<
From version < 29.1 >
edited by Edwin Chen
on 2022/09/08 00:20
To version < 38.24 >
edited by Xiaoling
on 2024/01/18 14:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,95 +1,91 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220907171221-1.jpeg]]
3 3  
4 4  ​
5 5  
8 +
9 +
10 +
11 +
12 +
6 6  {{toc/}}
7 7  
8 8  
9 9  
10 -= 1. Introduction =
17 += 1.  Introduction =
11 11  
12 -== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
19 +== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
13 13  
14 14  
15 -The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
22 +(((
23 +The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
16 16  
17 -NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
25 +NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
18 18  
19 19  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
20 -\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
21 -\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
22 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
23 23  
29 +NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
30 +
31 +NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
32 +
33 +To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
34 +)))
35 +
36 +
24 24  ​[[image:image-20220907171221-2.png]]
25 25  
39 +
26 26  ​ [[image:image-20220907171221-3.png]]
27 27  
28 -== ​1.2 Features ==
29 29  
30 -* (((
31 -NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
32 -)))
33 -* (((
34 -Monitor Leaf moisture
35 -)))
43 +== ​1.2  Features ==
36 36  
37 -* (((
38 - Monitor Leaf temperature
39 -)))
40 40  
41 -* (((
42 -Moisture and Temperature alarm function
46 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 +* Monitor Leaf moisture
48 +* Monitor Leaf temperature
49 +* Moisture and Temperature alarm function
50 +* Monitor Battery Level
51 +* Uplink on periodically
52 +* Downlink to change configure
53 +* IP66 Waterproof Enclosure
54 +* IP67 rate for the Sensor Probe
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
59 +
60 +(((
61 +
62 +
63 +
43 43  )))
44 -* (((
45 -Monitor Battery Level
46 -)))
47 -* (((
48 -Uplink on periodically
49 -)))
50 -* (((
51 -Downlink to change configure
52 -)))
53 -* (((
54 -IP66 Waterproof Enclosure
55 -)))
56 -* (((
57 -IP67 rate for the Sensor Probe
58 -)))
59 -* (((
60 -Ultra-Low Power consumption
61 -)))
62 -* (((
63 -AT Commands to change parameters
64 -)))
65 -* (((
66 -Micro SIM card slot for NB-IoT SIM
67 -)))
68 -* (((
69 -8500mAh Battery for long term use
70 -)))
71 71  
72 72  == 1.3  Specification ==
73 73  
74 -**Common DC Characteristics:**
75 75  
69 +(% style="color:#037691" %)**Common DC Characteristics:**
70 +
76 76  * Supply Voltage: 2.1v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -**NB-IoT Spec:**
74 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -* - B1 @H-FDD: 2100MHz
82 -* - B3 @H-FDD: 1800MHz
83 -* - B8 @H-FDD: 900MHz
84 -* - B5 @H-FDD: 850MHz
85 -* - B20 @H-FDD: 800MHz
86 -* - B28 @H-FDD: 700MHz
76 +* B1 @H-FDD: 2100MHz
77 +* B3 @H-FDD: 1800MHz
78 +* B8 @H-FDD: 900MHz
79 +* B5 @H-FDD: 850MHz
80 +* B20 @H-FDD: 800MHz
81 +* B28 @H-FDD: 700MHz
87 87  
88 -== 1.4 Probe Specification ==
89 89  
84 +== 1.4  Probe Specification ==
90 90  
91 -**Leaf Moisture: percentage of water drop over total leaf surface**
92 92  
87 +(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
88 +
93 93  * Range 0-100%
94 94  * Resolution: 0.1%
95 95  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -96,7 +96,7 @@
96 96  * IP67 Protection
97 97  * Length: 3.5 meters
98 98  
99 -**Leaf Temperature:**
95 +(% style="color:#037691" %)**Leaf Temperature:**
100 100  
101 101  * Range -50℃~80℃
102 102  * Resolution: 0.1℃
... ... @@ -104,12 +104,16 @@
104 104  * IP67 Protection
105 105  * Length: 3.5 meters
106 106  
107 -== 1.5 ​Applications ==
108 108  
104 +== 1.5 ​ Applications ==
105 +
106 +
109 109  * Smart Agriculture
110 110  
111 -== 1.6 Pin mapping and power on ==
112 112  
110 +== 1.6  Pin mapping and power on ==
111 +
112 +
113 113  ​[[image:image-20220907171221-4.png]]
114 114  
115 115  **~ **
... ... @@ -118,16 +118,20 @@
118 118  
119 119  == 2.1  How it works ==
120 120  
121 +
121 121  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
122 122  
123 123  The diagram below shows the working flow in default firmware of NLMS01:
124 124  
126 +
125 125  [[image:image-20220907171221-5.png]]
126 126  
129 +
127 127  == 2.2 ​ Configure the NLMS01 ==
128 128  
129 129  === 2.2.1 Test Requirement ===
130 130  
134 +
131 131  To use NLMS01 in your city, make sure meet below requirements:
132 132  
133 133  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -134,72 +134,88 @@
134 134  * The local NB-IoT network used the band that NLMS01 supports.
