<
From version < 38.10 >
edited by Xiaoling
on 2022/10/25 16:28
To version < 26.1 >
edited by David Huang
on 2022/09/07 17:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,72 +1,77 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 += 1. Introduction =
8 8  
7 +== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
9 9  
10 -= 1.  Introduction =
11 11  
10 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
12 12  
13 -== 1.1 What is NLMS01 Leaf Moisture Sensor ==
12 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
14 14  
15 -
16 -(((
17 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
18 -
19 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
20 -
21 21  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
15 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
16 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
17 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
22 22  
23 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
24 -
25 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
26 -
27 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
28 -)))
29 -
30 -
31 31  ​[[image:image-20220907171221-2.png]]
32 32  
33 -
34 34  ​ [[image:image-20220907171221-3.png]]
35 35  
23 +== ​1.2 Features ==
36 36  
25 +* (((
26 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
27 +)))
28 +* (((
29 +Monitor Leaf moisture
30 +)))
37 37  
38 -== ​1.2  Features ==
32 +* (((
33 + Monitor Leaf temperature
34 +)))
39 39  
40 -
41 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
42 -* Monitor Leaf moisture
43 -* Monitor Leaf temperature
44 -* Moisture and Temperature alarm function
45 -* Monitor Battery Level
46 -* Uplink on periodically
47 -* Downlink to change configure
48 -* IP66 Waterproof Enclosure
49 -* IP67 rate for the Sensor Probe
50 -* Ultra-Low Power consumption
51 -* AT Commands to change parameters
52 -* Micro SIM card slot for NB-IoT SIM
53 -* 8500mAh Battery for long term use
54 -
55 -(((
56 -
57 -
58 -
36 +* (((
37 +Moisture and Temperature alarm function
59 59  )))
39 +* (((
40 +Monitor Battery Level
41 +)))
42 +* (((
43 +Uplink on periodically
44 +)))
45 +* (((
46 +Downlink to change configure
47 +)))
48 +* (((
49 +IP66 Waterproof Enclosure
50 +)))
51 +* (((
52 +IP67 rate for the Sensor Probe
53 +)))
54 +* (((
55 +Ultra-Low Power consumption
56 +)))
57 +* (((
58 +AT Commands to change parameters
59 +)))
60 +* (((
61 +Micro SIM card slot for NB-IoT SIM
62 +)))
63 +* (((
64 +8500mAh Battery for long term use
65 +)))
60 60  
61 61  == 1.3  Specification ==
62 62  
69 +**Common DC Characteristics:**
63 63  
64 -(% style="color:#037691" %)**Common DC Characteristics:**
65 -
66 66  * Supply Voltage: 2.1v ~~ 3.6v
67 67  * Operating Temperature: -40 ~~ 85°C
68 68  
69 -(% style="color:#037691" %)**NB-IoT Spec:**
74 +**NB-IoT Spec:**
70 70  
71 71  * - B1 @H-FDD: 2100MHz
72 72  * - B3 @H-FDD: 1800MHz
... ... @@ -75,10 +75,10 @@
75 75  * - B20 @H-FDD: 800MHz
76 76  * - B28 @H-FDD: 700MHz
77 77  
78 -== 1.4  Probe Specification ==
83 +== 1.4 Probe Specification ==
79 79  
80 80  
81 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
86 +**Leaf Moisture: percentage of water drop over total leaf surface**
82 82  
83 83  * Range 0-100%
84 84  * Resolution: 0.1%
... ... @@ -86,7 +86,7 @@
86 86  * IP67 Protection
87 87  * Length: 3.5 meters
88 88  
89 -(% style="color:#037691" %)**Leaf Temperature:**
94 +**Leaf Temperature:**
90 90  
91 91  * Range -50℃~80℃
92 92  * Resolution: 0.1℃
... ... @@ -94,40 +94,30 @@
94 94  * IP67 Protection
95 95  * Length: 3.5 meters
96 96  
97 -== 1.5 ​ Applications ==
102 +== 1.5 ​Applications ==
98 98  
99 -
100 100  * Smart Agriculture
101 101  
102 -== 1.6  Pin mapping and power on ==
106 +== 1.6 Pin mapping and power on ==
103 103  
104 -
105 105  ​[[image:image-20220907171221-4.png]]
106 106  
107 107  **~ **
108 108  
109 -
110 110  = 2.  Use NLMS01 to communicate with IoT Server =
111 111  
112 -
113 113  == 2.1  How it works ==
114 114  
115 -
116 116  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
117 117  
118 118  The diagram below shows the working flow in default firmware of NLMS01:
119 119  
120 -
121 121  [[image:image-20220907171221-5.png]]
122 122  
122 +== **2.2 ​ Configure the NLMS01** ==
123 123  
124 +**2.2.1 Test Requirement**
124 124  
125 -== 2.2 ​ Configure the NLMS01 ==
126 -
127 -
128 -=== 2.2.1 Test Requirement ===
129 -
130 -
131 131  To use NLMS01 in your city, make sure meet below requirements:
132 132  
133 133  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -134,114 +134,90 @@
134 134  * The local NB-IoT network used the band that NLMS01 supports.
