<
From version < 33.7 >
edited by Xiaoling
on 2022/09/23 15:45
To version < 31.1 >
edited by Edwin Chen
on 2022/09/08 00:26
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -7,62 +7,76 @@
7 7  
8 8  
9 9  
10 -= 1.  Introduction =
10 += 1. Introduction =
11 11  
12 +== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
12 12  
13 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 14  
15 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
15 15  
16 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
17 17  
18 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 -
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
20 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
21 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
22 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
24 24  
25 -
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 -
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
28 +== ​1.2 Features ==
31 31  
30 +* (((
31 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
32 +)))
33 +* (((
34 +Monitor Leaf moisture
35 +)))
32 32  
33 -== ​1.2  Features ==
37 +* (((
38 + Monitor Leaf temperature
39 +)))
34 34  
35 -
36 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 -* Monitor Leaf moisture
38 -* Monitor Leaf temperature
39 -* Moisture and Temperature alarm function
40 -* Monitor Battery Level
41 -* Uplink on periodically
42 -* Downlink to change configure
43 -* IP66 Waterproof Enclosure
44 -* IP67 rate for the Sensor Probe
45 -* Ultra-Low Power consumption
46 -* AT Commands to change parameters
47 -* Micro SIM card slot for NB-IoT SIM
48 -* 8500mAh Battery for long term use
49 -
50 -(((
51 -
52 -
53 -
54 -
41 +* (((
42 +Moisture and Temperature alarm function
55 55  )))
44 +* (((
45 +Monitor Battery Level
46 +)))
47 +* (((
48 +Uplink on periodically
49 +)))
50 +* (((
51 +Downlink to change configure
52 +)))
53 +* (((
54 +IP66 Waterproof Enclosure
55 +)))
56 +* (((
57 +IP67 rate for the Sensor Probe
58 +)))
59 +* (((
60 +Ultra-Low Power consumption
61 +)))
62 +* (((
63 +AT Commands to change parameters
64 +)))
65 +* (((
66 +Micro SIM card slot for NB-IoT SIM
67 +)))
68 +* (((
69 +8500mAh Battery for long term use
70 +)))
56 56  
57 57  == 1.3  Specification ==
58 58  
74 +**Common DC Characteristics:**
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
61 -
62 62  * Supply Voltage: 2.1v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +**NB-IoT Spec:**
66 66  
67 67  * - B1 @H-FDD: 2100MHz
68 68  * - B3 @H-FDD: 1800MHz
... ... @@ -71,13 +71,11 @@
71 71  * - B20 @H-FDD: 800MHz
72 72  * - B28 @H-FDD: 700MHz
73 73  
88 +== 1.4 Probe Specification ==
74 74  
75 75  
76 -== 1.4  Probe Specification ==
91 +**Leaf Moisture: percentage of water drop over total leaf surface**
77 77  
78 -
79 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
80 -
81 81  * Range 0-100%
82 82  * Resolution: 0.1%
83 83  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -84,7 +84,7 @@
84 84  * IP67 Protection
85 85  * Length: 3.5 meters
86 86  
87 -(% style="color:#037691" %)**Leaf Temperature:**
99 +**Leaf Temperature:**
88 88  
89 89  * Range -50℃~80℃
90 90  * Resolution: 0.1℃
... ... @@ -92,44 +92,30 @@
92 92  * IP67 Protection
93 93  * Length: 3.5 meters
94 94  
107 +== 1.5 ​Applications ==
95 95  
96 -
97 -== 1.5 ​ Applications ==
98 -
99 -
100 100  * Smart Agriculture
101 101  
111 +== 1.6 Pin mapping and power on ==
102 102  
103 -
104 -== 1.6  Pin mapping and power on ==
105 -
106 -
107 107  ​[[image:image-20220907171221-4.png]]
108 108  
109 109  **~ **
110 110  
111 -
112 112  = 2.  Use NLMS01 to communicate with IoT Server =
113 113  
114 -
115 115  == 2.1  How it works ==
116 116  
117 -
118 118  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
119 119  
120 120  The diagram below shows the working flow in default firmware of NLMS01:
121 121  
122 -
123 123  [[image:image-20220907171221-5.png]]
124 124  
125 -
126 -
127 127  == 2.2 ​ Configure the NLMS01 ==
128 128  
129 -
130 130  === 2.2.1 Test Requirement ===
131 131  
132 -
133 133  To use NLMS01 in your city, make sure meet below requirements:
134 134  
135 135  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -136,114 +136,90 @@
136 136  * The local NB-IoT network used the band that NLMS01 supports.
