Last modified by Mengting Qiu on 2024/04/02 16:54

From version 33.1
edited by Xiaoling
on 2022/09/13 09:07
Change comment: Uploaded new attachment "image-20220913090720-1.png", version {1}
To version 43.1
edited by Mengting Qiu
on 2024/04/02 16:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -1,8 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220907171221-1.jpeg]]
3 3  
4 4  ​
5 5  
8 +
9 +
10 +
11 +
12 +
6 6  {{toc/}}
7 7  
8 8  
... ... @@ -9,20 +9,24 @@
9 9  
10 10  = 1.  Introduction =
11 11  
12 -
13 13  == 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14 14  
15 15  
22 +(((
16 16  The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 17  
18 18  NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 19  
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 -\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 -\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
24 24  
29 +NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
25 25  
31 +NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
32 +
33 +To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
34 +)))
35 +
36 +
26 26  ​[[image:image-20220907171221-2.png]]
27 27  
28 28  
... ... @@ -29,7 +29,6 @@
29 29  ​ [[image:image-20220907171221-3.png]]
30 30  
31 31  
32 -
33 33  == ​1.2  Features ==
34 34  
35 35  
... ... @@ -50,7 +50,6 @@
50 50  (((
51 51  
52 52  
53 -
54 54  
55 55  )))
56 56  
... ... @@ -62,23 +62,20 @@
62 62  * Supply Voltage: 2.1v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -
66 66  (% style="color:#037691" %)**NB-IoT Spec:**
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
76 +* B1 @H-FDD: 2100MHz
77 +* B3 @H-FDD: 1800MHz
78 +* B8 @H-FDD: 900MHz
79 +* B5 @H-FDD: 850MHz
80 +* B20 @H-FDD: 800MHz
81 +* B28 @H-FDD: 700MHz
74 74  
83 +== 1.4  Probe Specification ==
75 75  
76 76  
77 -== 1.4 Probe Specification ==
86 +(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
78 78  
79 -
80 -**Leaf Moisture: percentage of water drop over total leaf surface**
81 -
82 82  * Range 0-100%
83 83  * Resolution: 0.1%
84 84  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -85,7 +85,7 @@
85 85  * IP67 Protection
86 86  * Length: 3.5 meters
87 87  
88 -**Leaf Temperature:**
94 +(% style="color:#037691" %)**Leaf Temperature:**
89 89  
90 90  * Range -50℃~80℃
91 91  * Resolution: 0.1℃
... ... @@ -93,12 +93,14 @@
93 93  * IP67 Protection
94 94  * Length: 3.5 meters
95 95  
96 -== 1.5 ​Applications ==
102 +== 1.5 ​ Applications ==
97 97  
104 +
98 98  * Smart Agriculture
99 99  
100 -== 1.6 Pin mapping and power on ==
107 +== 1.6  Pin mapping and power on ==
101 101  
109 +
102 102  ​[[image:image-20220907171221-4.png]]
103 103  
104 104  **~ **
... ... @@ -107,16 +107,20 @@
107 107  
108 108  == 2.1  How it works ==
109 109  
118 +
110 110  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
111 111  
112 112  The diagram below shows the working flow in default firmware of NLMS01:
113 113  
123 +
114 114  [[image:image-20220907171221-5.png]]
115 115  
126 +
116 116  == 2.2 ​ Configure the NLMS01 ==
117 117  
118 118  === 2.2.1 Test Requirement ===
119 119  
131 +
120 120  To use NLMS01 in your city, make sure meet below requirements:
121 121  
122 122  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -123,72 +123,87 @@
123 123  * The local NB-IoT network used the band that NLMS01 supports.
124 124  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
125 125  
126 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
127 127  
140 +
128 128  [[image:image-20220907171221-6.png]] ​
129 129  
143 +
130 130  === 2.2.2 Insert SIM card ===
131 131  
146 +
132 132  Insert the NB-IoT Card get from your provider.