135 135  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
138 138  
143 +
139 139  [[image:image-20220907171221-6.png]] ​
140 140  
146 +
141 141  === 2.2.2 Insert SIM card ===
142 142  
149 +
143 143  Insert the NB-IoT Card get from your provider.
144 144  
145 145  User need to take out the NB-IoT module and insert the SIM card like below:
146 146  
154 +
147 147  [[image:image-20220907171221-7.png]] ​
148 148  
157 +
149 149  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
150 150  
151 -User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 152  
153 -**Connection:**
161 +User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
154 154  
155 - USB TTL GND <~-~-~-~-> GND
156 156  
157 - USB TTL TXD <~-~-~-~-> UART_RXD
164 +(% style="color:blue" %)**Connection:**
158 158  
159 - USB TTL RXD <~-~-~-~-> UART_TXD
166 +**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
160 160  
168 +**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
169 +
170 +**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
171 +
172 +
161 161  In the PC, use below serial tool settings:
162 162  
163 -* Baud:  **9600**
164 -* Data bits:** 8**
165 -* Stop bits: **1**
166 -* Parity:  **None**
167 -* Flow Control: **None**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:**  (% style="color:green" %)8(%%)**
177 +* Stop bits:  (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
168 168  
169 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
181 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
170 170  
171 -​[[image:image-20220907171221-8.png]]
183 +​[[image:image-20220913090720-1.png]]
172 172  
173 -**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
174 174  
186 +(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
187 +
188 +
175 175  === 2.2.4 Use CoAP protocol to uplink data ===
176 176  
177 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
178 178  
179 -**Use below commands:**
192 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
180 180  
181 -* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
182 -* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
183 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
184 184  
195 +(% style="color:blue" %)**Use below commands:**
196 +
197 +* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
198 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
199 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
200 +
185 185  For parameter description, please refer to AT command set
186 186  
187 187  [[image:image-20220907171221-9.png]]
188 188  
189 -After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
190 190  
206 +After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
207 +
191 191  [[image:image-20220907171221-10.png]] ​
192 192  
210 +
193 193  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
194 194  
213 +
195 195  This feature is supported since firmware version v1.0.1
196 196  
197 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
198 -* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
199 -* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
216 +* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
217 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
218 +* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
200 200  
201 201  ​ [[image:image-20220907171221-11.png]]
202 202  
222 +
203 203  [[image:image-20220907171221-12.png]]
204 204  
205 205  ​
... ... @@ -206,18 +206,21 @@
206 206  
207 207  === 2.2.6 Use MQTT protocol to uplink data ===
208 208  
229 +
209 209  This feature is supported since firmware version v110
210 210  
211 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
212 -* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
213 -* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
214 -* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
215 -* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
216 -* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
217 -* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
232 +* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
233 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
234 +* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
235 +* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
236 +* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
237 +* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
238 +* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
218 218  
219 219  ​ [[image:image-20220907171221-13.png]]
220 220  
242 +
243 +
221 221  [[image:image-20220907171221-14.png]]
222 222  
223 223  ​
... ... @@ -224,80 +224,108 @@
224 224  
225 225  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
226 226  
250 +
227 227  === 2.2.7 Use TCP protocol to uplink data ===
228 228  
253 +
229 229  This feature is supported since firmware version v110
230 230  
231 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
232 -* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
256 +* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
257 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
233 233  
234 234  ​ [[image:image-20220907171221-15.png]]
235 235  
261 +
262 +
236 236  [[image:image-20220907171221-16.png]]
237 237  
238 238  ​
239 239  
267 +
240 240  === 2.2.8 Change Update Interval ===
241 241  
270 +
242 242  User can use below command to change the **uplink interval**.
