<
From version < 32.1 >
edited by David Huang
on 2022/09/08 09:49
To version < 38.21 >
edited by Xiaoling
on 2023/05/24 10:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -7,88 +7,76 @@
7 7  
8 8  
9 9  
10 -= 1. Introduction =
10 += 1.  Introduction =
11 11  
12 -== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
12 +== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
13 13  
14 14  
15 -The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
15 +(((
16 +The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
16 16  
17 -NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
18 +NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
18 18  
19 19  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
20 -\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
21 -\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
22 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
23 23  
22 +NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
23 +
24 +NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
25 +
26 +To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
27 +)))
28 +
29 +
24 24  ​[[image:image-20220907171221-2.png]]
25 25  
32 +
26 26  ​ [[image:image-20220907171221-3.png]]
27 27  
28 -== ​1.2 Features ==
29 29  
30 -* (((
31 -NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
32 -)))
33 -* (((
34 -Monitor Leaf moisture
35 -)))
36 +== ​1.2  Features ==
36 36  
37 -* (((
38 - Monitor Leaf temperature
39 -)))
40 40  
41 -* (((
42 -Moisture and Temperature alarm function
39 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
40 +* Monitor Leaf moisture
41 +* Monitor Leaf temperature
42 +* Moisture and Temperature alarm function
43 +* Monitor Battery Level
44 +* Uplink on periodically
45 +* Downlink to change configure
46 +* IP66 Waterproof Enclosure
47 +* IP67 rate for the Sensor Probe
48 +* Ultra-Low Power consumption
49 +* AT Commands to change parameters
50 +* Micro SIM card slot for NB-IoT SIM
51 +* 8500mAh Battery for long term use
52 +
53 +(((
54 +
55 +
56 +
43 43  )))
44 -* (((
45 -Monitor Battery Level
46 -)))
47 -* (((
48 -Uplink on periodically
49 -)))
50 -* (((
51 -Downlink to change configure
52 -)))
53 -* (((
54 -IP66 Waterproof Enclosure
55 -)))
56 -* (((
57 -IP67 rate for the Sensor Probe
58 -)))
59 -* (((
60 -Ultra-Low Power consumption
61 -)))
62 -* (((
63 -AT Commands to change parameters
64 -)))
65 -* (((
66 -Micro SIM card slot for NB-IoT SIM
67 -)))
68 -* (((
69 -8500mAh Battery for long term use
70 -)))
71 71  
72 72  == 1.3  Specification ==
73 73  
74 -**Common DC Characteristics:**
75 75  
62 +(% style="color:#037691" %)**Common DC Characteristics:**
63 +
76 76  * Supply Voltage: 2.1v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -**NB-IoT Spec:**
67 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -* - B1 @H-FDD: 2100MHz
82 -* - B3 @H-FDD: 1800MHz
83 -* - B8 @H-FDD: 900MHz
84 -* - B5 @H-FDD: 850MHz
85 -* - B20 @H-FDD: 800MHz
86 -* - B28 @H-FDD: 700MHz
69 +* B1 @H-FDD: 2100MHz
70 +* B3 @H-FDD: 1800MHz
71 +* B8 @H-FDD: 900MHz
72 +* B5 @H-FDD: 850MHz
73 +* B20 @H-FDD: 800MHz
74 +* B28 @H-FDD: 700MHz
87 87  
88 -== 1.4 Probe Specification ==
76 +== 1.4  Probe Specification ==
89 89  
90 90  
91 -**Leaf Moisture: percentage of water drop over total leaf surface**
79 +(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
92 92  
93 93  * Range 0-100%
94 94  * Resolution: 0.1%
... ... @@ -96,7 +96,7 @@
96 96  * IP67 Protection
97 97  * Length: 3.5 meters
98 98  
99 -**Leaf Temperature:**
87 +(% style="color:#037691" %)**Leaf Temperature:**
100 100  
101 101  * Range -50℃~80℃
102 102  * Resolution: 0.1℃
... ... @@ -104,12 +104,14 @@
104 104  * IP67 Protection
105 105  * Length: 3.5 meters
106 106  
107 -== 1.5 ​Applications ==
95 +== 1.5 ​ Applications ==
108 108  
97 +
109 109  * Smart Agriculture
110 110  
111 -== 1.6 Pin mapping and power on ==
100 +== 1.6  Pin mapping and power on ==
112 112  
102 +
113 113  ​[[image:image-20220907171221-4.png]]
114 114  
115 115  **~ **
... ... @@ -118,16 +118,20 @@
118 118  
119 119  == 2.1  How it works ==
120 120  
111 +
121 121  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
122 122  
123 123  The diagram below shows the working flow in default firmware of NLMS01:
124 124  
116 +
125 125  [[image:image-20220907171221-5.png]]
126 126  
119 +
127 127  == 2.2 ​ Configure the NLMS01 ==
128 128  
129 129  === 2.2.1 Test Requirement ===
130 130  
124 +
131 131  To use NLMS01 in your city, make sure meet below requirements:
132 132  
133 133  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -134,72 +134,88 @@
134 134  * The local NB-IoT network used the band that NLMS01 supports.
