<
From version < 33.6 >
edited by Xiaoling
on 2022/09/13 09:50
To version < 25.1 >
edited by David Huang
on 2022/09/07 17:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,41 +1,31 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 +**~1. Introduction**
8 8  
7 +**1.1 ​What is NLMS01 **Leaf Moisture Sensor
9 9  
10 -= 1.  Introduction =
9 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
11 11  
11 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
12 12  
13 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 -
15 -
16 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 -
18 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 -
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
14 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
15 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
16 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
24 24  
25 -
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 -
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
22 +**​1.2 Features**
31 31  
32 -
33 -== ​1.2  Features ==
34 -
35 -
36 36  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 37  * Monitor Leaf moisture
38 -* Monitor Leaf temperature
26 +
27 +* Monitor Leaf temperature
28 +
39 39  * Moisture and Temperature alarm function
40 40  * Monitor Battery Level
41 41  * Uplink on periodically
... ... @@ -47,22 +47,14 @@
47 47  * Micro SIM card slot for NB-IoT SIM
48 48  * 8500mAh Battery for long term use
49 49  
50 -(((
51 -
40 +**1.3  Specification**
52 52  
42 +**Common DC Characteristics:**
53 53  
54 -
55 -)))
56 -
57 -== 1.3  Specification ==
58 -
59 -
60 -(% style="color:#037691" %)**Common DC Characteristics:**
61 -
62 62  * Supply Voltage: 2.1v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**NB-IoT Spec:**
47 +**NB-IoT Spec:**
66 66  
67 67  * - B1 @H-FDD: 2100MHz
68 68  * - B3 @H-FDD: 1800MHz
... ... @@ -71,14 +71,11 @@
71 71  * - B20 @H-FDD: 800MHz
72 72  * - B28 @H-FDD: 700MHz
73 73  
56 +**1.4 Probe Specification**
74 74  
75 75  
59 +**Leaf Moisture: percentage of water drop over total leaf surface**
76 76  
77 -== 1.4  Probe Specification ==
78 -
79 -
80 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
81 -
82 82  * Range 0-100%
83 83  * Resolution: 0.1%
84 84  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -85,7 +85,7 @@
85 85  * IP67 Protection
86 86  * Length: 3.5 meters
87 87  
88 -(% style="color:#037691" %)**Leaf Temperature:**
67 +**Leaf Temperature:**
89 89  
90 90  * Range -50℃~80℃
91 91  * Resolution: 0.1℃
... ... @@ -93,46 +93,30 @@
93 93  * IP67 Protection
94 94  * Length: 3.5 meters
95 95  
75 +**~ 1.5 ​Applications**
96 96  
97 -
98 -
99 -== 1.5 ​ Applications ==
100 -
101 -
102 102  * Smart Agriculture
103 103  
79 +**1.6 Pin mapping and power on**
104 104  
105 -
106 -
107 -== 1.6  Pin mapping and power on ==
108 -
109 -
110 110  ​[[image:image-20220907171221-4.png]]
111 111  
112 112  **~ **
113 113  
85 +**2.  Use NLMS01 to communicate with IoT Server**
114 114  
115 -= 2.  Use NLMS01 to communicate with IoT Server =
87 +**2.1  How it works**
116 116  
117 -
118 -== 2.1  How it works ==
119 -
120 -
121 121  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
122 122  
123 123  The diagram below shows the working flow in default firmware of NLMS01:
124 124  
125 -
126 126  [[image:image-20220907171221-5.png]]
127 127  
95 +**2.2 ​ Configure the NLMS01**
128 128  
97 +**2.2.1 Test Requirement**
129 129  
130 -== 2.2 ​ Configure the NLMS01 ==
131 -
132 -
133 -=== 2.2.1 Test Requirement ===
134 -
135 -
136 136  To use NLMS01 in your city, make sure meet below requirements:
137 137  
138 138  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -139,116 +139,90 @@
139 139  * The local NB-IoT network used the band that NLMS01 supports.