243 243  
244 -* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
273 +* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
245 245  
275 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
246 246  
247 -**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
248 248  
249 -
250 250  == 2.3  Uplink Payload ==
251 251  
280 +
252 252  In this mode, uplink payload includes 87 bytes in total by default.
253 253  
254 254  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
255 255  
256 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
257 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
285 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
286 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:40px" %)**8**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**1**|(% style="background-color:#4F81BD;color:white; width:30px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**4**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:37px" %)**4**
287 +|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
258 258  
259 259  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
260 260  
291 +
261 261  [[image:image-20220907171221-17.png]]
262 262  
294 +
263 263  The payload is ASCII string, representative same HEX:
264 264  
265 -0x(% style="color:red" %)f868411056754138(%%)(% style="color:blue" %)0064(%%)(% style="color:green" %)0c78(%%)(% style="color:red" %)17(%%)(% style="color:blue" %)01(%%)(% style="color:green" %)00(%%)(% style="color:blue" %)0225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859(%%) where:
297 +**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
266 266  
267 -* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138(%%)
268 -* (% style="color:blue" %)Version: 0x0064=100=1.0.0(%%)
269 -* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V(%%)
270 -* (% style="color:red" %)Singal: 0x17 = 23(%%)
271 -* (% style="color:blue" %)Mod: 0x01 = 1(%%)
272 -* (% style="color:green" %)Interrupt: 0x00= 0(%%)
273 -* Leaf moisture: 0x0225= 549 = 54.9%
274 -* Leaf Temperature:0x010B =267=26.7 °C
275 -* Time stamp : 0x6315537b =1662342011
276 -* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
277 -* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......(%%)
299 +where:
278 278  
301 +* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
302 +
303 +* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
304 +
305 +* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
306 +
307 +* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
308 +
309 +* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
310 +
311 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
312 +
313 +* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
314 +
315 +* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
316 +
317 +* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
318 +
319 +* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
320 +
321 +* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
322 +
323 +
279 279  == 2.4  Payload Explanation and Sensor Interface ==
280 280  
281 281  === 2.4.1  Device ID ===
282 282  
328 +
283 283  By default, the Device ID equal to the last 15 bits of IMEI.
284 284  
285 -User can use **AT+DEUI** to set Device ID
331 +User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
286 286  
287 -**Example:**
288 288  
334 +(% style="color:blue" %)**Example**:
335 +
289 289  AT+DEUI=868411056754138
290 290  
291 291  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
292 292  
340 +
293 293  === 2.4.2  Version Info ===
294 294  
343 +
295 295  Specify the software version: 0x64=100, means firmware version 1.00.
296 296  
297 297  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
298 298  
348 +
299 299  === 2.4.3  Battery Info ===
300 300  
351 +
301 301  Check the battery voltage for NLMS01.
302 302  
303 303  Ex1: 0x0B45 = 2885mV
... ... @@ -304,12 +304,15 @@
304 304  
305 305  Ex2: 0x0B49 = 2889mV
306 306  
358 +
307 307  === 2.4.4  Signal Strength ===
308 308  
361 +
309 309  NB-IoT Network signal Strength.
310 310  
311 -**Ex1: 0x1d = 29**
312 312  
365 +(% style="color:blue" %)**Ex1: 0x1d = 29**
366 +
313 313  **0**  -113dBm or less
314 314  
315 315  **1**  -111dBm
... ... @@ -320,37 +320,45 @@
320 320  
321 321  **99**    Not known or not detectable
322 322  
377 +
323 323  === 2.4.5  Leaf moisture ===
324 324  
325 -Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
326 326  
327 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
381 +Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
328 328  
329 -**0229(H) = 549(D) /100 = 54.9.**
383 +For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
330 330  
385 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
386 +
387 +
331 331  === 2.4.6  Leaf Temperature ===
332 332  
333 -Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
334 334  
335 -**Example**:
391 +Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
336 336  
337 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
393 +(% style="color:blue" %)**Example**:
338 338  
339 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
395 +If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
340 340  
397 +If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
398 +
399 +
341 341  === 2.4.7  Timestamp ===
342 342  
402 +
343 343  Time stamp : 0x6315537b =1662342011
344 344  
345 345  Convert Unix timestamp to time 2022-9-5 9:40:11.