135 135  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
131 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
138 138  
133 +
139 139  [[image:image-20220907171221-6.png]] ​
140 140  
136 +
141 141  === 2.2.2 Insert SIM card ===
142 142  
139 +
143 143  Insert the NB-IoT Card get from your provider.
144 144  
145 145  User need to take out the NB-IoT module and insert the SIM card like below:
146 146  
144 +
147 147  [[image:image-20220907171221-7.png]] ​
148 148  
147 +
149 149  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
150 150  
151 -User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 152  
153 -**Connection:**
151 +User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
154 154  
155 - USB TTL GND <~-~-~-~-> GND
156 156  
157 - USB TTL TXD <~-~-~-~-> UART_RXD
154 +(% style="color:blue" %)**Connection:**
158 158  
159 - USB TTL RXD <~-~-~-~-> UART_TXD
156 +**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
160 160  
158 +**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
159 +
160 +**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
161 +
162 +
161 161  In the PC, use below serial tool settings:
162 162  
163 -* Baud:  **9600**
164 -* Data bits:** 8**
165 -* Stop bits: **1**
166 -* Parity:  **None**
167 -* Flow Control: **None**
165 +* Baud:  (% style="color:green" %)**9600**
166 +* Data bits:**  (% style="color:green" %)8(%%)**
167 +* Stop bits:  (% style="color:green" %)**1**
168 +* Parity:  (% style="color:green" %)**None**
169 +* Flow Control: (% style="color:green" %)**None**
168 168  
169 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
171 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
170 170  
171 -​[[image:image-20220907171221-8.png]]
173 +​[[image:image-20220913090720-1.png]]
172 172  
173 -**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
174 174  
176 +(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
177 +
178 +
175 175  === 2.2.4 Use CoAP protocol to uplink data ===
176 176  
177 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
178 178  
179 -**Use below commands:**
182 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
180 180  
181 -* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
182 -* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
183 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
184 184  
185 +(% style="color:blue" %)**Use below commands:**
186 +
187 +* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
188 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
189 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
190 +
185 185  For parameter description, please refer to AT command set
186 186  
187 187  [[image:image-20220907171221-9.png]]
188 188  
189 -After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
190 190  
196 +After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
197 +
191 191  [[image:image-20220907171221-10.png]] ​
192 192  
200 +
193 193  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
194 194  
203 +
195 195  This feature is supported since firmware version v1.0.1
196 196  
197 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
198 -* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
199 -* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
206 +* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
207 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
208 +* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
200 200  
201 201  ​ [[image:image-20220907171221-11.png]]
202 202  
212 +
203 203  [[image:image-20220907171221-12.png]]
204 204  
205 205  ​
... ... @@ -206,18 +206,21 @@
206 206  
207 207  === 2.2.6 Use MQTT protocol to uplink data ===
208 208  
219 +
209 209  This feature is supported since firmware version v110
210 210  
211 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
212 -* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
213 -* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
214 -* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
215 -* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
216 -* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
217 -* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
222 +* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
223 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
224 +* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
225 +* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
226 +* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
227 +* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
228 +* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
218 218  
219 219  ​ [[image:image-20220907171221-13.png]]
220 220  
232 +
233 +
221 221  [[image:image-20220907171221-14.png]]
222 222  
223 223  ​
... ... @@ -224,79 +224,108 @@
224 224  
225 225  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
226 226  
240 +
227 227  === 2.2.7 Use TCP protocol to uplink data ===
228 228  
243 +
229 229  This feature is supported since firmware version v110
230 230  
231 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
232 -* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
246 +* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
247 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
233 233  
234 234  ​ [[image:image-20220907171221-15.png]]
235 235  
251 +
252 +
236 236  [[image:image-20220907171221-16.png]]
237 237  
238 238  ​
239 239  
257 +
240 240  === 2.2.8 Change Update Interval ===
241 241  
260 +
242 242  User can use below command to change the **uplink interval**.
