<
From version < 38.11 >
edited by Xiaoling
on 2022/10/25 16:33
To version < 26.1 >
edited by David Huang
on 2022/09/07 17:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,72 +1,77 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 += 1. Introduction =
8 8  
7 +== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
9 9  
10 -= 1.  Introduction =
11 11  
10 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
12 12  
13 -== 1.1 What is NLMS01 Leaf Moisture Sensor ==
12 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
14 14  
15 -
16 -(((
17 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
18 -
19 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
20 -
21 21  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
15 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
16 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
17 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
22 22  
23 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
24 -
25 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
26 -
27 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
28 -)))
29 -
30 -
31 31  ​[[image:image-20220907171221-2.png]]
32 32  
33 -
34 34  ​ [[image:image-20220907171221-3.png]]
35 35  
23 +== ​1.2 Features ==
36 36  
25 +* (((
26 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
27 +)))
28 +* (((
29 +Monitor Leaf moisture
30 +)))
37 37  
38 -== ​1.2  Features ==
32 +* (((
33 + Monitor Leaf temperature
34 +)))
39 39  
40 -
41 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
42 -* Monitor Leaf moisture
43 -* Monitor Leaf temperature
44 -* Moisture and Temperature alarm function
45 -* Monitor Battery Level
46 -* Uplink on periodically
47 -* Downlink to change configure
48 -* IP66 Waterproof Enclosure
49 -* IP67 rate for the Sensor Probe
50 -* Ultra-Low Power consumption
51 -* AT Commands to change parameters
52 -* Micro SIM card slot for NB-IoT SIM
53 -* 8500mAh Battery for long term use
54 -
55 -(((
56 -
57 -
58 -
36 +* (((
37 +Moisture and Temperature alarm function
59 59  )))
39 +* (((
40 +Monitor Battery Level
41 +)))
42 +* (((
43 +Uplink on periodically
44 +)))
45 +* (((
46 +Downlink to change configure
47 +)))
48 +* (((
49 +IP66 Waterproof Enclosure
50 +)))
51 +* (((
52 +IP67 rate for the Sensor Probe
53 +)))
54 +* (((
55 +Ultra-Low Power consumption
56 +)))
57 +* (((
58 +AT Commands to change parameters
59 +)))
60 +* (((
61 +Micro SIM card slot for NB-IoT SIM
62 +)))
63 +* (((
64 +8500mAh Battery for long term use
65 +)))
60 60  
61 61  == 1.3  Specification ==
62 62  
69 +**Common DC Characteristics:**
63 63  
64 -(% style="color:#037691" %)**Common DC Characteristics:**
65 -
66 66  * Supply Voltage: 2.1v ~~ 3.6v
67 67  * Operating Temperature: -40 ~~ 85°C
68 68  
69 -(% style="color:#037691" %)**NB-IoT Spec:**
74 +**NB-IoT Spec:**
70 70  
71 71  * - B1 @H-FDD: 2100MHz
72 72  * - B3 @H-FDD: 1800MHz
... ... @@ -75,13 +75,11 @@
75 75  * - B20 @H-FDD: 800MHz
76 76  * - B28 @H-FDD: 700MHz
77 77  
83 +== 1.4 Probe Specification ==
78 78  
79 79  
80 -== 1.4  Probe Specification ==
86 +**Leaf Moisture: percentage of water drop over total leaf surface**
81 81  
82 -
83 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
84 -
85 85  * Range 0-100%
86 86  * Resolution: 0.1%
87 87  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -88,7 +88,7 @@
88 88  * IP67 Protection
89 89  * Length: 3.5 meters
90 90  
91 -(% style="color:#037691" %)**Leaf Temperature:**
94 +**Leaf Temperature:**
92 92  
93 93  * Range -50℃~80℃
94 94  * Resolution: 0.1℃
... ... @@ -96,44 +96,30 @@
96 96  * IP67 Protection
97 97  * Length: 3.5 meters
98 98  
102 +== 1.5 ​Applications ==
99 99  
100 -
101 -== 1.5 ​ Applications ==
102 -
103 -
104 104  * Smart Agriculture
105 105  
106 +== 1.6 Pin mapping and power on ==
106 106  
107 -
108 -== 1.6  Pin mapping and power on ==
109 -
110 -
111 111  ​[[image:image-20220907171221-4.png]]
112 112  
113 113  **~ **
114 114  
115 -
116 116  = 2.  Use NLMS01 to communicate with IoT Server =
117 117  
118 -
119 119  == 2.1  How it works ==
120 120  
121 -
122 122  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
123 123  
124 124  The diagram below shows the working flow in default firmware of NLMS01:
125 125  
126 -
127 127  [[image:image-20220907171221-5.png]]
128 128  
122 +== **2.2 ​ Configure the NLMS01** ==
129 129  
124 +**2.2.1 Test Requirement**
130 130  
131 -== 2.2 ​ Configure the NLMS01 ==
132 -
133 -
134 -=== 2.2.1 Test Requirement ===
135 -
136 -
137 137  To use NLMS01 in your city, make sure meet below requirements:
138 138  
139 139  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -140,114 +140,90 @@
140 140  * The local NB-IoT network used the band that NLMS01 supports.
