<
From version < 33.4 >
edited by Xiaoling
on 2022/09/13 09:41
To version < 26.1 >
edited by David Huang
on 2022/09/07 17:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,68 +1,77 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220907171221-1.jpeg]]
1 +[[image:image-20220907171221-1.jpeg]]​
3 3  
4 -​
5 5  
6 -{{toc/}}
7 7  
5 += 1. Introduction =
8 8  
7 +== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
9 9  
10 -= 1.  Introduction =
11 11  
10 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
12 12  
13 -== 1.1 What is NLMS01 Leaf Moisture Sensor ==
12 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
14 14  
15 -
16 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 -
18 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 -
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
15 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
16 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
17 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
24 24  
25 -
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 -
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
23 +== ​1.2 Features ==
31 31  
25 +* (((
26 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
27 +)))
28 +* (((
29 +Monitor Leaf moisture
30 +)))
32 32  
33 -== ​1.2  Features ==
32 +* (((
33 + Monitor Leaf temperature
34 +)))
34 34  
35 -
36 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 -* Monitor Leaf moisture
38 -* Monitor Leaf temperature
39 -* Moisture and Temperature alarm function
40 -* Monitor Battery Level
41 -* Uplink on periodically
42 -* Downlink to change configure
43 -* IP66 Waterproof Enclosure
44 -* IP67 rate for the Sensor Probe
45 -* Ultra-Low Power consumption
46 -* AT Commands to change parameters
47 -* Micro SIM card slot for NB-IoT SIM
48 -* 8500mAh Battery for long term use
49 -
50 -(((
51 -
52 -
53 -
54 -
36 +* (((
37 +Moisture and Temperature alarm function
55 55  )))
39 +* (((
40 +Monitor Battery Level
41 +)))
42 +* (((
43 +Uplink on periodically
44 +)))
45 +* (((
46 +Downlink to change configure
47 +)))
48 +* (((
49 +IP66 Waterproof Enclosure
50 +)))
51 +* (((
52 +IP67 rate for the Sensor Probe
53 +)))
54 +* (((
55 +Ultra-Low Power consumption
56 +)))
57 +* (((
58 +AT Commands to change parameters
59 +)))
60 +* (((
61 +Micro SIM card slot for NB-IoT SIM
62 +)))
63 +* (((
64 +8500mAh Battery for long term use
65 +)))
56 56  
57 57  == 1.3  Specification ==
58 58  
69 +**Common DC Characteristics:**
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
61 -
62 62  * Supply Voltage: 2.1v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**NB-IoT Spec:**
74 +**NB-IoT Spec:**
66 66  
67 67  * - B1 @H-FDD: 2100MHz
68 68  * - B3 @H-FDD: 1800MHz
... ... @@ -71,14 +71,11 @@
71 71  * - B20 @H-FDD: 800MHz
72 72  * - B28 @H-FDD: 700MHz
73 73  
83 +== 1.4 Probe Specification ==
74 74  
75 75  
86 +**Leaf Moisture: percentage of water drop over total leaf surface**
76 76  
77 -== 1.4  Probe Specification ==
78 -
79 -
80 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
81 -
82 82  * Range 0-100%
83 83  * Resolution: 0.1%
84 84  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -85,10 +85,8 @@
85 85  * IP67 Protection
86 86  * Length: 3.5 meters
87 87  
94 +**Leaf Temperature:**
88 88  
89 -
90 -(% style="color:#037691" %)**Leaf Temperature:**
91 -
92 92  * Range -50℃~80℃
93 93  * Resolution: 0.1℃
94 94  * Accuracy: <±0.5℃(-10℃~70℃),<±1.0℃ (others)
... ... @@ -95,46 +95,30 @@
95 95  * IP67 Protection
96 96  * Length: 3.5 meters
97 97  
102 +== 1.5 ​Applications ==
98 98  
99 -
100 -
101 -== 1.5 ​ Applications ==
102 -
103 -
104 104  * Smart Agriculture
105 105  
106 +== 1.6 Pin mapping and power on ==
106 106  
107 -
108 -
109 -== 1.6  Pin mapping and power on ==
110 -
111 -
112 112  ​[[image:image-20220907171221-4.png]]
113 113  
114 114  **~ **
115 115  
116 -
117 117  = 2.  Use NLMS01 to communicate with IoT Server =
118 118  
119 -
120 120  == 2.1  How it works ==
121 121  
122 -
123 123  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
124 124  
125 125  The diagram below shows the working flow in default firmware of NLMS01:
126 126  
127 -
128 128  [[image:image-20220907171221-5.png]]
129 129  
122 +== **2.2 ​ Configure the NLMS01** ==
130 130  
124 +**2.2.1 Test Requirement**
131 131  
132 -== 2.2 ​ Configure the NLMS01 ==
133 -
134 -
135 -=== 2.2.1 Test Requirement ===
136 -
137 -
138 138  To use NLMS01 in your city, make sure meet below requirements:
139 139  
140 140  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -141,118 +141,90 @@
141 141  * The local NB-IoT network used the band that NLMS01 supports.