140 140  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
141 141  
142 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
105 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
143 143  
144 -
145 145  [[image:image-20220907171221-6.png]] ​
146 146  
109 +**2.2.2 Insert SIM card**
147 147  
148 -
149 -=== 2.2.2 Insert SIM card ===
150 -
151 -
152 152  Insert the NB-IoT Card get from your provider.
153 153  
154 154  User need to take out the NB-IoT module and insert the SIM card like below:
155 155  
156 -
157 157  [[image:image-20220907171221-7.png]] ​
158 158  
117 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
159 159  
119 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
160 160  
161 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
121 +**Connection:**
162 162  
123 + USB TTL GND <~-~-~-~-> GND
163 163  
164 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
125 + USB TTL TXD <~-~-~-~-> UART_RXD
165 165  
127 + USB TTL RXD <~-~-~-~-> UART_TXD
166 166  
167 -(% style="color:blue" %)**Connection:**
168 -
169 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
170 -
171 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
172 -
173 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
174 -
175 -
176 176  In the PC, use below serial tool settings:
177 177  
178 -* Baud:  (% style="color:green" %)**9600**
179 -* Data bits:**  (% style="color:green" %)8(%%)**
180 -* Stop bits:  (% style="color:green" %)**1**
181 -* Parity:  (% style="color:green" %)**None**
182 -* Flow Control: (% style="color:green" %)**None**
131 +* Baud:  **9600**
132 +* Data bits:** 8**
133 +* Stop bits: **1**
134 +* Parity:  **None**
135 +* Flow Control: **None**
183 183  
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
137 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
185 185  
186 -​[[image:image-20220913090720-1.png]]
139 +​[[image:image-20220907171221-8.png]]
187 187  
141 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
188 188  
189 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
143 +**2.2.4 Use CoAP protocol to uplink data**
190 190  
145 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
191 191  
147 +**Use below commands:**
192 192  
193 -=== 2.2.4 Use CoAP protocol to uplink data ===
149 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
150 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
151 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
194 194  
195 -
196 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
197 -
198 -
199 -(% style="color:blue" %)**Use below commands:**
200 -
201 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
202 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
203 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
204 -
205 205  For parameter description, please refer to AT command set
206 206  
207 207  [[image:image-20220907171221-9.png]]
208 208  
157 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
209 209  
210 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
211 -
212 212  [[image:image-20220907171221-10.png]] ​
213 213  
161 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
214 214  
215 -
216 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
217 -
218 -
219 219  This feature is supported since firmware version v1.0.1
220 220  
221 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
222 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
223 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
165 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
166 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
167 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
224 224  
225 -
226 -
227 227  ​ [[image:image-20220907171221-11.png]]
228 228  
229 -
230 230  [[image:image-20220907171221-12.png]]
231 231  
232 232  ​
233 233  
175 +**2.2.6 Use MQTT protocol to uplink data**
234 234  
235 -=== 2.2.6 Use MQTT protocol to uplink data ===
236 -
237 -
238 238  This feature is supported since firmware version v110
239 239  
240 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
241 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
242 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
243 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
244 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
245 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
246 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
179 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
180 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
181 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
182 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
183 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
184 +* **AT+PUBTOPIC=NSE01_PUB                    **~/~/Set the sending topic of MQTT
185 +* **AT+SUBTOPIC=NSE01_SUB          ** ~/~/Set the subscription topic of MQTT
247 247  
248 248  ​ [[image:image-20220907171221-13.png]]
249 249  
250 -
251 -
252 252  [[image:image-20220907171221-14.png]]
253 253  
254 254  ​
... ... @@ -255,109 +255,81 @@
255 255  
256 256  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
257 257  
195 +**2.2.7 Use TCP protocol to uplink data**
258 258  
259 -
260 -=== 2.2.7 Use TCP protocol to uplink data ===
261 -
262 -
263 263  This feature is supported since firmware version v110
264 264  
265 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
266 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
199 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
200 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
267 267  
268 -
269 -
270 270  ​ [[image:image-20220907171221-15.png]]
271 271  
272 -
273 -
274 274  [[image:image-20220907171221-16.png]]
275 275  
276 276  ​
277 277  
208 +**2.2.8 Change Update Interval**
278 278  
279 -=== 2.2.8 Change Update Interval ===
280 -
281 -
282 282  User can use below command to change the **uplink interval**.
