<
From version < 28.1 >
edited by David Huang
on 2022/09/07 17:56
To version < 38.16 >
edited by Xiaoling
on 2023/04/24 09:20
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -7,89 +7,79 @@
7 7  
8 8  
9 9  
10 -= 1. Introduction =
10 += 1.  Introduction =
11 11  
12 -== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
12 +== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
13 13  
14 14  
15 -The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
15 +(((
16 +The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
16 16  
17 -NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
18 +NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
18 18  
19 19  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
20 -\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
21 -\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
22 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
23 23  
22 +NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
23 +
24 +NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
25 +
26 +To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
27 +)))
28 +
29 +
24 24  ​[[image:image-20220907171221-2.png]]
25 25  
32 +
26 26  ​ [[image:image-20220907171221-3.png]]
27 27  
28 -== ​1.2 Features ==
29 29  
30 -* (((
31 -NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
32 -)))
33 -* (((
34 -Monitor Leaf moisture
35 -)))
36 +== ​1.2  Features ==
36 36  
37 -* (((
38 - Monitor Leaf temperature
39 -)))
40 40  
41 -* (((
42 -Moisture and Temperature alarm function
39 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
40 +* Monitor Leaf moisture
41 +* Monitor Leaf temperature
42 +* Moisture and Temperature alarm function
43 +* Monitor Battery Level
44 +* Uplink on periodically
45 +* Downlink to change configure
46 +* IP66 Waterproof Enclosure
47 +* IP67 rate for the Sensor Probe
48 +* Ultra-Low Power consumption
49 +* AT Commands to change parameters
50 +* Micro SIM card slot for NB-IoT SIM
51 +* 8500mAh Battery for long term use
52 +
53 +(((
54 +
55 +
56 +
43 43  )))
44 -* (((
45 -Monitor Battery Level
46 -)))
47 -* (((
48 -Uplink on periodically
49 -)))
50 -* (((
51 -Downlink to change configure
52 -)))
53 -* (((
54 -IP66 Waterproof Enclosure
55 -)))
56 -* (((
57 -IP67 rate for the Sensor Probe
58 -)))
59 -* (((
60 -Ultra-Low Power consumption
61 -)))
62 -* (((
63 -AT Commands to change parameters
64 -)))
65 -* (((
66 -Micro SIM card slot for NB-IoT SIM
67 -)))
68 -* (((
69 -8500mAh Battery for long term use
70 -)))
71 71  
72 72  == 1.3  Specification ==
73 73  
74 -**Common DC Characteristics:**
75 75  
62 +(% style="color:#037691" %)**Common DC Characteristics:**
63 +
76 76  * Supply Voltage: 2.1v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -**NB-IoT Spec:**
67 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -* - B1 @H-FDD: 2100MHz
82 -* - B3 @H-FDD: 1800MHz
83 -* - B8 @H-FDD: 900MHz
84 -* - B5 @H-FDD: 850MHz
85 -* - B20 @H-FDD: 800MHz
86 -* - B28 @H-FDD: 700MHz
69 +* B1 @H-FDD: 2100MHz
70 +* B3 @H-FDD: 1800MHz
71 +* B8 @H-FDD: 900MHz
72 +* B5 @H-FDD: 850MHz
73 +* B20 @H-FDD: 800MHz
74 +* B28 @H-FDD: 700MHz
87 87  
88 -== 1.4 Probe Specification ==
89 89  
90 90  
91 -**Leaf Moisture: percentage of water drop over total leaf surface**
78 +== 1.4  Probe Specification ==
92 92  
80 +
81 +(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
82 +
93 93  * Range 0-100%
94 94  * Resolution: 0.1%
95 95  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -96,7 +96,7 @@
96 96  * IP67 Protection
97 97  * Length: 3.5 meters
98 98  
99 -**Leaf Temperature:**
89 +(% style="color:#037691" %)**Leaf Temperature:**
100 100  
101 101  * Range -50℃~80℃
102 102  * Resolution: 0.1℃
... ... @@ -104,12 +104,18 @@
104 104  * IP67 Protection
105 105  * Length: 3.5 meters
106 106  
107 -== 1.5 ​Applications ==
108 108  
98 +
99 +== 1.5 ​ Applications ==
100 +
101 +
109 109  * Smart Agriculture
110 110  
111 -== 1.6 Pin mapping and power on ==
112 112  
105 +
106 +== 1.6  Pin mapping and power on ==
107 +
108 +
113 113  ​[[image:image-20220907171221-4.png]]
114 114  
115 115  **~ **
... ... @@ -118,16 +118,20 @@
118 118  
119 119  == 2.1  How it works ==
120 120  
117 +
121 121  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
122 122  
123 123  The diagram below shows the working flow in default firmware of NLMS01:
124 124  
122 +
125 125  [[image:image-20220907171221-5.png]]
126 126  
125 +
127 127  == 2.2 ​ Configure the NLMS01 ==
128 128  
129 129  === 2.2.1 Test Requirement ===
130 130  
130 +
131 131  To use NLMS01 in your city, make sure meet below requirements:
132 132  
133 133  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -134,72 +134,88 @@
134 134  * The local NB-IoT network used the band that NLMS01 supports.