142 142  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
143 143  
144 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
132 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
145 145  
146 -
147 147  [[image:image-20220907171221-6.png]] ​
148 148  
136 +**2.2.2 Insert SIM card**
149 149  
150 -
151 -=== 2.2.2 Insert SIM card ===
152 -
153 -
154 154  Insert the NB-IoT Card get from your provider.
155 155  
156 156  User need to take out the NB-IoT module and insert the SIM card like below:
157 157  
158 -
159 159  [[image:image-20220907171221-7.png]] ​
160 160  
144 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
161 161  
146 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
162 162  
163 -=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
148 +**Connection:**
164 164  
150 + USB TTL GND <~-~-~-~-> GND
165 165  
166 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 + USB TTL TXD <~-~-~-~-> UART_RXD
167 167  
154 + USB TTL RXD <~-~-~-~-> UART_TXD
168 168  
169 -(% style="color:blue" %)**Connection:**
170 -
171 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
172 -
173 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
174 -
175 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
176 -
177 -
178 178  In the PC, use below serial tool settings:
179 179  
180 -* Baud:  (% style="color:green" %)**9600**
181 -* Data bits:**  (% style="color:green" %)8(%%)**
182 -* Stop bits:  (% style="color:green" %)**1**
183 -* Parity:  (% style="color:green" %)**None**
184 -* Flow Control: (% style="color:green" %)**None**
158 +* Baud:  **9600**
159 +* Data bits:** 8**
160 +* Stop bits: **1**
161 +* Parity:  **None**
162 +* Flow Control: **None**
185 185  
186 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
164 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
187 187  
188 -​[[image:image-20220913090720-1.png]]
166 +​[[image:image-20220907171221-8.png]]
189 189  
168 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
190 190  
191 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
170 +**2.2.4 Use CoAP protocol to uplink data**
192 192  
172 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
193 193  
174 +**Use below commands:**
194 194  
195 -=== 2.2.4 Use CoAP protocol to uplink data ===
176 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
177 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
178 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
196 196  
197 -
198 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
199 -
200 -
201 -(% style="color:blue" %)**Use below commands:**
202 -
203 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
204 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
205 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
206 -
207 207  For parameter description, please refer to AT command set
208 208  
209 209  [[image:image-20220907171221-9.png]]
210 210  
184 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
211 211  
212 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
213 -
214 214  [[image:image-20220907171221-10.png]] ​
215 215  
188 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
216 216  
217 -
218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
219 -
220 -
221 221  This feature is supported since firmware version v1.0.1
222 222  
223 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
224 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
225 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
192 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
193 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
194 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
226 226  
227 -
228 -
229 229  ​ [[image:image-20220907171221-11.png]]
230 230  
231 -
232 232  [[image:image-20220907171221-12.png]]
233 233  
234 234  ​
235 235  
202 +**2.2.6 Use MQTT protocol to uplink data**
236 236  
237 -=== 2.2.6 Use MQTT protocol to uplink data ===
238 -
239 -
240 240  This feature is supported since firmware version v110
241 241  
242 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
243 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
244 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
245 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
246 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
247 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
248 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
206 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