137 137  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
138 138  
139 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
137 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
140 140  
141 -
142 142  [[image:image-20220907171221-6.png]] ​
143 143  
144 -
145 -
146 146  === 2.2.2 Insert SIM card ===
147 147  
148 -
149 149  Insert the NB-IoT Card get from your provider.
150 150  
151 151  User need to take out the NB-IoT module and insert the SIM card like below:
152 152  
153 -
154 154  [[image:image-20220907171221-7.png]] ​
155 155  
156 -
157 -
158 158  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
159 159  
151 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
160 160  
161 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
153 +**Connection:**
162 162  
155 + USB TTL GND <~-~-~-~-> GND
163 163  
164 -(% style="color:blue" %)**Connection:**
157 + USB TTL TXD <~-~-~-~-> UART_RXD
165 165  
166 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
159 + USB TTL RXD <~-~-~-~-> UART_TXD
167 167  
168 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
169 -
170 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
171 -
172 -
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:**  (% style="color:green" %)8(%%)**
177 -* Stop bits:  (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
163 +* Baud:  **9600**
164 +* Data bits:** 8**
165 +* Stop bits: **1**
166 +* Parity:  **None**
167 +* Flow Control: **None**
180 180  
181 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
169 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
182 182  
183 -​[[image:image-20220913090720-1.png]]
171 +​[[image:image-20220907171221-8.png]]
184 184  
173 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
185 185  
186 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
187 -
188 -
189 -
190 190  === 2.2.4 Use CoAP protocol to uplink data ===
191 191  
177 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
192 192  
193 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
179 +**Use below commands:**
194 194  
181 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
182 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
183 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
195 195  
196 -(% style="color:blue" %)**Use below commands:**
197 -
198 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
199 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
200 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
201 -
202 202  For parameter description, please refer to AT command set
203 203  
204 204  [[image:image-20220907171221-9.png]]
205 205  
189 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
206 206  
207 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
208 -
209 209  [[image:image-20220907171221-10.png]] ​
210 210  
211 -
212 -
213 213  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 214  
215 -
216 216  This feature is supported since firmware version v1.0.1
217 217  
218 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
219 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
220 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
197 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
198 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
199 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
221 221  
222 222  ​ [[image:image-20220907171221-11.png]]
223 223  
224 -
225 225  [[image:image-20220907171221-12.png]]
226 226  
227 227  ​
228 228  
229 -
230 230  === 2.2.6 Use MQTT protocol to uplink data ===
231 231  
232 -
233 233  This feature is supported since firmware version v110
234 234  
235 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
236 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
237 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
238 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
239 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
240 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
241 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
211 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
212 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
213 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
214 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
215 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
216 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
217 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
242 242  
243 243  ​ [[image:image-20220907171221-13.png]]
244 244  
245 -
246 -
247 247  [[image:image-20220907171221-14.png]]
248 248  
249 249  ​
... ... @@ -250,105 +250,79 @@
250 250  
251 251  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 252  
253 -
254 -
255 255  === 2.2.7 Use TCP protocol to uplink data ===
256 256  
257 -
258 258  This feature is supported since firmware version v110
259 259  
260 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
261 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
231 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
262 262  
263 263  ​ [[image:image-20220907171221-15.png]]
264 264  
265 -
266 -
267 267  [[image:image-20220907171221-16.png]]
268 268  
269 269  ​
270 270  
271 -
272 272  === 2.2.8 Change Update Interval ===
273 273  
274 -
275 275  User can use below command to change the **uplink interval**.
276 276  
277 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
244 +* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
278 278  
279 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
246 +**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
280 280  
281 281  
282 -
283 283  == 2.3  Uplink Payload ==
284 284  
285 -
286 286  In this mode, uplink payload includes 87 bytes in total by default.