141 141  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
142 142  
143 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
132 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
144 144  
145 -
146 146  [[image:image-20220907171221-6.png]] ​
147 147  
136 +**2.2.2 Insert SIM card**
148 148  
149 -
150 -=== 2.2.2 Insert SIM card ===
151 -
152 -
153 153  Insert the NB-IoT Card get from your provider.
154 154  
155 155  User need to take out the NB-IoT module and insert the SIM card like below:
156 156  
157 -
158 158  [[image:image-20220907171221-7.png]] ​
159 159  
144 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
160 160  
146 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
161 161  
162 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
148 +**Connection:**
163 163  
150 + USB TTL GND <~-~-~-~-> GND
164 164  
165 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 + USB TTL TXD <~-~-~-~-> UART_RXD
166 166  
154 + USB TTL RXD <~-~-~-~-> UART_TXD
167 167  
168 -(% style="color:blue" %)**Connection:**
169 -
170 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
171 -
172 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
173 -
174 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
175 -
176 -
177 177  In the PC, use below serial tool settings:
178 178  
179 -* Baud:  (% style="color:green" %)**9600**
180 -* Data bits:**  (% style="color:green" %)8(%%)**
181 -* Stop bits:  (% style="color:green" %)**1**
182 -* Parity:  (% style="color:green" %)**None**
183 -* Flow Control: (% style="color:green" %)**None**
158 +* Baud:  **9600**
159 +* Data bits:** 8**
160 +* Stop bits: **1**
161 +* Parity:  **None**
162 +* Flow Control: **None**
184 184  
185 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
164 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
186 186  
187 -​[[image:image-20220913090720-1.png]]
166 +​[[image:image-20220907171221-8.png]]
188 188  
168 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
189 189  
190 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
170 +**2.2.4 Use CoAP protocol to uplink data**
191 191  
172 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
192 192  
174 +**Use below commands:**
193 193  
194 -=== 2.2.4 Use CoAP protocol to uplink data ===
176 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
177 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
178 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
195 195  
196 -
197 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
198 -
199 -
200 -(% style="color:blue" %)**Use below commands:**
201 -
202 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
203 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
204 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
205 -
206 206  For parameter description, please refer to AT command set
207 207  
208 208  [[image:image-20220907171221-9.png]]
209 209  
184 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
210 210  
211 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
212 -
213 213  [[image:image-20220907171221-10.png]] ​
214 214  
188 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
215 215  
216 -
217 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
218 -
219 -
220 220  This feature is supported since firmware version v1.0.1
221 221  
222 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
223 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
224 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
192 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
193 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
194 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
225 225  
226 226  ​ [[image:image-20220907171221-11.png]]
227 227  
228 -
229 229  [[image:image-20220907171221-12.png]]
230 230  
231 231  ​
232 232  
202 +**2.2.6 Use MQTT protocol to uplink data**
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 -
236 -
237 237  This feature is supported since firmware version v110
238 238  
239 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
240 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
241 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
242 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
243 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
244 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
245 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
206 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
207 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
208 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
209 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
210 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
211 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
212 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
246 246  
247 247  ​ [[image:image-20220907171221-13.png]]
248 248  
249 -
250 -
251 251  [[image:image-20220907171221-14.png]]
252 252  
253 253  ​
... ... @@ -254,113 +254,81 @@
254 254  
255 255  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 256  
222 +**2.2.7 Use TCP protocol to uplink data**
257 257  
258 -
259 -=== 2.2.7 Use TCP protocol to uplink data ===
260 -
261 -
262 262  This feature is supported since firmware version v110
263 263  
264 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
265 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
226 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
227 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
266 266  
267 267  ​ [[image:image-20220907171221-15.png]]
268 268  
269 -
270 -
271 271  [[image:image-20220907171221-16.png]]
272 272  
273 273  ​
274 274  
235 +**2.2.8 Change Update Interval**
275 275  
276 -=== 2.2.8 Change Update Interval ===
277 -
278 -
279 279  User can use below command to change the **uplink interval**.