243 243  
244 -* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
263 +* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
245 245  
246 -**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
265 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
247 247  
248 248  
249 249  == 2.3  Uplink Payload ==
250 250  
270 +
251 251  In this mode, uplink payload includes 87 bytes in total by default.
252 252  
253 253  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
254 254  
255 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
256 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
257 257  
276 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
277 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**8**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**4**
278 +|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
279 +
258 258  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
259 259  
282 +
260 260  [[image:image-20220907171221-17.png]]
261 261  
285 +
262 262  The payload is ASCII string, representative same HEX:
263 263  
264 -0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
288 +**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
265 265  
266 -* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
267 -* (% style="color:blue" %)Version: 0x0064=100=1.0.0
268 -* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
269 -* (% style="color:red" %)Singal: 0x17 = 23
270 -* (% style="color:blue" %)Mod: 0x01 = 1
271 -* (% style="color:green" %)Interrupt: 0x00= 0
272 -* Leaf moisture: 0x0225= 549 = 54.9%
273 -* Leaf Temperature:0x010B =267=26.7 °C
274 -* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
275 -* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
276 -* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
290 +where:
277 277  
292 +* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
293 +
294 +* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
295 +
296 +* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
297 +
298 +* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
299 +
300 +* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
301 +
302 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
303 +
304 +* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
305 +
306 +* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
307 +
308 +* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
309 +
310 +* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
311 +
312 +* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
313 +
278 278  == 2.4  Payload Explanation and Sensor Interface ==
279 279  
280 280  === 2.4.1  Device ID ===
281 281  
318 +
282 282  By default, the Device ID equal to the last 15 bits of IMEI.
283 283  
284 -User can use **AT+DEUI** to set Device ID
321 +User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
285 285  
286 -**Example:**
287 287  
324 +(% style="color:blue" %)**Example**:
325 +
288 288  AT+DEUI=868411056754138
289 289  
290 290  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
291 291  
330 +
292 292  === 2.4.2  Version Info ===
293 293  
333 +
294 294  Specify the software version: 0x64=100, means firmware version 1.00.
295 295  
296 296  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
297 297  
338 +
298 298  === 2.4.3  Battery Info ===
299 299  
341 +
300 300  Check the battery voltage for NLMS01.
301 301  
302 302  Ex1: 0x0B45 = 2885mV
... ... @@ -303,12 +303,15 @@
303 303  
304 304  Ex2: 0x0B49 = 2889mV
305 305  
348 +
306 306  === 2.4.4  Signal Strength ===
307 307  
351 +
308 308  NB-IoT Network signal Strength.
309 309  
310 -**Ex1: 0x1d = 29**
311 311  
355 +(% style="color:blue" %)**Ex1: 0x1d = 29**
356 +
312 312  **0**  -113dBm or less
313 313  
314 314  **1**  -111dBm
... ... @@ -319,37 +319,45 @@
319 319  
320 320  **99**    Not known or not detectable
321 321  
367 +
322 322  === 2.4.5  Leaf moisture ===
323 323  
324 -Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
325 325  
326 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
371 +Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
327 327  
328 -**0229(H) = 549(D) /100 = 54.9.**
373 +For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
329 329  
375 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
376 +
377 +
330 330  === 2.4.6  Leaf Temperature ===
331 331  
332 -Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
333 333  
334 -**Example**:
381 +Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
335 335  
336 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
383 +(% style="color:blue" %)**Example**:
337 337  
338 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
385 +If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
339 339  
387 +If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
388 +
389 +
340 340  === 2.4.7  Timestamp ===
341 341  
392 +
342 342  Time stamp : 0x6315537b =1662342011
343 343  
344 344  Convert Unix timestamp to time 2022-9-5 9:40:11.