287 287  
288 288  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
289 289  
255 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
256 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
290 290  
291 -(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
292 -|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
293 -|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
294 -
295 295  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
296 296  
297 -
298 298  [[image:image-20220907171221-17.png]]
299 299  
300 -
301 301  The payload is ASCII string, representative same HEX:
302 302  
303 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
264 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
304 304  
305 -where:
306 -
307 -* Device ID: 0xf868411056754138 = f868411056754138
308 -* Version: 0x0064=100=1.0.0
309 -* BAT: 0x0c78 = 3192 mV = 3.192V
310 -* Singal: 0x17 = 23
311 -* Mod: 0x01 = 1
312 -* Interrupt: 0x00= 0
266 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
267 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0
268 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
269 +* (% style="color:red" %)Singal: 0x17 = 23
270 +* (% style="color:blue" %)Mod: 0x01 = 1
271 +* (% style="color:green" %)Interrupt: 0x00= 0
313 313  * Leaf moisture: 0x0225= 549 = 54.9%
314 314  * Leaf Temperature:0x010B =267=26.7 °C
315 315  * Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
316 316  * Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
317 -* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
276 +* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
318 318  
319 -
320 -
321 321  == 2.4  Payload Explanation and Sensor Interface ==
322 322  
323 -
324 324  === 2.4.1  Device ID ===
325 325  
326 -
327 327  By default, the Device ID equal to the last 15 bits of IMEI.
328 328  
329 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
284 +User can use **AT+DEUI** to set Device ID
330 330  
286 +**Example:**
331 331  
332 -(% style="color:blue" %)**Example**:
333 -
334 334  AT+DEUI=868411056754138
335 335  
336 336  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
337 337  
338 -
339 -
340 340  === 2.4.2  Version Info ===
341 341  
342 -
343 343  Specify the software version: 0x64=100, means firmware version 1.00.
344 344  
345 345  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
346 346  
347 -
348 -
349 349  === 2.4.3  Battery Info ===
350 350  
351 -
352 352  Check the battery voltage for NLMS01.
353 353  
354 354  Ex1: 0x0B45 = 2885mV
... ... @@ -355,16 +355,12 @@
355 355  
356 356  Ex2: 0x0B49 = 2889mV
357 357  
358 -
359 -
360 360  === 2.4.4  Signal Strength ===
361 361  
362 -
363 363  NB-IoT Network signal Strength.
364 364  
310 +**Ex1: 0x1d = 29**
365 365  
366 -(% style="color:blue" %)**Ex1: 0x1d = 29**
367 -
368 368  **0**  -113dBm or less
369 369  
370 370  **1**  -111dBm
... ... @@ -375,49 +375,37 @@
375 375  
376 376  **99**    Not known or not detectable
377 377  
378 -
379 -
380 380  === 2.4.5  Leaf moisture ===
381 381  
324 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
382 382  
383 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
326 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
384 384  
385 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
328 +**0229(H) = 549(D) /100 = 54.9.**
386 386  
387 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
388 -
389 -
390 -
391 391  === 2.4.6  Leaf Temperature ===
392 392  
332 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
393 393  
394 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
334 +**Example**:
395 395  
396 -(% style="color:blue" %)**Example**:
336 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
397 397  
398 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
338 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
399 399  
400 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
401 -
402 -
403 -
404 404  === 2.4.7  Timestamp ===
405 405  
406 -
407 407  Time stamp : 0x6315537b =1662342011
408 408  
409 409  Convert Unix timestamp to time 2022-9-5 9:40:11.
410 410  
411 -
412 -
413 413  === 2.4.8  Digital Interrupt ===
414 414  
348 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
415 415  
416 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
417 -
418 418  The command is:
419 419  
420 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
352 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
421 421  
422 422  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
423 423  
... ... @@ -427,34 +427,27 @@
427 427  
428 428  0x(01): Interrupt Uplink Packet.
429 429  
430 -
431 -
432 432  === 2.4.9  ​+5V Output ===
433 433  
434 -
435 435  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
436 436  
437 437  The 5V output time can be controlled by AT Command.
438 438  
439 -(% style="color:blue" %)**AT+5VT=1000**
368 +**AT+5VT=1000**
440 440  
441 441  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
442 442  
443 443  
444 -
445 445  == 2.5  Downlink Payload ==
446 446  
447 -
448 448  By default, NLMS01 prints the downlink payload to console port.
