<
From version < 37.1 >
edited by Edwin Chen
on 2022/10/09 00:10
To version < 38.22 >
edited by Xiaoling
on 2023/05/24 10:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -9,20 +9,24 @@
9 9  
10 10  = 1.  Introduction =
11 11  
12 -
13 13  == 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 14  
15 15  
15 +(((
16 16  The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 17  
18 18  NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 19  
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
24 24  
22 +NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
25 25  
24 +NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
25 +
26 +To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
27 +)))
28 +
29 +
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 28  
... ... @@ -29,7 +29,6 @@
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
31 31  
32 -
33 33  == ​1.2  Features ==
34 34  
35 35  
... ... @@ -50,7 +50,6 @@
50 50  (((
51 51  
52 52  
53 -
54 54  
55 55  )))
56 56  
... ... @@ -64,13 +64,15 @@
64 64  
65 65  (% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 -* - B1 @H-FDD: 2100MHz
68 -* - B3 @H-FDD: 1800MHz
69 -* - B8 @H-FDD: 900MHz
70 -* - B5 @H-FDD: 850MHz
71 -* - B20 @H-FDD: 800MHz
72 -* - B28 @H-FDD: 700MHz
69 +* B1 @H-FDD: 2100MHz
70 +* B3 @H-FDD: 1800MHz
71 +* B8 @H-FDD: 900MHz
72 +* B5 @H-FDD: 850MHz
73 +* B20 @H-FDD: 800MHz
74 +* B28 @H-FDD: 700MHz
73 73  
76 +
77 +
74 74  == 1.4  Probe Specification ==
75 75  
76 76  
... ... @@ -90,11 +90,15 @@
90 90  * IP67 Protection
91 91  * Length: 3.5 meters
92 92  
97 +
98 +
93 93  == 1.5 ​ Applications ==
94 94  
95 95  
96 96  * Smart Agriculture
97 97  
104 +
105 +
98 98  == 1.6  Pin mapping and power on ==
99 99  
100 100  
... ... @@ -102,10 +102,8 @@
102 102  
103 103  **~ **
104 104  
105 -
106 106  = 2.  Use NLMS01 to communicate with IoT Server =
107 107  
108 -
109 109  == 2.1  How it works ==
110 110  
111 111  
... ... @@ -117,10 +117,8 @@
117 117  [[image:image-20220907171221-5.png]]
118 118  
119 119  
120 -
121 121  == 2.2 ​ Configure the NLMS01 ==
122 122  
123 -
124 124  === 2.2.1 Test Requirement ===
125 125  
126 126  
... ... @@ -136,7 +136,6 @@
136 136  [[image:image-20220907171221-6.png]] ​
137 137  
138 138  
139 -
140 140  === 2.2.2 Insert SIM card ===
141 141  
142 142  
... ... @@ -148,7 +148,6 @@
148 148  [[image:image-20220907171221-7.png]] ​
149 149  
150 150  
151 -
152 152  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
153 153  
154 154  
... ... @@ -180,7 +180,6 @@
180 180  (% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
181 181  
182 182  
183 -
184 184  === 2.2.4 Use CoAP protocol to uplink data ===
185 185  
186 186  
... ... @@ -203,7 +203,6 @@
203 203  [[image:image-20220907171221-10.png]] ​
204 204  
205 205  
206 -
207 207  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
208 208  
209 209  
... ... @@ -220,7 +220,6 @@
220 220  
221 221  ​
222 222  
223 -
224 224  === 2.2.6 Use MQTT protocol to uplink data ===
225 225  
226 226  
... ... @@ -245,7 +245,6 @@
245 245  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
246 246  
247 247  
248 -
249 249  === 2.2.7 Use TCP protocol to uplink data ===
250 250  
251 251  
... ... @@ -273,7 +273,6 @@
273 273  (% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
274 274  
275 275  
276 -
277 277  == 2.3  Uplink Payload ==
278 278  
279 279  
... ... @@ -282,9 +282,9 @@
282 282  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
283 283  
284 284  
285 -(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
286 -|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
287 -|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
283 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**8**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**4**
284 +|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