346 346  
407 +
347 347  === 2.4.8  Digital Interrupt ===
348 348  
349 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
350 350  
411 +Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
412 +
351 351  The command is:
352 352  
353 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
415 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
354 354  
355 355  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
356 356  
... ... @@ -360,13 +360,15 @@
360 360  
361 361  0x(01): Interrupt Uplink Packet.
362 362  
425 +
363 363  === 2.4.9  ​+5V Output ===
364 364  
428 +
365 365  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
366 366  
367 367  The 5V output time can be controlled by AT Command.
368 368  
369 -**AT+5VT=1000**
433 +(% style="color:blue" %)**AT+5VT=1000**
370 370  
371 371  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
372 372  
... ... @@ -373,14 +373,22 @@
373 373  
374 374  == 2.5  Downlink Payload ==
375 375  
440 +
376 376  By default, NLMS01 prints the downlink payload to console port.
377 377  
378 -[[image:image-20220907171221-18.png]] ​
443 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
444 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
445 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
446 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
447 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
379 379  
380 -**Examples:**
449 +
381 381  
382 -* **Set TDC**
451 +(% style="color:blue" %)**Examples:**
383 383  
453 +
454 +* (% style="color:#037691" %)**Set TDC**
455 +
384 384  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
385 385  
386 386  Payload:    01 00 00 1E    TDC=30S
... ... @@ -387,16 +387,22 @@
387 387  
388 388  Payload:    01 00 00 3C    TDC=60S
389 389  
390 -* **Reset**
391 391  
463 +
464 +* (% style="color:#037691" %)**Reset**
465 +
392 392  If payload = 0x04FF, it will reset the NLMS01
393 393  
394 -* **INTMOD**
395 395  
469 +
470 +* (% style="color:#037691" %)**INTMOD**
471 +
396 396  Downlink Payload: 06000003, Set AT+INTMOD=3
397 397  
474 +
398 398  == 2.6  ​LED Indicator ==
399 399  
477 +
400 400  The NLMS01 has an internal LED which is to show the status of different state.
401 401  
402 402  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -404,18 +404,23 @@
404 404  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
405 405  * For each uplink probe, LED will be on for 500ms.
406 406  
407 -== 2.7 Installation ==
408 408  
486 +== 2.7  Installation ==
487 +
488 +
409 409  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
410 410  
491 +
411 411  [[image:image-20220907171221-19.png]]
412 412  
413 -== 2.8 Moisture and Temperature alarm function ==
414 414  
415 - AT Command:
495 +== 2.8  Moisture and Temperature alarm function ==
416 416  
417 -AT+ HUMALARM =min,max
418 418  
498 +(% style="color:blue" %)**➢ AT Command:**
499 +
500 +(% style="color:#037691" %)**AT+ HUMALARM =min,max**
501 +
419 419  ² When min=0, and max≠0, Alarm higher than max
420 420  
421 421  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -422,8 +422,9 @@
422 422  
423 423  ² When min≠0 and max≠0, Alarm higher than max or lower than min
424 424  
425 -Example:
426 426  
509 +(% style="color:blue" %)**Example:**
510 +
427 427  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
428 428  
429 429  AT+ TEMPALARM=min,max
... ... @@ -434,196 +434,199 @@
434 434  
435 435  ² When min≠0 and max≠0, Alarm higher than max or lower than min
436 436  
437 -Example:
438 438  
522 +(% style="color:blue" %)**Example:**
523 +
439 439  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
440 440  
441 441  
442 -== 2.9 Set the number of data to be uploaded and the recording time ==
527 +== 2.9  Set the number of data to be uploaded and the recording time ==
443 443  
444 -➢ AT Command:
445 445  
446 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
530 +(% style="color:blue" %)**➢ AT Command:**
447 447  
448 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
532 +* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
533 +* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
449 449  
450 -== 2.10 Read or Clear cached data ==
535 + The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
451 451  
452 -➢ AT Command:
537 +[[image:image-20221009001002-1.png||height="706" width="982"]]
453 453  
454 -AT+CDP    ~/~/ Read cached data
455 455  
456 -[[image:image-20220907171221-20.png]]
540 +== 2.10  Read or Clear cached data ==
457 457  
458 458  
459 -AT+CDP=0    ~/~/ Clear cached data
543 +(% style="color:blue" %)**➢ AT Command:**
460 460  
545 +* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
546 +* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
461 461  
462 -== 2.11  ​Firmware Change Log ==
548 +[[image:image-20220907171221-20.png]]
463 463  
464 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
465 465  
466 -Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
551 +== 2.11  Firmware Change Log ==
467 467  
468 -== 2.12  ​Battery Analysis ==
469 469  
470 -=== 2.12.1  ​Battery Type ===
554 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
471 471  
472 -The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
556 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
473 473  
474 -The battery is designed to last for several years depends on the actually use environment and update interval. 