345 345  
397 +
346 346  === 2.4.8  Digital Interrupt ===
347 347  
348 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
349 349  
401 +Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
402 +
350 350  The command is:
351 351  
352 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
405 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
353 353  
354 354  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
355 355  
... ... @@ -359,13 +359,15 @@
359 359  
360 360  0x(01): Interrupt Uplink Packet.
361 361  
415 +
362 362  === 2.4.9  ​+5V Output ===
363 363  
418 +
364 364  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
365 365  
366 366  The 5V output time can be controlled by AT Command.
367 367  
368 -**AT+5VT=1000**
423 +(% style="color:blue" %)**AT+5VT=1000**
369 369  
370 370  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
371 371  
... ... @@ -372,14 +372,22 @@
372 372  
373 373  == 2.5  Downlink Payload ==
374 374  
430 +
375 375  By default, NLMS01 prints the downlink payload to console port.
376 376  
377 -[[image:image-20220907171221-18.png]] ​
433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
434 +|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
435 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
436 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
437 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
378 378  
379 -**Examples:**
439 +
380 380  
381 -* **Set TDC**
441 +(% style="color:blue" %)**Examples:**
382 382  
443 +
444 +* (% style="color:#037691" %)**Set TDC**
445 +
383 383  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
384 384  
385 385  Payload:    01 00 00 1E    TDC=30S
... ... @@ -386,16 +386,22 @@
386 386  
387 387  Payload:    01 00 00 3C    TDC=60S
388 388  
389 -* **Reset**
390 390  
453 +
454 +* (% style="color:#037691" %)**Reset**
455 +
391 391  If payload = 0x04FF, it will reset the NLMS01
392 392  
393 -* **INTMOD**
394 394  
459 +
460 +* (% style="color:#037691" %)**INTMOD**
461 +
395 395  Downlink Payload: 06000003, Set AT+INTMOD=3
396 396  
464 +
397 397  == 2.6  ​LED Indicator ==
398 398  
467 +
399 399  The NLMS01 has an internal LED which is to show the status of different state.
400 400  
401 401  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -403,18 +403,22 @@
403 403  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
404 404  * For each uplink probe, LED will be on for 500ms.
405 405  
406 -== 2.7 Installation ==
475 +== 2.7  Installation ==
407 407  
477 +
408 408  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
409 409  
480 +
410 410  [[image:image-20220907171221-19.png]]
411 411  
412 -== 2.8 Moisture and Temperature alarm function ==
413 413  
414 - AT Command:
484 +== 2.8  Moisture and Temperature alarm function ==
415 415  
416 -AT+ HUMALARM =min,max
417 417  
487 +(% style="color:blue" %)**➢ AT Command:**
488 +
489 +(% style="color:#037691" %)**AT+ HUMALARM =min,max**
490 +
418 418  ² When min=0, and max≠0, Alarm higher than max
419 419  
420 420  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -421,8 +421,9 @@
421 421  
422 422  ² When min≠0 and max≠0, Alarm higher than max or lower than min
423 423  
424 -Example:
425 425  
498 +(% style="color:blue" %)**Example:**
499 +
426 426  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
427 427  
428 428  AT+ TEMPALARM=min,max
... ... @@ -433,201 +433,199 @@
433 433  
434 434  ² When min≠0 and max≠0, Alarm higher than max or lower than min
435 435  
436 -Example:
437 437  
511 +(% style="color:blue" %)**Example:**
512 +
438 438  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
439 439  
440 440  
441 -== 2.9 Set the number of data to be uploaded and the recording time ==
516 +== 2.9  Set the number of data to be uploaded and the recording time ==
442 442  
443 -➢ AT Command:
444 444  
445 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
519 +(% style="color:blue" %)**➢ AT Command:**
446 446  
447 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
521 +* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
522 +* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
448 448  
449 -== 2.10 Read or Clear cached data ==
524 + The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
450 450  
451 -➢ AT Command:
526 +[[image:image-20221009001002-1.png||height="706" width="982"]]
452 452  
453 -AT+CDP    ~/~/ Read cached data
454 454  
455 -[[image:image-20220907171221-20.png]]
529 +== 2.10  Read or Clear cached data ==
456 456  
457 457  
458 -AT+CDP=0    ~/~/ Clear cached data
532 +(% style="color:blue" %)**➢ AT Command:**
459 459  
534 +* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
535 +* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
460 460  
461 -== 2.11  ​Firmware Change Log ==
537 +[[image:image-20220907171221-20.png]]
462 462  
463 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
464 464  
465 -Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
540 +== 2.11  Firmware Change Log ==
466 466  
467 -== 2.12  ​Battery Analysis ==
468 468  
469 -=== 2.12.1  ​Battery Type ===
543 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
470 470  
471 -The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
545 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
472 472  
473 -The battery is designed to last for several years depends on the actually use environment and update interval. 