283 283  
284 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
212 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
285 285  
214 +**NOTE:**
286 286  
216 +**~1. By default, the device will send an uplink message every 2 hour.**
287 287  
288 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
218 +**2. Uplink Payload**
289 289  
290 -
291 -
292 -== 2.3  Uplink Payload ==
293 -
294 -
295 295  In this mode, uplink payload includes 87 bytes in total by default.
296 296  
297 297  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
298 298  
224 +|**Size(bytes)**|**8**|**2**|**2**|**1**|**1**|1|2|2|2|4   
225 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Soil PH|Time stamp  .....
299 299  
300 -(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
301 -|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
302 -|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
303 -
304 304  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
305 305  
306 -
307 307  [[image:image-20220907171221-17.png]]
308 308  
309 -
310 310  The payload is ASCII string, representative same HEX:
311 311  
312 -0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
233 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
313 313  
314 -* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
315 -* (% style="color:blue" %)Version: 0x0064=100=1.0.0
316 -* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
317 -* (% style="color:red" %)Singal: 0x17 = 23
318 -* (% style="color:blue" %)Mod: 0x01 = 1
319 -* (% style="color:green" %)Interrupt: 0x00= 0
235 +* Device ID: 0xf868411056754138 = f868411056754138
236 +* Version: 0x0064=100=1.0.0
237 +
238 +* BAT: 0x0c78 = 3192 mV = 3.192V
239 +* Singal: 0x17 = 23
240 +* Mod: 0x01 = 1
241 +* Interrupt: 0x00= 0
320 320  * Leaf moisture: 0x0225= 549 = 54.9%
321 321  * Leaf Temperature:0x010B =267=26.7 °C
322 -* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
244 +* Time stamp : 0x6315537b =1662342011
323 323  * Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
324 -* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
246 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
325 325  
248 +**2.4  Payload Explanation and Sensor Interface**
326 326  
250 +**2.4.1  Device ID**
327 327  
328 -
329 -
330 -== 2.4  Payload Explanation and Sensor Interface ==
331 -
332 -
333 -=== 2.4.1  Device ID ===
334 -
335 -
336 336  By default, the Device ID equal to the last 15 bits of IMEI.
337 337  
338 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
254 +User can use **AT+DEUI** to set Device ID
339 339  
256 +**Example:**
340 340  
341 -(% style="color:blue" %)**Example**:
342 -
343 343  AT+DEUI=868411056754138
344 344  
345 345  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 346  
262 +**2.4.2  Version Info**
347 347  
348 -
349 -=== 2.4.2  Version Info ===
350 -
351 -
352 352  Specify the software version: 0x64=100, means firmware version 1.00.
353 353  
354 354  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
355 355  
268 +**2.4.3  Battery Info**
356 356  
357 -
358 -=== 2.4.3  Battery Info ===
359 -
360 -
361 361  Check the battery voltage for NLMS01.
362 362  
363 363  Ex1: 0x0B45 = 2885mV
... ... @@ -364,16 +364,12 @@
364 364  
365 365  Ex2: 0x0B49 = 2889mV
366 366  
276 +**2.4.4  Signal Strength**
367 367  
368 -
369 -=== 2.4.4  Signal Strength ===
370 -
371 -
372 372  NB-IoT Network signal Strength.