133 133  
134 134  User need to take out the NB-IoT module and insert the SIM card like below:
135 135  
151 +
136 136  [[image:image-20220907171221-7.png]] ​
137 137  
154 +
138 138  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
139 139  
140 -User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
141 141  
142 -**Connection:**
158 +User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
143 143  
144 - USB TTL GND <~-~-~-~-> GND
145 145  
146 - USB TTL TXD <~-~-~-~-> UART_RXD
161 +(% style="color:blue" %)**Connection:**
147 147  
148 - USB TTL RXD <~-~-~-~-> UART_TXD
163 +**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
149 149  
165 +**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
166 +
167 +**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
168 +
169 +
150 150  In the PC, use below serial tool settings:
151 151  
152 -* Baud:  **9600**
153 -* Data bits:** 8**
154 -* Stop bits: **1**
155 -* Parity:  **None**
156 -* Flow Control: **None**
172 +* Baud:  (% style="color:green" %)**9600**
173 +* Data bits:**  (% style="color:green" %)8(%%)**
174 +* Stop bits:  (% style="color:green" %)**1**
175 +* Parity:  (% style="color:green" %)**None**
176 +* Flow Control: (% style="color:green" %)**None**
157 157  
158 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
178 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
159 159  
160 -​[[image:image-20220907171221-8.png]]
180 +​[[image:image-20220913090720-1.png]]
161 161  
162 -**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
163 163  
183 +(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
184 +
185 +
164 164  === 2.2.4 Use CoAP protocol to uplink data ===
165 165  
166 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
167 167  
168 -**Use below commands:**
189 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
169 169  
170 -* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
171 -* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
172 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
173 173  
192 +(% style="color:blue" %)**Use below commands:**
193 +
194 +* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
195 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
196 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
197 +
174 174  For parameter description, please refer to AT command set
175 175  
176 176  [[image:image-20220907171221-9.png]]
177 177  
178 -After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
179 179  
203 +After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
204 +
180 180  [[image:image-20220907171221-10.png]] ​
181 181  
207 +
182 182  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
183 183  
210 +
184 184  This feature is supported since firmware version v1.0.1
185 185  
186 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
187 -* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
188 -* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
213 +* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
214 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
189 189  
190 190  ​ [[image:image-20220907171221-11.png]]
191 191  
218 +
192 192  [[image:image-20220907171221-12.png]]
193 193  
194 194  ​
... ... @@ -195,18 +195,21 @@
195 195  
196 196  === 2.2.6 Use MQTT protocol to uplink data ===
197 197  
225 +
198 198  This feature is supported since firmware version v110
199 199  
200 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
201 -* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
202 -* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
203 -* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
204 -* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
205 -* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
206 -* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
228 +* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
229 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
230 +* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
231 +* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
232 +* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
233 +* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
234 +* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
207 207  
208 208  ​ [[image:image-20220907171221-13.png]]
209 209  
238 +
239 +
210 210  [[image:image-20220907171221-14.png]]
211 211  
212 212  ​
... ... @@ -213,79 +213,107 @@
213 213  
214 214  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
215 215  
246 +
216 216  === 2.2.7 Use TCP protocol to uplink data ===
217 217  
249 +
218 218  This feature is supported since firmware version v110
219 219  
220 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
221 -* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
252 +* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
253 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
222 222  
223 223  ​ [[image:image-20220907171221-15.png]]
224 224  
257 +
258 +
225 225  [[image:image-20220907171221-16.png]]
226 226  
227 227  ​
228 228  
263 +
229 229  === 2.2.8 Change Update Interval ===
230 230  
266 +
231 231  User can use below command to change the **uplink interval**.
232 232  
233 -* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
269 +* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
234 234  
235 -**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
271 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
236 236  
237 237  
238 238  == 2.3  Uplink Payload ==
239 239  
276 +
240 240  In this mode, uplink payload includes 87 bytes in total by default.