207 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
208 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
209 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
210 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
211 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
212 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
249 249  
250 -
251 -
252 252  ​ [[image:image-20220907171221-13.png]]
253 253  
254 -
255 -
256 256  [[image:image-20220907171221-14.png]]
257 257  
258 258  ​
... ... @@ -259,108 +259,81 @@
259 259  
260 260  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 261  
222 +**2.2.7 Use TCP protocol to uplink data**
262 262  
263 -
264 -=== 2.2.7 Use TCP protocol to uplink data ===
265 -
266 -
267 267  This feature is supported since firmware version v110
268 268  
269 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
270 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
226 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
227 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
271 271  
272 -
273 -
274 274  ​ [[image:image-20220907171221-15.png]]
275 275  
276 -
277 -
278 278  [[image:image-20220907171221-16.png]]
279 279  
280 280  ​
281 281  
235 +**2.2.8 Change Update Interval**
282 282  
283 -=== 2.2.8 Change Update Interval ===
284 -
285 -
286 286  User can use below command to change the **uplink interval**.
287 287  
288 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
239 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
289 289  
241 +**NOTE:**
290 290  
243 +**~1. By default, the device will send an uplink message every 2 hour.**
291 291  
292 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
293 -
294 -
295 -
296 296  == 2.3  Uplink Payload ==
297 297  
298 -
299 299  In this mode, uplink payload includes 87 bytes in total by default.
300 300  
301 301  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
302 302  
251 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
252 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
303 303  
304 -(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
305 -|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
306 -|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
307 -
308 308  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
309 309  
310 -
311 311  [[image:image-20220907171221-17.png]]
312 312  
313 -
314 314  The payload is ASCII string, representative same HEX:
315 315  
316 -0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
260 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
317 317  
318 -* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
319 -* (% style="color:blue" %)Version: 0x0064=100=1.0.0
320 -* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
321 -* (% style="color:red" %)Singal: 0x17 = 23
322 -* (% style="color:blue" %)Mod: 0x01 = 1
323 -* (% style="color:green" %)Interrupt: 0x00= 0
262 +* Device ID: 0xf868411056754138 = f868411056754138
263 +* Version: 0x0064=100=1.0.0
264 +
265 +* BAT: 0x0c78 = 3192 mV = 3.192V
266 +* Singal: 0x17 = 23
267 +* Mod: 0x01 = 1
268 +* Interrupt: 0x00= 0
324 324  * Leaf moisture: 0x0225= 549 = 54.9%
325 325  * Leaf Temperature:0x010B =267=26.7 °C
326 -* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
271 +* Time stamp : 0x6315537b =1662342011
327 327  * Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
328 -* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
273 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
329 329  
330 -
331 -
332 -
333 333  == 2.4  Payload Explanation and Sensor Interface ==
334 334  
277 +**2.4.1  Device ID**
335 335  
336 -=== 2.4.1  Device ID ===
337 -
338 -
339 339  By default, the Device ID equal to the last 15 bits of IMEI.
340 340  
341 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
281 +User can use **AT+DEUI** to set Device ID
342 342  
283 +**Example:**
343 343  
344 -(% style="color:blue" %)**Example**:
345 -
346 346  AT+DEUI=868411056754138
347 347  
348 348  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
349 349  
289 +**2.4.2  Version Info**
350 350  
351 -
352 -=== 2.4.2  Version Info ===
353 -
354 -
355 355  Specify the software version: 0x64=100, means firmware version 1.00.
356 356  
357 357  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
358 358  
295 +**2.4.3  Battery Info**
359 359  
360 -
361 -=== 2.4.3  Battery Info ===
362 -
363 -
364 364  Check the battery voltage for NLMS01.