449 449  
450 450  [[image:image-20220907171221-18.png]] ​
451 451  
379 +**Examples:**
452 452  
453 -(% style="color:blue" %)**Examples:**
381 +* **Set TDC**
454 454  
455 -
456 -* (% style="color:#037691" %)**Set TDC**
457 -
458 458  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
459 459  
460 460  Payload:    01 00 00 1E    TDC=30S
... ... @@ -461,23 +461,16 @@
461 461  
462 462  Payload:    01 00 00 3C    TDC=60S
463 463  
389 +* **Reset**
464 464  
465 -
466 -* (% style="color:#037691" %)**Reset**
467 -
468 468  If payload = 0x04FF, it will reset the NLMS01
469 469  
393 +* **INTMOD**
470 470  
471 -
472 -* (% style="color:#037691" %)**INTMOD**
473 -
474 474  Downlink Payload: 06000003, Set AT+INTMOD=3
475 475  
476 -
477 -
478 478  == 2.6  ​LED Indicator ==
479 479  
480 -
481 481  The NLMS01 has an internal LED which is to show the status of different state.
482 482  
483 483  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -485,25 +485,18 @@
485 485  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
486 486  * For each uplink probe, LED will be on for 500ms.
487 487  
406 +== 2.7 Installation ==
488 488  
489 -
490 -== 2.7  Installation ==
491 -
492 -
493 493  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
494 494  
495 -
496 496  [[image:image-20220907171221-19.png]]
497 497  
412 +== 2.8 Moisture and Temperature alarm function ==
498 498  
414 +➢ AT Command:
499 499  
500 -== 2.8  Moisture and Temperature alarm function ==
416 +AT+ HUMALARM =min,max
501 501  
502 -
503 -(% style="color:blue" %)**➢ AT Command:**
504 -
505 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
506 -
507 507  ² When min=0, and max≠0, Alarm higher than max
508 508  
509 509  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -510,9 +510,8 @@
510 510  
511 511  ² When min≠0 and max≠0, Alarm higher than max or lower than min
512 512  
424 +Example:
513 513  
514 -(% style="color:blue" %)**Example:**
515 -
516 516  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
517 517  
518 518  AT+ TEMPALARM=min,max
... ... @@ -523,50 +523,41 @@
523 523  
524 524  ² When min≠0 and max≠0, Alarm higher than max or lower than min
525 525  
436 +Example:
526 526  
527 -(% style="color:blue" %)**Example:**
528 -
529 529  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
530 530  
531 531  
441 +== 2.9 Set the number of data to be uploaded and the recording time ==
532 532  
533 -== 2.9  Set the number of data to be uploaded and the recording time ==
443 + AT Command:
534 534  
445 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
535 535  
536 -(% style="color:blue" %)**➢ AT Command:**
447 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
537 537  
538 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
539 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
449 +== 2.10 Read or Clear cached data ==
540 540  
451 +➢ AT Command:
541 541  
453 +AT+CDP    ~/~/ Read cached data
542 542  
543 -== 2.10  Read or Clear cached data ==
544 -
545 -
546 -(% style="color:blue" %)**➢ AT Command:**
547 -
548 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
549 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
550 -
551 551  [[image:image-20220907171221-20.png]]
552 552  
553 553  
458 +AT+CDP=0    ~/~/ Clear cached data
554 554  
460 +
555 555  == 2.11  ​Firmware Change Log ==
556 556  
463 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
557 557  
558 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
465 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
559 559  
560 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
561 -
562 -
563 -
564 564  == 2.12  ​Battery Analysis ==
565 565  
566 -
567 567  === 2.12.1  ​Battery Type ===
568 568  
569 -
570 570  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
571 571  
572 572  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -579,18 +579,15 @@
579 579  
580 580  [[image:image-20220907171221-21.png]] ​
581 581  
582 -
583 -
584 584  === 2.12.2  Power consumption Analyze ===
585 585  
586 -
587 587  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
588 588  
589 589  Instruction to use as below:
590 590  
591 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
489 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
592 592  
593 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
491 +**Step 2: ** Open it and choose
594 594  
595 595  * Product Model
596 596  * Uplink Interval
... ... @@ -600,39 +600,26 @@
600 600  
601 601  [[image:image-20220907171221-22.jpeg]] ​
602 602  
603 -
604 604  === 2.12.3  ​Battery Note ===
605 605  
606 -
607 607  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
608 608  
609 -
610 -
611 611  === 2.12.4  Replace the battery ===
612 612  
613 -
614 614  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
615 615  
616 -
617 -
618 618  = 3. ​ Access NB-IoT Module =
619 619  
620 -
621 621  Users can directly access the AT command set of the NB-IoT module.