288 288  
289 289  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
290 290  
... ... @@ -298,21 +298,32 @@
298 298  
299 299  where:
300 300  
301 -* Device ID: 0xf868411056754138 = f868411056754138
302 -* Version: 0x0064=100=1.0.0
303 -* BAT: 0x0c78 = 3192 mV = 3.192V
304 -* Singal: 0x17 = 23
305 -* Mod: 0x01 = 1
306 -* Interrupt: 0x00= 0
307 -* Leaf moisture: 0x0225= 549 = 54.9%
308 -* Leaf Temperature:0x010B =267=26.7 °C
309 -* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
310 -* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
311 -* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
298 +* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
312 312  
313 -== 2.4  Payload Explanation and Sensor Interface ==
300 +* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
314 314  
302 +* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
315 315  
304 +* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
305 +
306 +* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
307 +
308 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
309 +
310 +* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
311 +
312 +* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
313 +
314 +* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
315 +
316 +* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
317 +
318 +* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
319 +
320 +
321 +
322 +== 2.4  Payload Explanation and Sensor Interface ==
323 +
316 316  === 2.4.1  Device ID ===
317 317  
318 318  
... ... @@ -328,7 +328,6 @@
328 328  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
329 329  
330 330  
331 -
332 332  === 2.4.2  Version Info ===
333 333  
334 334  
... ... @@ -337,7 +337,6 @@
337 337  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
338 338  
339 339  
340 -
341 341  === 2.4.3  Battery Info ===
342 342  
343 343  
... ... @@ -348,7 +348,6 @@
348 348  Ex2: 0x0B49 = 2889mV
349 349  
350 350  
351 -
352 352  === 2.4.4  Signal Strength ===
353 353  
354 354  
... ... @@ -368,7 +368,6 @@
368 368  **99**    Not known or not detectable
369 369  
370 370  
371 -
372 372  === 2.4.5  Leaf moisture ===
373 373  
374 374  
... ... @@ -379,7 +379,6 @@
379 379  (% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
380 380  
381 381  
382 -
383 383  === 2.4.6  Leaf Temperature ===
384 384  
385 385  
... ... @@ -392,7 +392,6 @@
392 392  If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
393 393  
394 394  
395 -
396 396  === 2.4.7  Timestamp ===
397 397  
398 398  
... ... @@ -401,7 +401,6 @@
401 401  Convert Unix timestamp to time 2022-9-5 9:40:11.
402 402  
403 403  
404 -
405 405  === 2.4.8  Digital Interrupt ===
406 406  
407 407  
... ... @@ -420,7 +420,6 @@
420 420  0x(01): Interrupt Uplink Packet.
421 421  
422 422  
423 -
424 424  === 2.4.9  ​+5V Output ===
425 425  
426 426  
... ... @@ -433,14 +433,18 @@
433 433  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
434 434  
435 435  
436 -
437 437  == 2.5  Downlink Payload ==
438 438  
439 439  
440 440  By default, NLMS01 prints the downlink payload to console port.
441 441  
442 -[[image:image-20220907171221-18.png]] ​
441 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
442 +|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
443 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
444 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
445 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
443 443  
447 + ​
444 444  
445 445  (% style="color:blue" %)**Examples:**
446 446  
... ... @@ -466,7 +466,6 @@
466 466  Downlink Payload: 06000003, Set AT+INTMOD=3
467 467  
468 468  
469 -
470 470  == 2.6  ​LED Indicator ==
471 471  
472 472  
... ... @@ -477,6 +477,8 @@
477 477  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
478 478  * For each uplink probe, LED will be on for 500ms.