280 280  
281 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
239 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
282 282  
283 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
241 +**NOTE:**
284 284  
243 +**~1. By default, the device will send an uplink message every 2 hour.**
285 285  
286 -
287 287  == 2.3  Uplink Payload ==
288 288  
289 -
290 290  In this mode, uplink payload includes 87 bytes in total by default.
291 291  
292 292  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
293 293  
251 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
252 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
294 294  
295 -(% border="1" style="background-color:#ffffcc; color:green; width:520px" %)
296 -|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:20px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:50px" %)**2**|(% style="width:50px" %)**4**|(% style="width:50px" %)**2**|(% style="width:40px" %)**2**|(% style="width:40px" %)**4**
297 -|=(% style="width: 96px;" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
298 -
299 299  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
300 300  
301 -
302 302  [[image:image-20220907171221-17.png]]
303 303  
304 -
305 305  The payload is ASCII string, representative same HEX:
306 306  
307 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
260 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
308 308  
309 -where:
262 +* Device ID: 0xf868411056754138 = f868411056754138
263 +* Version: 0x0064=100=1.0.0
310 310  
311 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
265 +* BAT: 0x0c78 = 3192 mV = 3.192V
266 +* Singal: 0x17 = 23
267 +* Mod: 0x01 = 1
268 +* Interrupt: 0x00= 0
269 +* Leaf moisture: 0x0225= 549 = 54.9%
270 +* Leaf Temperature:0x010B =267=26.7 °C
271 +* Time stamp : 0x6315537b =1662342011
272 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
273 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
312 312  
313 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
314 -
315 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
316 -
317 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
318 -
319 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
320 -
321 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
322 -
323 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
324 -
325 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
326 -
327 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
328 -
329 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
330 -
331 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
332 -
333 333  == 2.4  Payload Explanation and Sensor Interface ==
334 334  
277 +**2.4.1  Device ID**
335 335  
336 -=== 2.4.1  Device ID ===
337 -
338 -
339 339  By default, the Device ID equal to the last 15 bits of IMEI.
340 340  
341 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
281 +User can use **AT+DEUI** to set Device ID
342 342  
283 +**Example:**
343 343  
344 -(% style="color:blue" %)**Example**:
345 -
346 346  AT+DEUI=868411056754138
347 347  
348 348  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
349 349  
289 +**2.4.2  Version Info**
350 350  
351 -
352 -=== 2.4.2  Version Info ===
353 -
354 -
355 355  Specify the software version: 0x64=100, means firmware version 1.00.
356 356  
357 357  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
358 358  
295 +**2.4.3  Battery Info**
359 359  
360 -
361 -=== 2.4.3  Battery Info ===
362 -
363 -
364 364  Check the battery voltage for NLMS01.
365 365  
366 366  Ex1: 0x0B45 = 2885mV
... ... @@ -367,16 +367,12 @@
367 367  
368 368  Ex2: 0x0B49 = 2889mV
369 369  
303 +**2.4.4  Signal Strength**
370 370  
371 -
372 -=== 2.4.4  Signal Strength ===
373 -
374 -
375 375  NB-IoT Network signal Strength.