135 135  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
132 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
138 138  
139 -
140 140  [[image:image-20220907171221-6.png]] ​
141 141  
136 +**2.2.2 Insert SIM card**
142 142  
143 -
144 -=== 2.2.2 Insert SIM card ===
145 -
146 -
147 147  Insert the NB-IoT Card get from your provider.
148 148  
149 149  User need to take out the NB-IoT module and insert the SIM card like below:
150 150  
151 -
152 152  [[image:image-20220907171221-7.png]] ​
153 153  
144 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
154 154  
146 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
155 155  
156 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
148 +**Connection:**
157 157  
150 + USB TTL GND <~-~-~-~-> GND
158 158  
159 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 + USB TTL TXD <~-~-~-~-> UART_RXD
160 160  
154 + USB TTL RXD <~-~-~-~-> UART_TXD
161 161  
162 -(% style="color:blue" %)**Connection:**
163 -
164 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
165 -
166 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
167 -
168 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
169 -
170 -
171 171  In the PC, use below serial tool settings:
172 172  
173 -* Baud:  (% style="color:green" %)**9600**
174 -* Data bits:**  (% style="color:green" %)8(%%)**
175 -* Stop bits:  (% style="color:green" %)**1**
176 -* Parity:  (% style="color:green" %)**None**
177 -* Flow Control: (% style="color:green" %)**None**
158 +* Baud:  **9600**
159 +* Data bits:** 8**
160 +* Stop bits: **1**
161 +* Parity:  **None**
162 +* Flow Control: **None**
178 178  
179 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
164 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
180 180  
181 -​[[image:image-20220913090720-1.png]]
166 +​[[image:image-20220907171221-8.png]]
182 182  
168 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
183 183  
184 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
170 +**2.2.4 Use CoAP protocol to uplink data**
185 185  
172 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
186 186  
174 +**Use below commands:**
187 187  
188 -=== 2.2.4 Use CoAP protocol to uplink data ===
176 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
177 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
178 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
189 189  
190 -
191 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
192 -
193 -
194 -(% style="color:blue" %)**Use below commands:**
195 -
196 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
197 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
198 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
199 -
200 200  For parameter description, please refer to AT command set
201 201  
202 202  [[image:image-20220907171221-9.png]]
203 203  
184 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
204 204  
205 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
206 -
207 207  [[image:image-20220907171221-10.png]] ​
208 208  
188 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
209 209  
210 -
211 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
212 -
213 -
214 214  This feature is supported since firmware version v1.0.1
215 215  
216 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
217 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
218 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
192 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
193 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
194 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
219 219  
220 220  ​ [[image:image-20220907171221-11.png]]
221 221  
222 -
223 223  [[image:image-20220907171221-12.png]]
224 224  
225 225  ​
226 226  
202 +**2.2.6 Use MQTT protocol to uplink data**
227 227  
228 -=== 2.2.6 Use MQTT protocol to uplink data ===
229 -
230 -
231 231  This feature is supported since firmware version v110
232 232  
233 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
234 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
235 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
236 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
237 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
238 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
239 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
206 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
207 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
208 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
209 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
210 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
211 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
212 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
240 240  
241 241  ​ [[image:image-20220907171221-13.png]]
242 242  
243 -
244 -
245 245  [[image:image-20220907171221-14.png]]
246 246  
247 247  ​
... ... @@ -248,113 +248,81 @@
248 248  
249 249  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 250  
222 +**2.2.7 Use TCP protocol to uplink data**
251 251  
252 -
253 -=== 2.2.7 Use TCP protocol to uplink data ===
254 -
255 -
256 256  This feature is supported since firmware version v110
257 257  
258 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
259 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
226 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
227 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
260 260  
261 261  ​ [[image:image-20220907171221-15.png]]
262 262  
263 -
264 -
265 265  [[image:image-20220907171221-16.png]]
266 266  
267 267  ​
268 268  
235 +**2.2.8 Change Update Interval**
269 269  
270 -=== 2.2.8 Change Update Interval ===
271 -
272 -
273 273  User can use below command to change the **uplink interval**.