241 241  
242 242  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
243 243  
244 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
245 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
281 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
282 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**8**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**|(% style="background-color:#4f81bd; color:white; width:30px" %)**1**|(% style="background-color:#4f81bd; color:white; width:40px" %)**1**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**4**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:37px" %)**4**
283 +|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
246 246  
247 247  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
248 248  
287 +
249 249  [[image:image-20220907171221-17.png]]
250 250  
290 +
251 251  The payload is ASCII string, representative same HEX:
252 252  
253 -0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
293 +**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
254 254  
255 -* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
256 -* (% style="color:blue" %)Version: 0x0064=100=1.0.0
257 -* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
258 -* (% style="color:red" %)Singal: 0x17 = 23
259 -* (% style="color:blue" %)Mod: 0x01 = 1
260 -* (% style="color:green" %)Interrupt: 0x00= 0
261 -* Leaf moisture: 0x0225= 549 = 54.9%
262 -* Leaf Temperature:0x010B =267=26.7 °C
263 -* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
264 -* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
265 -* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
295 +where:
266 266  
297 +* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
298 +
299 +* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
300 +
301 +* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
302 +
303 +* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
304 +
305 +* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
306 +
307 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
308 +
309 +* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
310 +
311 +* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
312 +
313 +* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
314 +
315 +* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
316 +
317 +* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
318 +
267 267  == 2.4  Payload Explanation and Sensor Interface ==
268 268  
269 269  === 2.4.1  Device ID ===
270 270  
323 +
271 271  By default, the Device ID equal to the last 15 bits of IMEI.
272 272  
273 -User can use **AT+DEUI** to set Device ID
326 +User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
274 274  
275 -**Example:**
276 276  
329 +(% style="color:blue" %)**Example**:
330 +
277 277  AT+DEUI=868411056754138
278 278  
279 279  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
280 280  
335 +
281 281  === 2.4.2  Version Info ===
282 282  
338 +
283 283  Specify the software version: 0x64=100, means firmware version 1.00.
284 284  
285 285  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
286 286  
343 +
287 287  === 2.4.3  Battery Info ===
288 288  
346 +
289 289  Check the battery voltage for NLMS01.
290 290  
291 291  Ex1: 0x0B45 = 2885mV
... ... @@ -292,12 +292,15 @@
292 292  
293 293  Ex2: 0x0B49 = 2889mV
294 294  
353 +
295 295  === 2.4.4  Signal Strength ===
296 296  
356 +
297 297  NB-IoT Network signal Strength.
298 298  
299 -**Ex1: 0x1d = 29**
300 300  
360 +(% style="color:blue" %)**Ex1: 0x1d = 29**
361 +
301 301  **0**  -113dBm or less
302 302  
303 303  **1**  -111dBm
... ... @@ -308,37 +308,45 @@
308 308  
309 309  **99**    Not known or not detectable
310 310  
372 +
311 311  === 2.4.5  Leaf moisture ===
312 312  
313 -Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
314 314  
315 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
376 +Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
316 316  
317 -**0229(H) = 549(D) /100 = 54.9.**
378 +For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
318 318  
380 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
381 +
382 +
319 319  === 2.4.6  Leaf Temperature ===
320 320  
321 -Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
322 322  
323 -**Example**:
386 +Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
324 324  
325 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
388 +(% style="color:blue" %)**Example**:
326 326  
327 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
390 +If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
328 328  
392 +If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
393 +
394 +
329 329  === 2.4.7  Timestamp ===
330 330  
397 +
331 331  Time stamp : 0x6315537b =1662342011
332 332  
333 333  Convert Unix timestamp to time 2022-9-5 9:40:11.
334 334  
402 +
335 335  === 2.4.8  Digital Interrupt ===
336 336  
337 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
338 338  
406 +Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
407 +
339 339  The command is:
340 340  
341 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
410 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
342 342  
343 343  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
344 344  
... ... @@ -348,13 +348,15 @@
348 348  
349 349  0x(01): Interrupt Uplink Packet.
350 350  
420 +
351 351  === 2.4.9  ​+5V Output ===
352 352  
423 +
353 353  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
354 354  
355 355  The 5V output time can be controlled by AT Command.