474 474  
475 -The battery related documents as below:
548 +== 2.12 Battery & Power Consumption ==
476 476  
477 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
478 -* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
479 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
480 480  
481 -[[image:image-20220907171221-21.png]]
551 +NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
482 482  
483 -=== 2.12.2  Power consumption Analyze ===
553 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
484 484  
485 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
486 486  
487 -Instruction to use as below:
556 += 3. ​ Access NB-IoT Module =
488 488  
489 -**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
490 490  
491 -**Step 2: ** Open it and choose
559 +Users can directly access the AT command set of the NB-IoT module.
492 492  
493 -* Product Model
494 -* Uplink Interval
495 -* Working Mode
561 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
496 496  
497 -And the Life expectation in difference case will be shown on the right.
498 498  
499 -[[image:image-20220907171221-22.jpeg]] ​
564 +[[image:image-20220907171221-23.png]] ​
500 500  
501 -=== 2.12.3  ​Battery Note ===
502 502  
503 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
567 += 4.  Using the AT Commands =
504 504  
505 -=== 2.12.4  Replace the battery ===
569 +== 4.1  Access AT Commands ==
506 506  
507 -The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
508 508  
509 -= 3. Access NB-IoT Module =
572 +See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
510 510  
511 -Users can directly access the AT command set of the NB-IoT module.
574 +AT+<CMD>?  Help on <CMD>
512 512  
513 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
576 +AT+<CMD>  Run <CMD>
514 514  
515 -[[image:image-20220907171221-23.png]]
578 +AT+<CMD>=<value>:  Set the value
516 516  
517 -= 4.  Using the AT Commands =
580 +AT+<CMD>= :  Get the value
518 518  
519 -== 4.1  Access AT Commands ==
520 520  
521 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
583 +(% style="color:#037691" %)**General Commands**      
522 522  
523 -AT+<CMD>?  : Help on <CMD>
585 +AT  Attention       
524 524  
525 -AT+<CMD>         : Run <CMD>
587 +AT?  :  Short Help     
526 526  
527 -AT+<CMD>=<value> : Set the value
589 +AT MCU Reset    
528 528  
529 -AT+<CMD>=?  : Get the value
591 +AT+TDC  :  Application Data Transmission Interval
530 530  
531 -**General Commands**      
593 +AT+CFG  :  Print all configurations
532 532  
533 -AT  : Attention       
595 +AT+CFGMOD  Working mode selection
534 534  
535 -AT?  : Short Help     
597 +AT+INTMOD  Set the trigger interrupt mode
536 536  
537 -ATZ  : MCU Reset    
599 +AT+5VT  Set extend the time of 5V power  
538 538  
539 -AT+TDC  : Application Data Transmission Interval
601 +AT+PRO :  Choose agreement
540 540  
541 -AT+CFG  : Print all configurations
603 +AT+RXDL:  Extend the sending and receiving time
542 542  
543 -AT+CFGMOD           : Working mode selection
605 +AT+SERVADDR :  Server Address
544 544  
545 -AT+INTMOD            : Set the trigger interrupt mode
607 +AT+APN :  Get or set the APN
546 546  
547 -AT+5VT  : Set extend the time of 5V power  
609 +AT+FBAND :  Get or Set whether to automatically modify the frequency band
548 548  
549 -AT+PRO  : Choose agreement
611 +AT+DNSCFG : Get or Set DNS Server
550 550  
551 -AT+RXD : Extend the sending and receiving time
613 +AT+GETSENSORVALUE   : Returns the current sensor measurement
552 552  
553 -AT+SERVADDR  : Server Address
615 +AT+TR :  Get or Set record time"
554 554  
555 -AT+AP    : Get or set the APN
617 +AT+NOUD :  Get or Set the number of data to be uploaded