475 475  
476 -The battery related documents as below:
559 +== 2.12 Battery & Power Consumption ==
477 477  
478 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
479 -* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
480 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
481 481  
482 -[[image:image-20220907171221-21.png]]
562 +NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
483 483  
484 -=== 2.12.2  Power consumption Analyze ===
564 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
485 485  
486 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
487 487  
488 -Instruction to use as below:
567 += 3. ​ Access NB-IoT Module =
489 489  
490 -**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
491 491  
492 -**Step 2: ** Open it and choose
570 +Users can directly access the AT command set of the NB-IoT module.
493 493  
494 -* Product Model
495 -* Uplink Interval
496 -* Working Mode
572 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
497 497  
498 -And the Life expectation in difference case will be shown on the right.
499 499  
500 -[[image:image-20220907171221-22.jpeg]] ​
575 +[[image:image-20220907171221-23.png]] ​
501 501  
502 -=== 2.12.3  ​Battery Note ===
503 503  
504 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
578 += 4.  Using the AT Commands =
505 505  
506 -=== 2.12.4  Replace the battery ===
580 +== 4.1  Access AT Commands ==
507 507  
508 -The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
509 509  
510 -= 3. Access NB-IoT Module =
583 +See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
511 511  
512 -Users can directly access the AT command set of the NB-IoT module.
585 +AT+<CMD>?  Help on <CMD>
513 513  
514 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
587 +AT+<CMD>  Run <CMD>
515 515  
516 -[[image:image-20220907171221-23.png]]
589 +AT+<CMD>=<value>:  Set the value
517 517  
518 -= 4.  Using the AT Commands =
591 +AT+<CMD>= :  Get the value
519 519  
520 -== 4.1  Access AT Commands ==
521 521  
522 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
594 +(% style="color:#037691" %)**General Commands**      
523 523  
524 -AT+<CMD>?  : Help on <CMD>
596 +AT  Attention       
525 525  
526 -AT+<CMD>         : Run <CMD>
598 +AT?  :  Short Help     
527 527  
528 -AT+<CMD>=<value> : Set the value
600 +AT MCU Reset    
529 529  
530 -AT+<CMD>=?  : Get the value
602 +AT+TDC  :  Application Data Transmission Interval
531 531  
532 -**General Commands**      
604 +AT+CFG  :  Print all configurations
533 533  
534 -AT  : Attention       
606 +AT+CFGMOD  Working mode selection
535 535  
536 -AT?  : Short Help     
608 +AT+INTMOD  Set the trigger interrupt mode
537 537  
538 -ATZ  : MCU Reset    
610 +AT+5VT  Set extend the time of 5V power  
539 539  
540 -AT+TDC  : Application Data Transmission Interval
612 +AT+PRO :  Choose agreement
541 541  
542 -AT+CFG  : Print all configurations
614 +AT+RXDL:  Extend the sending and receiving time
543 543  
544 -AT+CFGMOD           : Working mode selection
616 +AT+SERVADDR :  Server Address
545 545  
546 -AT+INTMOD            : Set the trigger interrupt mode
618 +AT+APN :  Get or set the APN
547 547  
548 -AT+5VT  : Set extend the time of 5V power  
620 +AT+FBAND :  Get or Set whether to automatically modify the frequency band
549 549  
550 -AT+PRO  : Choose agreement
622 +AT+DNSCFG : Get or Set DNS Server
551 551  
552 -AT+RXD : Extend the sending and receiving time
624 +AT+GETSENSORVALUE   : Returns the current sensor measurement
553 553  
554 -AT+SERVADDR  : Server Address
626 +AT+TR :  Get or Set record time"
555 555  
556 -AT+TR      : Get or Set record time"