373 373  
280 +**Ex1: 0x1d = 29**
374 374  
375 -(% style="color:blue" %)**Ex1: 0x1d = 29**
376 -
377 377  **0**  -113dBm or less
378 378  
379 379  **1**  -111dBm
... ... @@ -384,49 +384,37 @@
384 384  
385 385  **99**    Not known or not detectable
386 386  
292 +**2.4.5  Leaf** moisture
387 387  
294 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
388 388  
389 -=== 2.4.5  Leaf moisture ===
296 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
390 390  
298 +**0229(H) = 549(D) /100 = 54.9.**
391 391  
392 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
300 +**2.4.6  Leaf Temperature**
393 393  
394 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
302 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
395 395  
396 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
304 +**Example**:
397 397  
306 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
398 398  
308 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
399 399  
400 -=== 2.4.6  Leaf Temperature ===
310 +**2.4.7  Timestamp**
401 401  
402 -
403 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
404 -
405 -(% style="color:blue" %)**Example**:
406 -
407 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
408 -
409 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
410 -
411 -
412 -
413 -=== 2.4.7  Timestamp ===
414 -
415 -
416 416  Time stamp : 0x6315537b =1662342011
417 417  
418 418  Convert Unix timestamp to time 2022-9-5 9:40:11.
419 419  
316 +**2.4.8  Digital Interrupt**
420 420  
318 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
421 421  
422 -=== 2.4.8  Digital Interrupt ===
423 -
424 -
425 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
426 -
427 427  The command is:
428 428  
429 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
322 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
430 430  
431 431  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
432 432  
... ... @@ -436,34 +436,27 @@
436 436  
437 437  0x(01): Interrupt Uplink Packet.
438 438  
332 +**2.4.9  ​+5V Output**
439 439  
440 -
441 -=== 2.4.9  ​+5V Output ===
442 -
443 -
444 444  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
445 445  
446 446  The 5V output time can be controlled by AT Command.
447 447  
448 -(% style="color:blue" %)**AT+5VT=1000**
338 +**AT+5VT=1000**
449 449  
450 450  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
451 451  
452 452  
343 +**2.5  Downlink Payload**
453 453  
454 -== 2.5  Downlink Payload ==
455 -
456 -
457 457  By default, NLMS01 prints the downlink payload to console port.
458 458  
459 459  [[image:image-20220907171221-18.png]] ​
460 460  
349 +**Examples:**
461 461  
462 -(% style="color:blue" %)**Examples:**
351 +* **Set TDC**
463 463  
464 -
465 -* (% style="color:#037691" %)**Set TDC**
466 -
467 467  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
468 468  
469 469  Payload:    01 00 00 1E    TDC=30S
... ... @@ -470,23 +470,16 @@
470 470  
471 471  Payload:    01 00 00 3C    TDC=60S
472 472  
359 +* **Reset**
473 473  
474 -
475 -* (% style="color:#037691" %)**Reset**
476 -
477 477  If payload = 0x04FF, it will reset the NLMS01
478 478  
363 +* **INTMOD**
479 479  
480 -
481 -* (% style="color:#037691" %)**INTMOD**
482 -
483 483  Downlink Payload: 06000003, Set AT+INTMOD=3
484 484  
367 +**2.6  ​LED Indicator**
485 485  
486 -
487 -== 2.6  ​LED Indicator ==
488 -
489 -
490 490  The NLMS01 has an internal LED which is to show the status of different state.
491 491  
492 492  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -494,27 +494,18 @@
494 494  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
495 495  * For each uplink probe, LED will be on for 500ms.