556 556  
557 -AT+FBAN  : Get or Set whether to automatically modify the frequency band
619 +AT+CDP :  Read or Clear cached data
558 558  
559 -AT+DNSCFG  : Get or Set DNS Server
621 +AT+TEMPALARM :  Get or Set alarm of temp
560 560  
561 -AT+GETSENSORVALUE   : Returns the current sensor measurement
623 +AT+HUMALARM :  Get or Set alarm of humidity
562 562  
563 -AT+TR      : Get or Set record time"
564 564  
565 -AT+NOUD      : Get or Set the number of data to be uploaded
626 +(% style="color:#037691" %)**COAP Management**      
566 566  
567 -AT+CDP     : Read or Clear cached data
628 +AT+URI :  Resource parameters
568 568  
569 -AT+TEMPALARM      : Get or Set alarm of temp
570 570  
571 -AT+HUMALARM     : Get or Set alarm of PH
631 +(% style="color:#037691" %)**UDP Management**
572 572  
633 +AT+CFM :  Upload confirmation mode (only valid for UDP)
573 573  
574 -**COAP Management**      
575 575  
576 -AT+URI            : Resource parameters
636 +(% style="color:#037691" %)**MQTT Management**
577 577  
578 -**UDP Management**
638 +AT+CLIENT  :  Get or Set MQTT client
579 579  
580 -AT+CF         : Upload confirmation mode (only valid for UDP)
640 +AT+UNAME  : Get or Set MQTT Username
581 581  
582 -**MQTT Management**
642 +AT+PWD  :  Get or Set MQTT password
583 583  
584 -AT+CLIEN              : Get or Set MQTT client
644 +AT+PUBTOPIC  :  Get or Set MQTT publish topic
585 585  
586 -AT+UNAME  : Get or Set MQTT Username
646 +AT+SUBTOPIC :  Get or Set MQTT subscription topic
587 587  
588 -AT+PWD                  : Get or Set MQTT password
589 589  
590 -AT+PUBTOPIC  : Get or Set MQTT publish topic
649 +(% style="color:#037691" %)**Information**          
591 591  
592 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
651 +AT+FDR :  Factory Data Reset
593 593  
594 -**Information**          
653 +AT+PWORD :  Serial Access Password
595 595  
596 -AT+FDR  : Factory Data Reset
597 597  
598 -AT+PWORD  : Serial Access Password
599 -
600 600  = ​5.  FAQ =
601 601  
602 602  == 5.1 ​ How to Upgrade Firmware ==
603 603  
660 +
604 604  User can upgrade the firmware for 1) bug fix, 2) new feature release.
605 605  
606 606  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
607 607  
608 -**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
609 609  
666 +(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
667 +
668 +
610 610  = 6.  Trouble Shooting =
611 611  
612 612  == 6.1  ​Connection problem when uploading firmware ==
613 613  
673 +
614 614  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
615 615  
676 +
616 616  == 6.2  AT Command input doesn't work ==
617 617  
618 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
619 619  
680 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
681 +
682 +
683 +== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
684 +
685 +
686 +This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
687 +
688 +
620 620  = 7. ​ Order Info =
621 621  
691 +
622 622  Part Number**:** NLMS01
623 623  
694 +
624 624  = 8.  Packing Info =
625 625  
626 -**Package Includes**:
627 627  
698 +(% style="color:#037691" %)**Package Includes:**
699 +
628 628  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
629 629  
630 -**Dimension and weight**:
702 +(% style="color:#037691" %)**Dimension and weight**:
631 631  
632 632  * Device Size: cm
633 633  * Device Weight: g
... ... @@ -636,6 +636,7 @@
636 636  
637 637  = 9.  Support =
638 638  
711 +
639 639  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
640 640  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
641 641  
image-20220913090720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0