274 274  
275 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
239 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
276 276  
277 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
241 +**NOTE:**
278 278  
243 +**~1. By default, the device will send an uplink message every 2 hour.**
279 279  
280 -
281 281  == 2.3  Uplink Payload ==
282 282  
283 -
284 284  In this mode, uplink payload includes 87 bytes in total by default.
285 285  
286 286  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
287 287  
251 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
252 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
288 288  
289 -(% border="1" style="background-color:#ffffcc; color:green; width:520px" %)
290 -|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:20px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:50px" %)**2**|(% style="width:50px" %)**4**|(% style="width:50px" %)**2**|(% style="width:40px" %)**2**|(% style="width:40px" %)**4**
291 -|=(% style="width: 96px;" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
292 -
293 293  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
294 294  
295 -
296 296  [[image:image-20220907171221-17.png]]
297 297  
298 -
299 299  The payload is ASCII string, representative same HEX:
300 300  
301 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
260 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
302 302  
303 -where:
262 +* Device ID: 0xf868411056754138 = f868411056754138
263 +* Version: 0x0064=100=1.0.0
304 304  
305 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
265 +* BAT: 0x0c78 = 3192 mV = 3.192V
266 +* Singal: 0x17 = 23
267 +* Mod: 0x01 = 1
268 +* Interrupt: 0x00= 0
269 +* Leaf moisture: 0x0225= 549 = 54.9%
270 +* Leaf Temperature:0x010B =267=26.7 °C
271 +* Time stamp : 0x6315537b =1662342011
272 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
273 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
306 306  
307 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
308 -
309 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
310 -
311 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
312 -
313 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
314 -
315 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
316 -
317 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
318 -
319 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
320 -
321 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
322 -
323 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
324 -
325 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
326 -
327 327  == 2.4  Payload Explanation and Sensor Interface ==
328 328  
277 +**2.4.1  Device ID**
329 329  
330 -=== 2.4.1  Device ID ===
331 -
332 -
333 333  By default, the Device ID equal to the last 15 bits of IMEI.
334 334  
335 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
281 +User can use **AT+DEUI** to set Device ID
336 336  
283 +**Example:**
337 337  
338 -(% style="color:blue" %)**Example**:
339 -
340 340  AT+DEUI=868411056754138
341 341  
342 342  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
343 343  
289 +**2.4.2  Version Info**
344 344  
345 -
346 -=== 2.4.2  Version Info ===
347 -
348 -
349 349  Specify the software version: 0x64=100, means firmware version 1.00.
350 350  
351 351  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
352 352  
295 +**2.4.3  Battery Info**
353 353  
354 -
355 -=== 2.4.3  Battery Info ===
356 -
357 -
358 358  Check the battery voltage for NLMS01.
359 359  
360 360  Ex1: 0x0B45 = 2885mV
... ... @@ -361,16 +361,12 @@
361 361  
362 362  Ex2: 0x0B49 = 2889mV
363 363  
303 +**2.4.4  Signal Strength**
364 364  
365 -
366 -=== 2.4.4  Signal Strength ===
367 -
368 -
369 369  NB-IoT Network signal Strength.