496 496  
376 +**2.7 Installation**
497 497  
498 -
499 -
500 -
501 -== 2.7  Installation ==
502 -
503 -
504 504  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
505 505  
506 -
507 507  [[image:image-20220907171221-19.png]]
508 508  
382 +**2.8 Moisture and Temperature alarm function**
509 509  
384 +➢ AT Command:
510 510  
511 -== 2.8  Moisture and Temperature alarm function ==
386 +AT+ HUMALARM =min,max
512 512  
513 -
514 -(% style="color:blue" %)**➢ AT Command:**
515 -
516 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
517 -
518 518  ² When min=0, and max≠0, Alarm higher than max
519 519  
520 520  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -521,9 +521,8 @@
521 521  
522 522  ² When min≠0 and max≠0, Alarm higher than max or lower than min
523 523  
394 +Example:
524 524  
525 -(% style="color:blue" %)**Example:**
526 -
527 527  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
528 528  
529 529  AT+ TEMPALARM=min,max
... ... @@ -534,54 +534,42 @@
534 534  
535 535  ² When min≠0 and max≠0, Alarm higher than max or lower than min
536 536  
406 +Example:
537 537  
538 -(% style="color:blue" %)**Example:**
539 -
540 540  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
541 541  
542 542  
411 +**2.9 Set the number of data to be uploaded and the recording time**
543 543  
544 -== 2.9  Set the number of data to be uploaded and the recording time ==
413 + AT Command:
545 545  
415 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
546 546  
547 -(% style="color:blue" %)**➢ AT Command:**
548 548  
549 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
550 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
418 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
551 551  
420 +**2.10 Read or Clear cached data**
552 552  
422 +➢ AT Command:
553 553  
424 +AT+CDP    ~/~/ Read cached data
554 554  
555 -
556 -== 2.10  Read or Clear cached data ==
557 -
558 -
559 -(% style="color:blue" %)**➢ AT Command:**
560 -
561 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
562 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
563 -
564 -
565 -
566 566  [[image:image-20220907171221-20.png]]
567 567  
568 568  
429 +AT+CDP=0    ~/~/ Clear cached data
569 569  
570 -== 2.11  ​Firmware Change Log ==
571 571  
432 +**2.8  ​Firmware Change Log**
572 572  
573 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
434 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
574 574  
575 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
436 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
576 576  
438 +**2.9  ​Battery Analysis**
577 577  
440 +**2.9.1  ​Battery Type**
578 578  
579 -== 2.12  ​Battery Analysis ==
580 -
581 -
582 -=== 2.12.1  ​Battery Type ===
583 -
584 -
585 585  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
586 586  
587 587  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -594,18 +594,15 @@
594 594  
595 595  [[image:image-20220907171221-21.png]] ​
596 596  
454 +**2.9.2  Power consumption Analyze**
597 597  
598 -
599 -=== 2.12.2  Power consumption Analyze ===
600 -
601 -
602 602  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
603 603  
604 604  Instruction to use as below:
605 605  
606 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
460 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
607 607  
608 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
462 +**Step 2: ** Open it and choose
609 609  
610 610  * Product Model
611 611  * Uplink Interval
... ... @@ -615,39 +615,26 @@
615 615  
616 616  [[image:image-20220907171221-22.jpeg]] ​
617 617  
472 +**2.9.3  ​Battery Note**
618 618  
619 -=== 2.12.3  ​Battery Note ===
620 -
621 -
622 622  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
623 623  
476 +**2.9.4  Replace the battery**
624 624  
625 -
626 -=== 2.12.4  Replace the battery ===
627 -
628 -
629 629  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
630 630  
480 +**3. ​ Access NB-IoT Module**
631 631  
632 -
633 -= 3. ​ Access NB-IoT Module =
634 -
635 -
636 636  Users can directly access the AT command set of the NB-IoT module.