479 479  
483 +
484 +
480 480  == 2.7  Installation ==
481 481  
482 482  
... ... @@ -486,7 +486,6 @@
486 486  [[image:image-20220907171221-19.png]]
487 487  
488 488  
489 -
490 490  == 2.8  Moisture and Temperature alarm function ==
491 491  
492 492  
... ... @@ -519,7 +519,6 @@
519 519  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
520 520  
521 521  
522 -
523 523  == 2.9  Set the number of data to be uploaded and the recording time ==
524 524  
525 525  
... ... @@ -530,7 +530,7 @@
530 530  
531 531   The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
532 532  
533 -[[image:image-20221009000513-1.png||height="732" width="1018"]]
536 +[[image:image-20221009001002-1.png||height="706" width="982"]]
534 534  
535 535  
536 536  == 2.10  Read or Clear cached data ==
... ... @@ -544,7 +544,6 @@
544 544  [[image:image-20220907171221-20.png]]
545 545  
546 546  
547 -
548 548  == 2.11  ​Firmware Change Log ==
549 549  
550 550  
... ... @@ -553,61 +553,14 @@
553 553  Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
554 554  
555 555  
558 +== 2.12 Battery & Power Consumption ==
556 556  
557 -== 2.12  ​Battery Analysis ==
558 558  
561 +NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
559 559  
560 -=== 2.12.1  ​Battery Type ===
563 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
561 561  
562 562  
563 -The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
564 -
565 -The battery is designed to last for several years depends on the actually use environment and update interval. 
566 -
567 -The battery related documents as below:
568 -
569 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
570 -* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
571 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
572 -
573 -[[image:image-20220907171221-21.png]] ​
574 -
575 -
576 -
577 -=== 2.12.2  Power consumption Analyze ===
578 -
579 -
580 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
581 -
582 -Instruction to use as below:
583 -
584 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
585 -
586 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
587 -
588 -* Product Model
589 -* Uplink Interval
590 -* Working Mode
591 -
592 -And the Life expectation in difference case will be shown on the right.
593 -
594 -[[image:image-20220907171221-22.jpeg]] ​
595 -
596 -
597 -=== 2.12.3  ​Battery Note ===
598 -
599 -
600 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
601 -
602 -
603 -
604 -=== 2.12.4  Replace the battery ===
605 -
606 -
607 -The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
608 -
609 -
610 -
611 611  = 3. ​ Access NB-IoT Module =
612 612  
613 613  
... ... @@ -619,10 +619,8 @@
619 619  [[image:image-20220907171221-23.png]] ​
620 620  
621 621  
622 -
623 623  = 4.  Using the AT Commands =
624 624  
625 -
626 626  == 4.1  Access AT Commands ==
627 627  
628 628  
... ... @@ -710,10 +710,8 @@
710 710  AT+PWORD :  Serial Access Password
711 711  
712 712  
713 -
714 714  = ​5.  FAQ =
715 715  
716 -
717 717  == 5.1 ​ How to Upgrade Firmware ==
718 718  
719 719  
... ... @@ -725,10 +725,8 @@
725 725  (% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
726 726  
727 727  
728 -
729 729  = 6.  Trouble Shooting =
730 730  
731 -
732 732  == 6.1  ​Connection problem when uploading firmware ==
733 733  
734 734  
... ... @@ -735,7 +735,6 @@
735 735  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
736 736  
737 737  
738 -
739 739  == 6.2  AT Command input doesn't work ==
740 740  
741 741  
... ... @@ -742,7 +742,12 @@
742 742  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
743 743  
744 744  
693 +== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
745 745  
695 +
696 +This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
697 +
698 +
746 746  = 7. ​ Order Info =
747 747  
748 748  
... ... @@ -749,7 +749,6 @@
749 749  Part Number**:** NLMS01
750 750  
751 751  
752 -
753 753  = 8.  Packing Info =
754 754  
755 755  
... ... @@ -764,6 +764,8 @@
764 764  * Package Size / pcs : cm
765 765  * Weight / pcs : g
766 766  
719 +
720 +
767 767  = 9.  Support =
768 768  
769 769  
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0