376 376  
307 +**Ex1: 0x1d = 29**
377 377  
378 -(% style="color:blue" %)**Ex1: 0x1d = 29**
379 -
380 380  **0**  -113dBm or less
381 381  
382 382  **1**  -111dBm
... ... @@ -387,49 +387,37 @@
387 387  
388 388  **99**    Not known or not detectable
389 389  
319 +**2.4.5  Leaf** moisture
390 390  
321 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
391 391  
392 -=== 2.4.5  Leaf moisture ===
323 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
393 393  
325 +**0229(H) = 549(D) /100 = 54.9.**
394 394  
395 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
327 +**2.4.6  Leaf Temperature**
396 396  
397 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
329 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
398 398  
399 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
331 +**Example**:
400 400  
333 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
401 401  
335 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
402 402  
403 -=== 2.4.6  Leaf Temperature ===
337 +**2.4.7  Timestamp**
404 404  
405 -
406 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
407 -
408 -(% style="color:blue" %)**Example**:
409 -
410 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
411 -
412 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
413 -
414 -
415 -
416 -=== 2.4.7  Timestamp ===
417 -
418 -
419 419  Time stamp : 0x6315537b =1662342011
420 420  
421 421  Convert Unix timestamp to time 2022-9-5 9:40:11.
422 422  
343 +**2.4.8  Digital Interrupt**
423 423  
345 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
424 424  
425 -=== 2.4.8  Digital Interrupt ===
426 -
427 -
428 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
429 -
430 430  The command is:
431 431  
432 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
349 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
433 433  
434 434  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
435 435  
... ... @@ -439,34 +439,27 @@
439 439  
440 440  0x(01): Interrupt Uplink Packet.
441 441  
359 +**2.4.9  ​+5V Output**
442 442  
443 -
444 -=== 2.4.9  ​+5V Output ===
445 -
446 -
447 447  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
448 448  
449 449  The 5V output time can be controlled by AT Command.
450 450  
451 -(% style="color:blue" %)**AT+5VT=1000**
365 +**AT+5VT=1000**
452 452  
453 453  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
454 454  
455 455  
456 -
457 457  == 2.5  Downlink Payload ==
458 458  
459 -
460 460  By default, NLMS01 prints the downlink payload to console port.
461 461  
462 462  [[image:image-20220907171221-18.png]] ​
463 463  
376 +**Examples:**
464 464  
465 -(% style="color:blue" %)**Examples:**
378 +* **Set TDC**
466 466  
467 -
468 -* (% style="color:#037691" %)**Set TDC**
469 -
470 470  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
471 471  
472 472  Payload:    01 00 00 1E    TDC=30S
... ... @@ -473,23 +473,16 @@
473 473  
474 474  Payload:    01 00 00 3C    TDC=60S
475 475  
386 +* **Reset**
476 476  
477 -
478 -* (% style="color:#037691" %)**Reset**
479 -
480 480  If payload = 0x04FF, it will reset the NLMS01
481 481  
390 +* **INTMOD**
482 482  
483 -
484 -* (% style="color:#037691" %)**INTMOD**
485 -
486 486  Downlink Payload: 06000003, Set AT+INTMOD=3
487 487  
488 -
489 -
490 490  == 2.6  ​LED Indicator ==
491 491  
492 -
493 493  The NLMS01 has an internal LED which is to show the status of different state.
494 494  
495 495  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -497,23 +497,18 @@
497 497  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
498 498  * For each uplink probe, LED will be on for 500ms.
499 499  
500 -== 2.7  Installation ==
403 +== 2.7 Installation ==
501 501  
502 -
503 503  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
504 504  
505 -
506 506  [[image:image-20220907171221-19.png]]
507 507  
409 +== 2.8 Moisture and Temperature alarm function ==
508 508  
411 +➢ AT Command:
509 509  
510 -== 2.8  Moisture and Temperature alarm function ==
413 +AT+ HUMALARM =min,max
511 511  
512 -
513 -(% style="color:blue" %)**➢ AT Command:**
514 -
515 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
516 -
517 517  ² When min=0, and max≠0, Alarm higher than max
518 518  
519 519  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -520,9 +520,8 @@
520 520  
521 521  ² When min≠0 and max≠0, Alarm higher than max or lower than min
522 522  
421 +Example:
523 523  
524 -(% style="color:blue" %)**Example:**