637 637  
638 638  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
639 639  
640 -
641 641  [[image:image-20220907171221-23.png]] ​
642 642  
488 +**4.  Using the AT Commands**
643 643  
490 +**4.1  Access AT Commands**
644 644  
645 -= 4.  Using the AT Commands =
646 -
647 -
648 -== 4.1  Access AT Commands ==
649 -
650 -
651 651  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
652 652  
653 653  AT+<CMD>?  : Help on <CMD>
... ... @@ -658,9 +658,8 @@
658 658  
659 659  AT+<CMD>=?  : Get the value
660 660  
502 +**General Commands**      
661 661  
662 -(% style="color:#037691" %)**General Commands**      
663 -
664 664  AT  : Attention       
665 665  
666 666  AT?  : Short Help     
... ... @@ -683,37 +683,30 @@
683 683  
684 684  AT+SERVADDR  : Server Address
685 685  
686 -AT+APN     : Get or set the APN
687 -
688 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
689 -
690 -AT+DNSCFG  : Get or Set DNS Server
691 -
692 -AT+GETSENSORVALUE   : Returns the current sensor measurement
693 -
694 694  AT+TR      : Get or Set record time"
695 695  
528 +
696 696  AT+NOUD      : Get or Set the number of data to be uploaded
697 697  
531 +
698 698  AT+CDP     : Read or Clear cached data
699 699  
534 +
700 700  AT+TEMPALARM      : Get or Set alarm of temp
701 701  
702 702  AT+HUMALARM     : Get or Set alarm of PH
703 703  
704 704  
705 -(% style="color:#037691" %)**COAP Management**      
540 +**COAP Management**      
706 706  
707 707  AT+URI            : Resource parameters
708 708  
544 +**UDP Management**
709 709  
710 -(% style="color:#037691" %)**UDP Management**
711 -
712 712  AT+CFM          : Upload confirmation mode (only valid for UDP)
713 713  
548 +**MQTT Management**
714 714  
715 -(% style="color:#037691" %)**MQTT Management**
716 -
717 717  AT+CLIENT               : Get or Set MQTT client
718 718  
719 719  AT+UNAME  : Get or Set MQTT Username
... ... @@ -724,62 +724,43 @@
724 724  
725 725  AT+SUBTOPIC  : Get or Set MQTT subscription topic
726 726  
560 +**Information**          
727 727  
728 -(% style="color:#037691" %)**Information**          
729 -
730 730  AT+FDR  : Factory Data Reset
731 731  
732 732  AT+PWORD  : Serial Access Password
733 733  
566 +**​5.  FAQ**
734 734  
568 +**5.1 ​ How to Upgrade Firmware**
735 735  
736 -= ​5.  FAQ =
737 -
738 -
739 -== 5.1 ​ How to Upgrade Firmware ==
740 -
741 -
742 742  User can upgrade the firmware for 1) bug fix, 2) new feature release.
743 743  
744 744  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
745 745  
574 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
746 746  
747 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
576 +**6.  Trouble Shooting**
748 748  
578 +**6.1  ​Connection problem when uploading firmware**
749 749  
750 -
751 -= 6.  Trouble Shooting =
752 -
753 -
754 -== 6.1  ​Connection problem when uploading firmware ==
755 -
756 -
757 757  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
758 758  
582 +**6.2  AT Command input doesn't work**
759 759  
584 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
760 760  
761 -== 6. AT Command input doesn't work ==
586 +**7. Order Info**
762 762  
763 -
764 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
765 -
766 -
767 -
768 -= 7. ​ Order Info =
769 -
770 -
771 771  Part Number**:** NLMS01
772 772  
590 +**8.  Packing Info**
773 773  
592 +**Package Includes**:
774 774  
775 -= 8.  Packing Info =
776 -
777 -
778 -(% style="color:#037691" %)**Package Includes:**
779 -
780 780  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
781 781  
782 -(% style="color:#037691" %)**Dimension and weight**:
596 +**Dimension and weight**:
783 783  
784 784  * Device Size: cm
785 785  * Device Weight: g
... ... @@ -787,12 +787,11 @@
787 787  * Weight / pcs : g
788 788  
789 789  
604 +**9.  Support**
790 790  
791 -
792 -= 9.  Support =
793 -
794 -
795 795  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
796 796  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
797 797  
798 798  ​
610 +
611 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0