688 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
529 +AT+NOUD      : Get or Set the number of data to be uploaded
689 689  
690 -AT+DNSCFG : Get or Set DNS Server
691 691  
692 -AT+GETSENSORVALUE   : Returns the current sensor measurement
532 +AT+CDP     : Read or Clear cached data
693 693  
694 -AT+TR :  Get or Set record time"
695 695  
696 -AT+NOUD :  Get or Set the number of data to be uploaded
535 +AT+TEMPALARM      : Get or Set alarm of temp
697 697  
698 -AT+CDP :  Read or Clear cached data
537 +AT+HUMALARM     : Get or Set alarm of PH
699 699  
700 -AT+TEMPALARM :  Get or Set alarm of temp
701 701  
702 -AT+HUMALARM :  Get or Set alarm of humidity
540 +**COAP Management**      
703 703  
542 +AT+URI            : Resource parameters
704 704  
705 -(% style="color:#037691" %)**COAP Management**      
544 +**UDP Management**
706 706  
707 -AT+URI :  Resource parameters
546 +AT+CFM          : Upload confirmation mode (only valid for UDP)
708 708  
548 +**MQTT Management**
709 709  
710 -(% style="color:#037691" %)**UDP Management**
550 +AT+CLIENT               : Get or Set MQTT client
711 711  
712 -AT+CFM :  Upload confirmation mode (only valid for UDP)
552 +AT+UNAME  : Get or Set MQTT Username
713 713  
554 +AT+PWD                  : Get or Set MQTT password
714 714  
715 -(% style="color:#037691" %)**MQTT Management**
556 +AT+PUBTOPIC  : Get or Set MQTT publish topic
716 716  
717 -AT+CLIEN Get or Set MQTT client
558 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
718 718  
719 -AT+UNAME  : Get or Set MQTT Username
560 +**Information**          
720 720  
721 -AT+PW Get or Set MQTT password
562 +AT+FDR  : Factory Data Reset
722 722  
723 -AT+PUBTOPIC  Get or Set MQTT publish topic
564 +AT+PWORD  : Serial Access Password
724 724  
725 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
566 +**​5.  FAQ**
726 726  
568 +**5.1 ​ How to Upgrade Firmware**
727 727  
728 -(% style="color:#037691" %)**Information**          
729 -
730 -AT+FDR :  Factory Data Reset
731 -
732 -AT+PWORD :  Serial Access Password
733 -
734 -
735 -
736 -= ​5.  FAQ =
737 -
738 -
739 -== 5.1 ​ How to Upgrade Firmware ==
740 -
741 -
742 742  User can upgrade the firmware for 1) bug fix, 2) new feature release.
743 743  
744 744  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
745 745  
574 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
746 746  
747 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
576 +**6.  Trouble Shooting**
748 748  
578 +**6.1  ​Connection problem when uploading firmware**
749 749  
750 -
751 -= 6.  Trouble Shooting =
752 -
753 -
754 -== 6.1  ​Connection problem when uploading firmware ==
755 -
756 -
757 757  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
758 758  
582 +**6.2  AT Command input doesn't work**
759 759  
584 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
760 760  
761 -== 6. AT Command input doesn't work ==
586 +**7. Order Info**
762 762  
763 -
764 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
765 -
766 -
767 -
768 -= 7. ​ Order Info =
769 -
770 -
771 771  Part Number**:** NLMS01
772 772  
590 +**8.  Packing Info**
773 773  
592 +**Package Includes**:
774 774  
775 -= 8.  Packing Info =
776 -
777 -
778 -(% style="color:#037691" %)**Package Includes:**
779 -
780 780  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
781 781  
782 -(% style="color:#037691" %)**Dimension and weight**:
596 +**Dimension and weight**:
783 783  
784 784  * Device Size: cm
785 785  * Device Weight: g
... ... @@ -787,11 +787,11 @@
787 787  * Weight / pcs : g
788 788  
789 789  
604 +**9.  Support**
790 790  
791 -= 9.  Support =
792 -
793 -
794 794  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
795 795  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
796 796  
797 797  ​
610 +
611 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0