370 370  
307 +**Ex1: 0x1d = 29**
371 371  
372 -(% style="color:blue" %)**Ex1: 0x1d = 29**
373 -
374 374  **0**  -113dBm or less
375 375  
376 376  **1**  -111dBm
... ... @@ -381,49 +381,37 @@
381 381  
382 382  **99**    Not known or not detectable
383 383  
319 +**2.4.5  Leaf** moisture
384 384  
321 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
385 385  
386 -=== 2.4.5  Leaf moisture ===
323 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
387 387  
325 +**0229(H) = 549(D) /100 = 54.9.**
388 388  
389 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
327 +**2.4.6  Leaf Temperature**
390 390  
391 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
329 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
392 392  
393 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
331 +**Example**:
394 394  
333 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
395 395  
335 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
396 396  
397 -=== 2.4.6  Leaf Temperature ===
337 +**2.4.7  Timestamp**
398 398  
399 -
400 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
401 -
402 -(% style="color:blue" %)**Example**:
403 -
404 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
405 -
406 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
407 -
408 -
409 -
410 -=== 2.4.7  Timestamp ===
411 -
412 -
413 413  Time stamp : 0x6315537b =1662342011
414 414  
415 415  Convert Unix timestamp to time 2022-9-5 9:40:11.
416 416  
343 +**2.4.8  Digital Interrupt**
417 417  
345 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
418 418  
419 -=== 2.4.8  Digital Interrupt ===
420 -
421 -
422 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
423 -
424 424  The command is:
425 425  
426 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
349 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
427 427  
428 428  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
429 429  
... ... @@ -433,34 +433,27 @@
433 433  
434 434  0x(01): Interrupt Uplink Packet.
435 435  
359 +**2.4.9  ​+5V Output**
436 436  
437 -
438 -=== 2.4.9  ​+5V Output ===
439 -
440 -
441 441  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
442 442  
443 443  The 5V output time can be controlled by AT Command.
444 444  
445 -(% style="color:blue" %)**AT+5VT=1000**
365 +**AT+5VT=1000**
446 446  
447 447  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
448 448  
449 449  
450 -
451 451  == 2.5  Downlink Payload ==
452 452  
453 -
454 454  By default, NLMS01 prints the downlink payload to console port.
455 455  
456 456  [[image:image-20220907171221-18.png]] ​
457 457  
376 +**Examples:**
458 458  
459 -(% style="color:blue" %)**Examples:**
378 +* **Set TDC**
460 460  
461 -
462 -* (% style="color:#037691" %)**Set TDC**
463 -
464 464  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
465 465  
466 466  Payload:    01 00 00 1E    TDC=30S
... ... @@ -467,23 +467,16 @@
467 467  
468 468  Payload:    01 00 00 3C    TDC=60S
469 469  
386 +* **Reset**
470 470  
471 -
472 -* (% style="color:#037691" %)**Reset**
473 -
474 474  If payload = 0x04FF, it will reset the NLMS01
475 475  
390 +* **INTMOD**
476 476  
477 -
478 -* (% style="color:#037691" %)**INTMOD**
479 -
480 480  Downlink Payload: 06000003, Set AT+INTMOD=3
481 481  
482 -
483 -
484 484  == 2.6  ​LED Indicator ==
485 485  
486 -
487 487  The NLMS01 has an internal LED which is to show the status of different state.
488 488  
489 489  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -491,23 +491,18 @@
491 491  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
492 492  * For each uplink probe, LED will be on for 500ms.
493 493  
494 -== 2.7  Installation ==
403 +== 2.7 Installation ==
495 495  
496 -
497 497  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
498 498  
499 -
500 500  [[image:image-20220907171221-19.png]]
501 501  
409 +== 2.8 Moisture and Temperature alarm function ==
502 502  
411 +➢ AT Command:
503 503  
504 -== 2.8  Moisture and Temperature alarm function ==
413 +AT+ HUMALARM =min,max
505 505  
506 -
507 -(% style="color:blue" %)**➢ AT Command:**
508 -
509 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
510 -
511 511  ² When min=0, and max≠0, Alarm higher than max
512 512  
513 513  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -514,9 +514,8 @@
514 514  
515 515  ² When min≠0 and max≠0, Alarm higher than max or lower than min
516 516  
421 +Example:
517 517  