365 365  
366 366  Ex1: 0x0B45 = 2885mV
... ... @@ -367,16 +367,12 @@
367 367  
368 368  Ex2: 0x0B49 = 2889mV
369 369  
303 +**2.4.4  Signal Strength**
370 370  
371 -
372 -=== 2.4.4  Signal Strength ===
373 -
374 -
375 375  NB-IoT Network signal Strength.
376 376  
307 +**Ex1: 0x1d = 29**
377 377  
378 -(% style="color:blue" %)**Ex1: 0x1d = 29**
379 -
380 380  **0**  -113dBm or less
381 381  
382 382  **1**  -111dBm
... ... @@ -387,49 +387,37 @@
387 387  
388 388  **99**    Not known or not detectable
389 389  
319 +**2.4.5  Leaf** moisture
390 390  
321 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
391 391  
392 -=== 2.4.5  Leaf moisture ===
323 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
393 393  
325 +**0229(H) = 549(D) /100 = 54.9.**
394 394  
395 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
327 +**2.4.6  Leaf Temperature**
396 396  
397 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
329 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
398 398  
399 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
331 +**Example**:
400 400  
333 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
401 401  
335 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
402 402  
403 -=== 2.4.6  Leaf Temperature ===
337 +**2.4.7  Timestamp**
404 404  
405 -
406 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
407 -
408 -(% style="color:blue" %)**Example**:
409 -
410 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
411 -
412 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
413 -
414 -
415 -
416 -=== 2.4.7  Timestamp ===
417 -
418 -
419 419  Time stamp : 0x6315537b =1662342011
420 420  
421 421  Convert Unix timestamp to time 2022-9-5 9:40:11.
422 422  
343 +**2.4.8  Digital Interrupt**
423 423  
345 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
424 424  
425 -=== 2.4.8  Digital Interrupt ===
426 -
427 -
428 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
429 -
430 430  The command is:
431 431  
432 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
349 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
433 433  
434 434  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
435 435  
... ... @@ -439,34 +439,27 @@
439 439  
440 440  0x(01): Interrupt Uplink Packet.
441 441  
359 +**2.4.9  ​+5V Output**
442 442  
443 -
444 -=== 2.4.9  ​+5V Output ===
445 -
446 -
447 447  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
448 448  
449 449  The 5V output time can be controlled by AT Command.
450 450  
451 -(% style="color:blue" %)**AT+5VT=1000**
365 +**AT+5VT=1000**
452 452  
453 453  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
454 454  
455 455  
456 -
457 457  == 2.5  Downlink Payload ==
458 458  
459 -
460 460  By default, NLMS01 prints the downlink payload to console port.
461 461  
462 462  [[image:image-20220907171221-18.png]] ​
463 463  
376 +**Examples:**
464 464  
465 -(% style="color:blue" %)**Examples:**
378 +* **Set TDC**
466 466  
467 -
468 -* (% style="color:#037691" %)**Set TDC**
469 -
470 470  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
471 471  
472 472  Payload:    01 00 00 1E    TDC=30S
... ... @@ -473,23 +473,16 @@
473 473  
474 474  Payload:    01 00 00 3C    TDC=60S
475 475  
386 +* **Reset**
476 476  
477 -
478 -* (% style="color:#037691" %)**Reset**
479 -
480 480  If payload = 0x04FF, it will reset the NLMS01
481 481  
390 +* **INTMOD**
482 482  
483 -
484 -* (% style="color:#037691" %)**INTMOD**
485 -
486 486  Downlink Payload: 06000003, Set AT+INTMOD=3
487 487  
488 -
489 -
490 490  == 2.6  ​LED Indicator ==
491 491  
492 -
493 493  The NLMS01 has an internal LED which is to show the status of different state.
494 494  
495 495  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -497,26 +497,18 @@
497 497  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
498 498  * For each uplink probe, LED will be on for 500ms.