356 356  
357 -**AT+5VT=1000**
428 +(% style="color:blue" %)**AT+5VT=1000**
358 358  
359 359  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
360 360  
... ... @@ -361,14 +361,22 @@
361 361  
362 362  == 2.5  Downlink Payload ==
363 363  
435 +
364 364  By default, NLMS01 prints the downlink payload to console port.
365 365  
366 -[[image:image-20220907171221-18.png]] ​
438 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
439 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
440 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
441 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
442 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
367 367  
368 -**Examples:**
444 +
369 369  
370 -* **Set TDC**
446 +(% style="color:blue" %)**Examples:**
371 371  
448 +
449 +* (% style="color:#037691" %)**Set TDC**
450 +
372 372  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
373 373  
374 374  Payload:    01 00 00 1E    TDC=30S
... ... @@ -375,16 +375,22 @@
375 375  
376 376  Payload:    01 00 00 3C    TDC=60S
377 377  
378 -* **Reset**
379 379  
458 +
459 +* (% style="color:#037691" %)**Reset**
460 +
380 380  If payload = 0x04FF, it will reset the NLMS01
381 381  
382 -* **INTMOD**
383 383  
464 +
465 +* (% style="color:#037691" %)**INTMOD**
466 +
384 384  Downlink Payload: 06000003, Set AT+INTMOD=3
385 385  
469 +
386 386  == 2.6  ​LED Indicator ==
387 387  
472 +
388 388  The NLMS01 has an internal LED which is to show the status of different state.
389 389  
390 390  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -392,18 +392,22 @@
392 392  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
393 393  * For each uplink probe, LED will be on for 500ms.
394 394  
395 -== 2.7 Installation ==
480 +== 2.7  Installation ==
396 396  
482 +
397 397  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
398 398  
485 +
399 399  [[image:image-20220907171221-19.png]]
400 400  
401 -== 2.8 Moisture and Temperature alarm function ==
402 402  
403 - AT Command:
489 +== 2.8  Moisture and Temperature alarm function ==
404 404  
405 -AT+ HUMALARM =min,max
406 406  
492 +(% style="color:blue" %)**➢ AT Command:**
493 +
494 +(% style="color:#037691" %)**AT+ HUMALARM =min,max**
495 +
407 407  ² When min=0, and max≠0, Alarm higher than max
408 408  
409 409  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -410,8 +410,9 @@
410 410  
411 411  ² When min≠0 and max≠0, Alarm higher than max or lower than min
412 412  
413 -Example:
414 414  
503 +(% style="color:blue" %)**Example:**
504 +
415 415  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
416 416  
417 417  AT+ TEMPALARM=min,max
... ... @@ -422,201 +422,206 @@
422 422  
423 423  ² When min≠0 and max≠0, Alarm higher than max or lower than min
424 424  
425 -Example:
426 426  
516 +(% style="color:blue" %)**Example:**
517 +
427 427  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
428 428  
429 429  
430 -== 2.9 Set the number of data to be uploaded and the recording time ==
521 +== 2.9  Set the number of data to be uploaded and the recording time ==
431 431  
432 -➢ AT Command:
433 433  
434 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
524 +(% style="color:blue" %)**➢ AT Command:**
435 435  
436 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
526 +* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
527 +* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
437 437  
438 -== 2.10 Read or Clear cached data ==
529 + The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
439 439  
440 -➢ AT Command:
531 +[[image:image-20221009001002-1.png||height="706" width="982"]]
441 441  
442 -AT+CDP    ~/~/ Read cached data
443 443  
444 -[[image:image-20220907171221-20.png]]
534 +== 2.10  Read or Clear cached data ==
445 445  
446 446  
447 -AT+CDP=0    ~/~/ Clear cached data
537 +(% style="color:blue" %)**➢ AT Command:**
448 448  
539 +* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
540 +* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
449 449  
450 -== 2.11  ​Firmware Change Log ==
542 +[[image:image-20220907171221-20.png]]
451 451  
452 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
453 453  
454 -Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
545 +== 2.11  Firmware Change Log ==
455 455  
456 -== 2.12  ​Battery Analysis ==
457 457  
458 -=== 2.12.1  ​Battery Type ===
548 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
459 459  
460 -The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
550 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
461 461  
462 -The battery is designed to last for several years depends on the actually use environment and update interval. 