518 -(% style="color:blue" %)**Example:**
519 -
520 520  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
521 521  
522 522  AT+ TEMPALARM=min,max
... ... @@ -527,53 +527,41 @@
527 527  
528 528  ² When min≠0 and max≠0, Alarm higher than max or lower than min
529 529  
433 +Example:
530 530  
531 -(% style="color:blue" %)**Example:**
532 -
533 533  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
534 534  
535 535  
438 +== 2.9 Set the number of data to be uploaded and the recording time ==
536 536  
537 -== 2.9  Set the number of data to be uploaded and the recording time ==
440 + AT Command:
538 538  
442 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
539 539  
540 -(% style="color:blue" %)**➢ AT Command:**
444 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
541 541  
542 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
543 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
446 +== 2.10 Read or Clear cached data ==
544 544  
545 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
448 + AT Command:
546 546  
547 -[[image:image-20221009001002-1.png||height="706" width="982"]]
450 +AT+CDP    ~/~/ Read cached data
548 548  
549 -
550 -== 2.10  Read or Clear cached data ==
551 -
552 -
553 -(% style="color:blue" %)**➢ AT Command:**
554 -
555 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
556 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
557 -
558 558  [[image:image-20220907171221-20.png]]
559 559  
560 560  
455 +AT+CDP=0    ~/~/ Clear cached data
561 561  
457 +
562 562  == 2.11  ​Firmware Change Log ==
563 563  
460 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
564 564  
565 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
462 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
566 566  
567 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
568 -
569 -
570 -
571 571  == 2.12  ​Battery Analysis ==
572 572  
466 +**2.12.1  ​Battery Type**
573 573  
574 -=== 2.12.1  ​Battery Type ===
575 -
576 -
577 577  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
578 578  
579 579  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -586,18 +586,15 @@
586 586  
587 587  [[image:image-20220907171221-21.png]] ​
588 588  
480 +**2.12.2  Power consumption Analyze**
589 589  
590 -
591 -=== 2.12.2  Power consumption Analyze ===
592 -
593 -
594 594  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
595 595  
596 596  Instruction to use as below:
597 597  
598 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
486 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
599 599  
600 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
488 +**Step 2: ** Open it and choose
601 601  
602 602  * Product Model
603 603  * Uplink Interval
... ... @@ -607,171 +607,131 @@
607 607  
608 608  [[image:image-20220907171221-22.jpeg]] ​
609 609  
498 +**2.12.3  ​Battery Note**
610 610  
611 -=== 2.12.3  ​Battery Note ===
612 -
613 -
614 614  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
615 615  
502 +**2.12.4  Replace the battery**
616 616  
617 -
618 -=== 2.12.4  Replace the battery ===
619 -
620 -
621 621  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
622 622  
623 -
624 -
625 625  = 3. ​ Access NB-IoT Module =
626 626  
627 -
628 628  Users can directly access the AT command set of the NB-IoT module.
629 629  
630 630  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
631 631  
632 -
633 633  [[image:image-20220907171221-23.png]] ​
634 634  
635 -
636 -
637 637  = 4.  Using the AT Commands =
638 638  
516 +**4.1  Access AT Commands**
639 639  
640 -== 4.1  Access AT Commands ==
641 -
642 -
643 643  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
644 644  
645 -AT+<CMD>?  :  Help on <CMD>
520 +AT+<CMD>?  : Help on <CMD>
646 646  
647 -AT+<CMD>  Run <CMD>
522 +AT+<CMD>         : Run <CMD>
648 648  
649 -AT+<CMD>=<value>:  Set the value
524 +AT+<CMD>=<value> : Set the value
650 650  
651 -AT+<CMD>=?  Get the value
526 +AT+<CMD>=?  : Get the value
652 652  
528 +**General Commands**      
653 653  
654 -(% style="color:#037691" %)**General Commands**      
530 +AT  : Attention       
655 655  
656 -AT  Attention       
532 +AT?  : Short Help     
657 657  
658 -AT?  Short Help     
534 +ATZ  : MCU Reset    
659 659  
660 -ATZ  :  MCU Reset    
536 +AT+TDC  : Application Data Transmission Interval
661 661  
662 -AT+TDC  :  Application Data Transmission Interval
538 +AT+CFG  : Print all configurations
663 663  