628 +AT+NOUD :  Get or Set the number of data to be uploaded
557 557  
630 +AT+CDP :  Read or Clear cached data
558 558  
559 -AT+NOUD      : Get or Set the number of data to be uploaded
632 +AT+TEMPALARM :  Get or Set alarm of temp
560 560  
634 +AT+HUMALARM :  Get or Set alarm of humidity
561 561  
562 -AT+CDP     : Read or Clear cached data
563 563  
637 +(% style="color:#037691" %)**COAP Management**      
564 564  
565 -AT+TEMPALARM      : Get or Set alarm of temp
639 +AT+URI :  Resource parameters
566 566  
567 -AT+HUMALARM     : Get or Set alarm of PH
568 568  
642 +(% style="color:#037691" %)**UDP Management**
569 569  
570 -**COAP Management**      
644 +AT+CFM :  Upload confirmation mode (only valid for UDP)
571 571  
572 -AT+URI            : Resource parameters
573 573  
574 -**UDP Management**
647 +(% style="color:#037691" %)**MQTT Management**
575 575  
576 -AT+CFM          : Upload confirmation mode (only valid for UDP)
649 +AT+CLIENT  :  Get or Set MQTT client
577 577  
578 -**MQTT Management**
651 +AT+UNAME  : Get or Set MQTT Username
579 579  
580 -AT+CLIENT               : Get or Set MQTT client
653 +AT+PWD  :  Get or Set MQTT password
581 581  
582 -AT+UNAME  : Get or Set MQTT Username
655 +AT+PUBTOPIC  :  Get or Set MQTT publish topic
583 583  
584 -AT+PWD                  : Get or Set MQTT password
657 +AT+SUBTOPIC :  Get or Set MQTT subscription topic
585 585  
586 -AT+PUBTOPIC  : Get or Set MQTT publish topic
587 587  
588 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
660 +(% style="color:#037691" %)**Information**          
589 589  
590 -**Information**          
662 +AT+FDR :  Factory Data Reset
591 591  
592 -AT+FDR  : Factory Data Reset
664 +AT+PWORD :  Serial Access Password
593 593  
594 -AT+PWORD  : Serial Access Password
595 595  
596 596  = ​5.  FAQ =
597 597  
598 598  == 5.1 ​ How to Upgrade Firmware ==
599 599  
671 +
600 600  User can upgrade the firmware for 1) bug fix, 2) new feature release.
601 601  
602 602  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
603 603  
604 -**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
605 605  
677 +(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
678 +
679 +
606 606  = 6.  Trouble Shooting =
607 607  
608 608  == 6.1  ​Connection problem when uploading firmware ==
609 609  
684 +
610 610  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
611 611  
687 +
612 612  == 6.2  AT Command input doesn't work ==
613 613  
614 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
615 615  
691 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
692 +
693 +
694 +== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
695 +
696 +
697 +This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
698 +
699 +
616 616  = 7. ​ Order Info =
617 617  
702 +
618 618  Part Number**:** NLMS01
619 619  
705 +
620 620  = 8.  Packing Info =
621 621  
622 -**Package Includes**:
623 623  
709 +(% style="color:#037691" %)**Package Includes:**
710 +
624 624  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
625 625  
626 -**Dimension and weight**:
713 +(% style="color:#037691" %)**Dimension and weight**:
627 627  
628 628  * Device Size: cm
629 629  * Device Weight: g
... ... @@ -630,8 +630,10 @@
630 630  * Package Size / pcs : cm
631 631  * Weight / pcs : g
632 632  
720 +
633 633  = 9.  Support =
634 634  
723 +
635 635  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
636 636  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
637 637  
image-20220913090720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +282.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0