463 463  
464 -The battery related documents as below:
553 +== 2.12 Battery & Power Consumption ==
465 465  
466 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
467 -* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
468 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
469 469  
470 -[[image:image-20220907171221-21.png]]
556 +NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
471 471  
472 -=== 2.12.2  Power consumption Analyze ===
558 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
473 473  
474 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
475 475  
476 -Instruction to use as below:
477 -
478 -**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
479 -
480 -**Step 2: ** Open it and choose
481 -
482 -* Product Model
483 -* Uplink Interval
484 -* Working Mode
485 -
486 -And the Life expectation in difference case will be shown on the right.
487 -
488 -[[image:image-20220907171221-22.jpeg]] ​
489 -
490 -=== 2.12.3  ​Battery Note ===
491 -
492 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
493 -
494 -=== 2.12.4  Replace the battery ===
495 -
496 -The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
497 -
498 498  = 3. ​ Access NB-IoT Module =
499 499  
563 +
500 500  Users can directly access the AT command set of the NB-IoT module.
501 501  
502 502  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
503 503  
568 +
504 504  [[image:image-20220907171221-23.png]] ​
505 505  
571 +
506 506  = 4.  Using the AT Commands =
507 507  
508 508  == 4.1  Access AT Commands ==
509 509  
576 +
510 510  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
511 511  
512 -AT+<CMD>?  : Help on <CMD>
579 +AT+<CMD>?  :  Help on <CMD>
513 513  
514 -AT+<CMD>         : Run <CMD>
581 +AT+<CMD>  Run <CMD>
515 515  
516 -AT+<CMD>=<value> : Set the value
583 +AT+<CMD>=<value>:  Set the value
517 517  
518 -AT+<CMD>=?  : Get the value
585 +AT+<CMD>=?  Get the value
519 519  
520 -**General Commands**      
521 521  
522 -AT  : Attention       
588 +(% style="color:#037691" %)**General Commands**      
523 523  
524 -AT?  : Short Help     
590 +AT  Attention       
525 525  
526 -ATZ  : MCU Reset    
592 +AT?  Short Help     
527 527  
528 -AT+TDC  : Application Data Transmission Interval
594 +ATZ  :  MCU Reset    
529 529  
530 -AT+CFG  : Print all configurations
596 +AT+TDC  :  Application Data Transmission Interval
531 531  
532 -AT+CFGMOD           : Working mode selection
598 +AT+CFG  :  Print all configurations
533 533  
534 -AT+INTMOD            : Set the trigger interrupt mode
600 +AT+CFGMOD  :  Working mode selection
535 535  
536 -AT+5V : Set extend the time of 5V power  
602 +AT+INTMOD  Set the trigger interrupt mode
537 537  
538 -AT+PRO  : Choose agreement
604 +AT+5VT  Set extend the time of 5V power  
539 539  
540 -AT+RXDL  : Extend the sending and receiving time
606 +AT+PRO :  Choose agreement
541 541  
542 -AT+SERVADDR  : Server Address
608 +AT+RXDL:  Extend the sending and receiving time
543 543  
544 -AT+APN     : Get or set the APN
610 +AT+SERVADDR :  Server Address
545 545  
546 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
612 +AT+APN :  Get or set the APN
547 547  
548 -AT+DNSCF : Get or Set DNS Server
614 +AT+FBAND :  Get or Set whether to automatically modify the frequency band
549 549  
616 +AT+DNSCFG : Get or Set DNS Server
617 +
550 550  AT+GETSENSORVALUE   : Returns the current sensor measurement
551 551  
552 -AT+TR      : Get or Set record time"
620 +AT+TR :  Get or Set record time"
553 553  
554 -AT+NOUD      : Get or Set the number of data to be uploaded
622 +AT+NOUD :  Get or Set the number of data to be uploaded
555 555  
556 -AT+CDP     : Read or Clear cached data