664 -AT+CFG  :  Print all configurations
540 +AT+CFGMOD           : Working mode selection
665 665  
666 -AT+CFGMOD  :  Working mode selection
542 +AT+INTMOD            : Set the trigger interrupt mode
667 667  
668 -AT+INTMOD  Set the trigger interrupt mode
544 +AT+5V : Set extend the time of 5V power  
669 669  
670 -AT+5VT  Set extend the time of 5V power  
546 +AT+PRO  : Choose agreement
671 671  
672 -AT+PRO :  Choose agreement
548 +AT+RXDL  : Extend the sending and receiving time
673 673  
674 -AT+RXDL:  Extend the sending and receiving time
550 +AT+SERVADDR  : Server Address
675 675  
676 -AT+SERVADDR :  Server Address
552 +AT+TR      : Get or Set record time"
677 677  
678 -AT+APN :  Get or set the APN
679 679  
680 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
555 +AT+NOUD      : Get or Set the number of data to be uploaded
681 681  
682 -AT+DNSCFG : Get or Set DNS Server
683 683  
684 -AT+GETSENSORVALUE   : Returns the current sensor measurement
558 +AT+CDP     : Read or Clear cached data
685 685  
686 -AT+TR :  Get or Set record time"
687 687  
688 -AT+NOUD :  Get or Set the number of data to be uploaded
561 +AT+TEMPALARM      : Get or Set alarm of temp
689 689  
690 -AT+CDP :  Read or Clear cached data
563 +AT+HUMALARM     : Get or Set alarm of PH
691 691  
692 -AT+TEMPALARM :  Get or Set alarm of temp
693 693  
694 -AT+HUMALARM :  Get or Set alarm of humidity
566 +**COAP Management**      
695 695  
568 +AT+URI            : Resource parameters
696 696  
697 -(% style="color:#037691" %)**COAP Management**      
570 +**UDP Management**
698 698  
699 -AT+URI :  Resource parameters
572 +AT+CFM          : Upload confirmation mode (only valid for UDP)
700 700  
574 +**MQTT Management**
701 701  
702 -(% style="color:#037691" %)**UDP Management**
576 +AT+CLIENT               : Get or Set MQTT client
703 703  
704 -AT+CFM :  Upload confirmation mode (only valid for UDP)
578 +AT+UNAME  : Get or Set MQTT Username
705 705  
580 +AT+PWD                  : Get or Set MQTT password
706 706  
707 -(% style="color:#037691" %)**MQTT Management**
582 +AT+PUBTOPIC  : Get or Set MQTT publish topic
708 708  
709 -AT+CLIEN Get or Set MQTT client
584 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
710 710  
711 -AT+UNAME  : Get or Set MQTT Username
586 +**Information**          
712 712  
713 -AT+PW Get or Set MQTT password
588 +AT+FDR  : Factory Data Reset
714 714  
715 -AT+PUBTOPIC  Get or Set MQTT publish topic
590 +AT+PWORD  : Serial Access Password
716 716  
717 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
718 -
719 -
720 -(% style="color:#037691" %)**Information**          
721 -
722 -AT+FDR :  Factory Data Reset
723 -
724 -AT+PWORD :  Serial Access Password
725 -
726 -
727 -
728 728  = ​5.  FAQ =
729 729  
594 +**5.1 ​ How to Upgrade Firmware**
730 730  
731 -== 5.1 ​ How to Upgrade Firmware ==
732 -
733 -
734 734  User can upgrade the firmware for 1) bug fix, 2) new feature release.
735 735  
736 736  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
737 737  
600 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
738 738  
739 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
740 -
741 -
742 -
743 743  = 6.  Trouble Shooting =
744 744  
604 +**6.1  ​Connection problem when uploading firmware**
745 745  
746 -== 6.1  ​Connection problem when uploading firmware ==
747 -
748 -
749 749  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
750 750  
608 +**6.2  AT Command input doesn't work**
751 751  
610 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
752 752  
753 -== 6.2  AT Command input doesn't work ==
754 -
755 -
756 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
757 -
758 -
759 -
760 760  = 7. ​ Order Info =
761 761  
762 -
763 763  Part Number**:** NLMS01
764 764  
765 -
766 -
767 767  = 8.  Packing Info =
768 768  
618 +**Package Includes**:
769 769  
770 -(% style="color:#037691" %)**Package Includes:**
771 -
772 772  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
773 773  
774 -(% style="color:#037691" %)**Dimension and weight**:
622 +**Dimension and weight**:
775 775  
776 776  * Device Size: cm
777 777  * Device Weight: g
... ... @@ -780,8 +780,9 @@
780 780  
781 781  = 9.  Support =
782 782  
783 -
784 784  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
785 785  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
786 786  
787 787  ​
635 +
636 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0