525 -
526 526  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
527 527  
528 528  AT+ TEMPALARM=min,max
... ... @@ -533,53 +533,41 @@
533 533  
534 534  ² When min≠0 and max≠0, Alarm higher than max or lower than min
535 535  
433 +Example:
536 536  
537 -(% style="color:blue" %)**Example:**
538 -
539 539  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
540 540  
541 541  
438 +== 2.9 Set the number of data to be uploaded and the recording time ==
542 542  
543 -== 2.9  Set the number of data to be uploaded and the recording time ==
440 + AT Command:
544 544  
442 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
545 545  
546 -(% style="color:blue" %)**➢ AT Command:**
444 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
547 547  
548 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
549 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
446 +== 2.10 Read or Clear cached data ==
550 550  
551 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
448 + AT Command:
552 552  
553 -[[image:image-20221009001002-1.png||height="706" width="982"]]
450 +AT+CDP    ~/~/ Read cached data
554 554  
555 -
556 -== 2.10  Read or Clear cached data ==
557 -
558 -
559 -(% style="color:blue" %)**➢ AT Command:**
560 -
561 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
562 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
563 -
564 564  [[image:image-20220907171221-20.png]]
565 565  
566 566  
455 +AT+CDP=0    ~/~/ Clear cached data
567 567  
457 +
568 568  == 2.11  ​Firmware Change Log ==
569 569  
460 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
570 570  
571 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
462 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
572 572  
573 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
574 -
575 -
576 -
577 577  == 2.12  ​Battery Analysis ==
578 578  
466 +**2.12.1  ​Battery Type**
579 579  
580 -=== 2.12.1  ​Battery Type ===
581 -
582 -
583 583  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
584 584  
585 585  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -592,18 +592,15 @@
592 592  
593 593  [[image:image-20220907171221-21.png]] ​
594 594  
480 +**2.12.2  Power consumption Analyze**
595 595  
596 -
597 -=== 2.12.2  Power consumption Analyze ===
598 -
599 -
600 600  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
601 601  
602 602  Instruction to use as below:
603 603  
604 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
486 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
605 605  
606 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
488 +**Step 2: ** Open it and choose
607 607  
608 608  * Product Model
609 609  * Uplink Interval
... ... @@ -613,171 +613,131 @@
613 613  
614 614  [[image:image-20220907171221-22.jpeg]] ​
615 615  
498 +**2.12.3  ​Battery Note**
616 616  
617 -=== 2.12.3  ​Battery Note ===
618 -
619 -
620 620  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
621 621  
502 +**2.12.4  Replace the battery**
622 622  
623 -
624 -=== 2.12.4  Replace the battery ===
625 -
626 -
627 627  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
628 628  
629 -
630 -
631 631  = 3. ​ Access NB-IoT Module =
632 632  
633 -
634 634  Users can directly access the AT command set of the NB-IoT module.
635 635  
636 636  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
637 637  
638 -
639 639  [[image:image-20220907171221-23.png]] ​
640 640  
641 -
642 -
643 643  = 4.  Using the AT Commands =
644 644  
516 +**4.1  Access AT Commands**
645 645  
646 -== 4.1  Access AT Commands ==
647 -
648 -
649 649  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
650 650  
651 -AT+<CMD>?  :  Help on <CMD>
520 +AT+<CMD>?  : Help on <CMD>
652 652  
653 -AT+<CMD>  Run <CMD>
522 +AT+<CMD>         : Run <CMD>
654 654  
655 -AT+<CMD>=<value>:  Set the value
524 +AT+<CMD>=<value> : Set the value
656 656  
657 -AT+<CMD>=?  Get the value
526 +AT+<CMD>=?  : Get the value
658 658  
528 +**General Commands**      
659 659  
660 -(% style="color:#037691" %)**General Commands**      
530 +AT  : Attention       
661 661  
662 -AT  Attention       
532 +AT?  : Short Help     
663 663  
664 -AT?  Short Help     
534 +ATZ  : MCU Reset    
665 665  
666 -ATZ  :  MCU Reset    
536 +AT+TDC  : Application Data Transmission Interval
667 667  
668 -AT+TDC  :  Application Data Transmission Interval
538 +AT+CFG  : Print all configurations
669 669  
670 -AT+CFG  :  Print all configurations