624 +AT+CDP :  Read or Clear cached data
557 557  
558 -AT+TEMPALARM      : Get or Set alarm of temp
626 +AT+TEMPALARM :  Get or Set alarm of temp
559 559  
560 -AT+HUMALARM     : Get or Set alarm of PH
628 +AT+HUMALARM :  Get or Set alarm of humidity
561 561  
562 562  
563 -**COAP Management**      
631 +(% style="color:#037691" %)**COAP Management**      
564 564  
565 -AT+URI            : Resource parameters
633 +AT+URI :  Resource parameters
566 566  
567 -**UDP Management**
568 568  
569 -AT+CFM          : Upload confirmation mode (only valid for UDP)
636 +(% style="color:#037691" %)**MQTT Management**
570 570  
571 -**MQTT Management**
638 +AT+CLIENT  :  Get or Set MQTT client
572 572  
573 -AT+CLIENT               : Get or Set MQTT client
640 +AT+UNAME  : Get or Set MQTT Username
574 574  
575 -AT+UNAME  : Get or Set MQTT Username
642 +AT+PWD  Get or Set MQTT password
576 576  
577 -AT+PWD                  : Get or Set MQTT password
644 +AT+PUBTOPIC  :  Get or Set MQTT publish topic
578 578  
579 -AT+PUBTOPIC  : Get or Set MQTT publish topic
646 +AT+SUBTOPIC :  Get or Set MQTT subscription topic
580 580  
581 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
582 582  
583 -**Information**          
649 +(% style="color:#037691" %)**Information**          
584 584  
585 -AT+FDR  : Factory Data Reset
651 +AT+FDR :  Factory Data Reset
586 586  
587 -AT+PWORD  : Serial Access Password
653 +AT+PWORD :  Serial Access Password
588 588  
655 +
589 589  = ​5.  FAQ =
590 590  
591 591  == 5.1 ​ How to Upgrade Firmware ==
592 592  
660 +
593 593  User can upgrade the firmware for 1) bug fix, 2) new feature release.
594 594  
595 595  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
596 596  
597 -**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
598 598  
666 +(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
667 +
668 +
599 599  = 6.  Trouble Shooting =
600 600  
601 601  == 6.1  ​Connection problem when uploading firmware ==
602 602  
673 +
603 603  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
604 604  
676 +
605 605  == 6.2  AT Command input doesn't work ==
606 606  
607 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
608 608  
680 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
681 +
682 +
683 +== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
684 +
685 +
686 +This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
687 +
688 +
689 +== 6.4 Possible reasons why the device is unresponsive: ==
690 +
691 +
692 +​1. Check whether the battery voltage is lower than 2.8V
693 +2. Check whether the jumper of the device is correctly connected
694 +
695 +[[image:image-20240330175629-2.png]]
696 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
697 +​
698 +
699 +[[image:image-20240330175554-1.png]]
700 +
609 609  = 7. ​ Order Info =
610 610  
703 +
611 611  Part Number**:** NLMS01
612 612  
706 +
613 613  = 8.  Packing Info =
614 614  
615 -**Package Includes**:
616 616  
710 +(% style="color:#037691" %)**Package Includes:**
711 +
617 617  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
618 618  
619 -**Dimension and weight**:
714 +(% style="color:#037691" %)**Dimension and weight**:
620 620  
621 621  * Device Size: cm
622 622  * Device Weight: g
... ... @@ -625,6 +625,7 @@
625 625  
626 626  = 9.  Support =
627 627  
723 +
628 628  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
629 629  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
630 630  
image-20221009001002-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +282.9 KB
Content
image-20240330175554-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content
image-20240330175629-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content