499 499  
403 +== 2.7 Installation ==
500 500  
501 -
502 -
503 -== 2.7  Installation ==
504 -
505 -
506 506  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
507 507  
508 -
509 509  [[image:image-20220907171221-19.png]]
510 510  
409 +== 2.8 Moisture and Temperature alarm function ==
511 511  
411 +➢ AT Command:
512 512  
513 -== 2.8  Moisture and Temperature alarm function ==
413 +AT+ HUMALARM =min,max
514 514  
515 -
516 -(% style="color:blue" %)**➢ AT Command:**
517 -
518 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
519 -
520 520  ² When min=0, and max≠0, Alarm higher than max
521 521  
522 522  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -523,9 +523,8 @@
523 523  
524 524  ² When min≠0 and max≠0, Alarm higher than max or lower than min
525 525  
421 +Example:
526 526  
527 -(% style="color:blue" %)**Example:**
528 -
529 529  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
530 530  
531 531  AT+ TEMPALARM=min,max
... ... @@ -536,53 +536,41 @@
536 536  
537 537  ² When min≠0 and max≠0, Alarm higher than max or lower than min
538 538  
433 +Example:
539 539  
540 -(% style="color:blue" %)**Example:**
541 -
542 542  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
543 543  
544 544  
438 +== 2.9 Set the number of data to be uploaded and the recording time ==
545 545  
546 -== 2.9  Set the number of data to be uploaded and the recording time ==
440 + AT Command:
547 547  
442 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
548 548  
549 -(% style="color:blue" %)**➢ AT Command:**
444 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
550 550  
551 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
552 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
446 +== 2.10 Read or Clear cached data ==
553 553  
448 +➢ AT Command:
554 554  
450 +AT+CDP    ~/~/ Read cached data
555 555  
556 -
557 -== 2.10  Read or Clear cached data ==
558 -
559 -
560 -(% style="color:blue" %)**➢ AT Command:**
561 -
562 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
563 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
564 -
565 -
566 -
567 567  [[image:image-20220907171221-20.png]]
568 568  
569 569  
455 +AT+CDP=0    ~/~/ Clear cached data
570 570  
457 +
571 571  == 2.11  ​Firmware Change Log ==
572 572  
573 -
574 574  Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
575 575  
576 576  Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
577 577  
578 -
579 -
580 580  == 2.12  ​Battery Analysis ==
581 581  
466 +**2.12.1  ​Battery Type**
582 582  
583 -=== 2.12.1  ​Battery Type ===
584 -
585 -
586 586  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
587 587  
588 588  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -595,18 +595,15 @@
595 595  
596 596  [[image:image-20220907171221-21.png]] ​
597 597  
480 +**2.12.2  Power consumption Analyze**
598 598  
599 -
600 -=== 2.12.2  Power consumption Analyze ===
601 -
602 -
603 603  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
604 604  
605 605  Instruction to use as below:
606 606  
607 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
486 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
608 608  
609 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
488 +**Step 2: ** Open it and choose
610 610  
611 611  * Product Model
612 612  * Uplink Interval
... ... @@ -616,39 +616,26 @@
616 616  
617 617  [[image:image-20220907171221-22.jpeg]] ​
618 618  
498 +**2.12.3  ​Battery Note**
619 619  
620 -=== 2.12.3  ​Battery Note ===
621 -
622 -
623 623  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
624 624  
502 +**2.12.4  Replace the battery**
625 625  
626 -
627 -=== 2.12.4  Replace the battery ===
628 -
629 -
630 630  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
631 631  
632 -
633 -
634 634  = 3. ​ Access NB-IoT Module =
635 635  
636 -
637 637  Users can directly access the AT command set of the NB-IoT module.