622 622  
623 623  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
624 624  
625 -
626 626  [[image:image-20220907171221-23.png]] ​
627 627  
628 -
629 -
630 630  = 4.  Using the AT Commands =
631 631  
632 -
633 633  == 4.1  Access AT Commands ==
634 634  
635 -
636 636  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
637 637  
638 638  AT+<CMD>?  : Help on <CMD>
... ... @@ -643,9 +643,8 @@
643 643  
644 644  AT+<CMD>=?  : Get the value
645 645  
531 +**General Commands**      
646 646  
647 -(% style="color:#037691" %)**General Commands**      
648 -
649 649  AT  : Attention       
650 650  
651 651  AT?  : Short Help     
... ... @@ -668,37 +668,30 @@
668 668  
669 669  AT+SERVADDR  : Server Address
670 670  
671 -AT+APN     : Get or set the APN
672 -
673 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
674 -
675 -AT+DNSCFG  : Get or Set DNS Server
676 -
677 -AT+GETSENSORVALUE   : Returns the current sensor measurement
678 -
679 679  AT+TR      : Get or Set record time"
680 680  
557 +
681 681  AT+NOUD      : Get or Set the number of data to be uploaded
682 682  
560 +
683 683  AT+CDP     : Read or Clear cached data
684 684  
563 +
685 685  AT+TEMPALARM      : Get or Set alarm of temp
686 686  
687 687  AT+HUMALARM     : Get or Set alarm of PH
688 688  
689 689  
690 -(% style="color:#037691" %)**COAP Management**      
569 +**COAP Management**      
691 691  
692 692  AT+URI            : Resource parameters
693 693  
573 +**UDP Management**
694 694  
695 -(% style="color:#037691" %)**UDP Management**
696 -
697 697  AT+CFM          : Upload confirmation mode (only valid for UDP)
698 698  
577 +**MQTT Management**
699 699  
700 -(% style="color:#037691" %)**MQTT Management**
701 -
702 702  AT+CLIENT               : Get or Set MQTT client
703 703  
704 704  AT+UNAME  : Get or Set MQTT Username
... ... @@ -709,62 +709,43 @@
709 709  
710 710  AT+SUBTOPIC  : Get or Set MQTT subscription topic
711 711  
589 +**Information**          
712 712  
713 -(% style="color:#037691" %)**Information**          
714 -
715 715  AT+FDR  : Factory Data Reset
716 716  
717 717  AT+PWORD  : Serial Access Password
718 718  
719 -
720 -
721 721  = ​5.  FAQ =
722 722  
723 -
724 724  == 5.1 ​ How to Upgrade Firmware ==
725 725  
726 -
727 727  User can upgrade the firmware for 1) bug fix, 2) new feature release.
728 728  
729 729  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
730 730  
603 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
731 731  
732 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
733 -
734 -
735 -
736 736  = 6.  Trouble Shooting =
737 737  
738 -
739 739  == 6.1  ​Connection problem when uploading firmware ==
740 740  
741 -
742 742  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
743 743  
744 -
745 -
746 746  == 6.2  AT Command input doesn't work ==
747 747  
613 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
748 748  
749 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
750 -
751 -
752 -
753 753  = 7. ​ Order Info =
754 754  
755 -
756 756  Part Number**:** NLMS01
757 757  
758 -
759 -
760 760  = 8.  Packing Info =
761 761  
621 +**Package Includes**:
762 762  
763 -(% style="color:#037691" %)**Package Includes:**
764 -
765 765  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
766 766  
767 -(% style="color:#037691" %)**Dimension and weight**:
625 +**Dimension and weight**:
768 768  
769 769  * Device Size: cm
770 770  * Device Weight: g
... ... @@ -771,10 +771,8 @@
771 771  * Package Size / pcs : cm
772 772  * Weight / pcs : g
773 773  
774 -
775 775  = 9.  Support =
776 776  
777 -
778 778  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
779 779  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
780 780  
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0