540 +AT+CFGMOD           : Working mode selection
671 671  
672 -AT+CFGMOD  :  Working mode selection
542 +AT+INTMOD            : Set the trigger interrupt mode
673 673  
674 -AT+INTMOD  Set the trigger interrupt mode
544 +AT+5V : Set extend the time of 5V power  
675 675  
676 -AT+5VT  Set extend the time of 5V power  
546 +AT+PRO  : Choose agreement
677 677  
678 -AT+PRO :  Choose agreement
548 +AT+RXDL  : Extend the sending and receiving time
679 679  
680 -AT+RXDL:  Extend the sending and receiving time
550 +AT+SERVADDR  : Server Address
681 681  
682 -AT+SERVADDR :  Server Address
552 +AT+TR      : Get or Set record time"
683 683  
684 -AT+APN :  Get or set the APN
685 685  
686 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
555 +AT+NOUD      : Get or Set the number of data to be uploaded
687 687  
688 -AT+DNSCFG : Get or Set DNS Server
689 689  
690 -AT+GETSENSORVALUE   : Returns the current sensor measurement
558 +AT+CDP     : Read or Clear cached data
691 691  
692 -AT+TR :  Get or Set record time"
693 693  
694 -AT+NOUD :  Get or Set the number of data to be uploaded
561 +AT+TEMPALARM      : Get or Set alarm of temp
695 695  
696 -AT+CDP :  Read or Clear cached data
563 +AT+HUMALARM     : Get or Set alarm of PH
697 697  
698 -AT+TEMPALARM :  Get or Set alarm of temp
699 699  
700 -AT+HUMALARM :  Get or Set alarm of humidity
566 +**COAP Management**      
701 701  
568 +AT+URI            : Resource parameters
702 702  
703 -(% style="color:#037691" %)**COAP Management**      
570 +**UDP Management**
704 704  
705 -AT+URI :  Resource parameters
572 +AT+CFM          : Upload confirmation mode (only valid for UDP)
706 706  
574 +**MQTT Management**
707 707  
708 -(% style="color:#037691" %)**UDP Management**
576 +AT+CLIENT               : Get or Set MQTT client
709 709  
710 -AT+CFM :  Upload confirmation mode (only valid for UDP)
578 +AT+UNAME  : Get or Set MQTT Username
711 711  
580 +AT+PWD                  : Get or Set MQTT password
712 712  
713 -(% style="color:#037691" %)**MQTT Management**
582 +AT+PUBTOPIC  : Get or Set MQTT publish topic
714 714  
715 -AT+CLIEN Get or Set MQTT client
584 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
716 716  
717 -AT+UNAME  : Get or Set MQTT Username
586 +**Information**          
718 718  
719 -AT+PW Get or Set MQTT password
588 +AT+FDR  : Factory Data Reset
720 720  
721 -AT+PUBTOPIC  Get or Set MQTT publish topic
590 +AT+PWORD  : Serial Access Password
722 722  
723 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
724 -
725 -
726 -(% style="color:#037691" %)**Information**          
727 -
728 -AT+FDR :  Factory Data Reset
729 -
730 -AT+PWORD :  Serial Access Password
731 -
732 -
733 -
734 734  = ​5.  FAQ =
735 735  
594 +**5.1 ​ How to Upgrade Firmware**
736 736  
737 -== 5.1 ​ How to Upgrade Firmware ==
738 -
739 -
740 740  User can upgrade the firmware for 1) bug fix, 2) new feature release.
741 741  
742 742  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
743 743  
600 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
744 744  
745 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
746 -
747 -
748 -
749 749  = 6.  Trouble Shooting =
750 750  
604 +**6.1  ​Connection problem when uploading firmware**
751 751  
752 -== 6.1  ​Connection problem when uploading firmware ==
753 -
754 -
755 755  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
756 756  
608 +**6.2  AT Command input doesn't work**
757 757  
610 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
758 758  
759 -== 6.2  AT Command input doesn't work ==
760 -
761 -
762 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
763 -
764 -
765 -
766 766  = 7. ​ Order Info =
767 767  
768 -
769 769  Part Number**:** NLMS01
770 770  
771 -
772 -
773 773  = 8.  Packing Info =
774 774  
618 +**Package Includes**:
775 775  
776 -(% style="color:#037691" %)**Package Includes:**
777 -
778 778  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
779 779  
780 -(% style="color:#037691" %)**Dimension and weight**:
622 +**Dimension and weight**:
781 781  
782 782  * Device Size: cm
783 783  * Device Weight: g
... ... @@ -784,12 +784,11 @@
784 784  * Package Size / pcs : cm
785 785  * Weight / pcs : g
786 786  
787 -
788 -
789 789  = 9.  Support =
790 790  
791 -
792 792  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
793 793  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
794 794  
795 795  ​
635 +
636 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0