638 638  
639 639  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
640 640  
641 -
642 642  [[image:image-20220907171221-23.png]] ​
643 643  
644 -
645 -
646 646  = 4.  Using the AT Commands =
647 647  
516 +**4.1  Access AT Commands**
648 648  
649 -== 4.1  Access AT Commands ==
650 -
651 -
652 652  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
653 653  
654 654  AT+<CMD>?  : Help on <CMD>
... ... @@ -659,9 +659,8 @@
659 659  
660 660  AT+<CMD>=?  : Get the value
661 661  
528 +**General Commands**      
662 662  
663 -(% style="color:#037691" %)**General Commands**      
664 -
665 665  AT  : Attention       
666 666  
667 667  AT?  : Short Help     
... ... @@ -684,37 +684,30 @@
684 684  
685 685  AT+SERVADDR  : Server Address
686 686  
687 -AT+APN     : Get or set the APN
688 -
689 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
690 -
691 -AT+DNSCFG  : Get or Set DNS Server
692 -
693 -AT+GETSENSORVALUE   : Returns the current sensor measurement
694 -
695 695  AT+TR      : Get or Set record time"
696 696  
554 +
697 697  AT+NOUD      : Get or Set the number of data to be uploaded
698 698  
557 +
699 699  AT+CDP     : Read or Clear cached data
700 700  
560 +
701 701  AT+TEMPALARM      : Get or Set alarm of temp
702 702  
703 703  AT+HUMALARM     : Get or Set alarm of PH
704 704  
705 705  
706 -(% style="color:#037691" %)**COAP Management**      
566 +**COAP Management**      
707 707  
708 708  AT+URI            : Resource parameters
709 709  
570 +**UDP Management**
710 710  
711 -(% style="color:#037691" %)**UDP Management**
712 -
713 713  AT+CFM          : Upload confirmation mode (only valid for UDP)
714 714  
574 +**MQTT Management**
715 715  
716 -(% style="color:#037691" %)**MQTT Management**
717 -
718 718  AT+CLIENT               : Get or Set MQTT client
719 719  
720 720  AT+UNAME  : Get or Set MQTT Username
... ... @@ -725,62 +725,43 @@
725 725  
726 726  AT+SUBTOPIC  : Get or Set MQTT subscription topic
727 727  
586 +**Information**          
728 728  
729 -(% style="color:#037691" %)**Information**          
730 -
731 731  AT+FDR  : Factory Data Reset
732 732  
733 733  AT+PWORD  : Serial Access Password
734 734  
735 -
736 -
737 737  = ​5.  FAQ =
738 738  
594 +**5.1 ​ How to Upgrade Firmware**
739 739  
740 -== 5.1 ​ How to Upgrade Firmware ==
741 -
742 -
743 743  User can upgrade the firmware for 1) bug fix, 2) new feature release.
744 744  
745 745  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
746 746  
600 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
747 747  
748 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
749 -
750 -
751 -
752 752  = 6.  Trouble Shooting =
753 753  
604 +**6.1  ​Connection problem when uploading firmware**
754 754  
755 -== 6.1  ​Connection problem when uploading firmware ==
756 -
757 -
758 758  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
759 759  
608 +**6.2  AT Command input doesn't work**
760 760  
610 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
761 761  
762 -== 6.2  AT Command input doesn't work ==
763 -
764 -
765 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
766 -
767 -
768 -
769 769  = 7. ​ Order Info =
770 770  
771 -
772 772  Part Number**:** NLMS01
773 773  
774 -
775 -
776 776  = 8.  Packing Info =
777 777  
618 +**Package Includes**:
778 778  
779 -(% style="color:#037691" %)**Package Includes:**
780 -
781 781  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
782 782  
783 -(% style="color:#037691" %)**Dimension and weight**:
622 +**Dimension and weight**:
784 784  
785 785  * Device Size: cm
786 786  * Device Weight: g
... ... @@ -787,12 +787,11 @@
787 787  * Package Size / pcs : cm
788 788  * Weight / pcs : g
789 789  
790 -
791 -
792 792  = 9.  Support =
793 793  
794 -
795 795  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
796 796  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
797 797  
798 798  ​
635 +
636 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0