135 135  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
137 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
138 138  
139 +
139 139  [[image:image-20220907171221-6.png]] ​
140 140  
142 +
141 141  === 2.2.2 Insert SIM card ===
142 142  
145 +
143 143  Insert the NB-IoT Card get from your provider.
144 144  
145 145  User need to take out the NB-IoT module and insert the SIM card like below:
146 146  
150 +
147 147  [[image:image-20220907171221-7.png]] ​
148 148  
153 +
149 149  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
150 150  
151 -User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
152 152  
153 -**Connection:**
157 +User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
154 154  
155 - USB TTL GND <~-~-~-~-> GND
156 156  
157 - USB TTL TXD <~-~-~-~-> UART_RXD
160 +(% style="color:blue" %)**Connection:**
158 158  
159 - USB TTL RXD <~-~-~-~-> UART_TXD
162 +**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
160 160  
164 +**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
165 +
166 +**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
167 +
168 +
161 161  In the PC, use below serial tool settings:
162 162  
163 -* Baud:  **9600**
164 -* Data bits:** 8**
165 -* Stop bits: **1**
166 -* Parity:  **None**
167 -* Flow Control: **None**
171 +* Baud:  (% style="color:green" %)**9600**
172 +* Data bits:**  (% style="color:green" %)8(%%)**
173 +* Stop bits:  (% style="color:green" %)**1**
174 +* Parity:  (% style="color:green" %)**None**
175 +* Flow Control: (% style="color:green" %)**None**
168 168  
169 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
177 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
170 170  
171 -​[[image:image-20220907171221-8.png]]
179 +​[[image:image-20220913090720-1.png]]
172 172  
173 -**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
174 174  
182 +(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
183 +
184 +
175 175  === 2.2.4 Use CoAP protocol to uplink data ===
176 176  
177 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
178 178  
179 -**Use below commands:**
188 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
180 180  
181 -* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
182 -* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
183 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
184 184  
191 +(% style="color:blue" %)**Use below commands:**
192 +
193 +* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
194 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
195 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
196 +
185 185  For parameter description, please refer to AT command set
186 186  
187 187  [[image:image-20220907171221-9.png]]
188 188  
189 -After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
190 190  
202 +After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
203 +
191 191  [[image:image-20220907171221-10.png]] ​
192 192  
206 +
193 193  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
194 194  
209 +
195 195  This feature is supported since firmware version v1.0.1
196 196  
197 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
198 -* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
199 -* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
212 +* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
213 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
214 +* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
200 200  
201 201  ​ [[image:image-20220907171221-11.png]]
202 202  
218 +
203 203  [[image:image-20220907171221-12.png]]
204 204  
205 205  ​
... ... @@ -206,18 +206,21 @@
206 206  
207 207  === 2.2.6 Use MQTT protocol to uplink data ===
208 208  
225 +
209 209  This feature is supported since firmware version v110
210 210  
211 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
212 -* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
213 -* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
214 -* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
215 -* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
216 -* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
217 -* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
228 +* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
229 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
230 +* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
231 +* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
232 +* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
233 +* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
234 +* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
218 218  
219 219  ​ [[image:image-20220907171221-13.png]]
220 220  
238 +
239 +
221 221  [[image:image-20220907171221-14.png]]
222 222  
223 223  ​
... ... @@ -224,81 +224,108 @@
224 224  
225 225  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
226 226  
246 +
227 227  === 2.2.7 Use TCP protocol to uplink data ===
228 228  
249 +
229 229  This feature is supported since firmware version v110
230 230  
231 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
232 -* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
252 +* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
253 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
233 233  
234 234  ​ [[image:image-20220907171221-15.png]]
235 235  
257 +
258 +
236 236  [[image:image-20220907171221-16.png]]
237 237  
238 238  ​
239 239  
263 +
240 240  === 2.2.8 Change Update Interval ===
241 241  
266 +
242 242  User can use below command to change the **uplink interval**.
243 243  
244 -* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
269 +* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
245 245  
246 -**NOTE:**
271 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
247 247  
248 -**~1. By default, the device will send an uplink message every 2 hour.**
249 249  
250 250  == 2.3  Uplink Payload ==
251 251  
276 +
252 252  In this mode, uplink payload includes 87 bytes in total by default.
253 253  
254 254  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
255 255  
256 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
257 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
258 258  
282 +(% border="1" style="background-color:#ffffcc; color:green; width:520px" %)
283 +|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:20px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:50px" %)**2**|(% style="width:50px" %)**4**|(% style="width:50px" %)**2**|(% style="width:40px" %)**2**|(% style="width:40px" %)**4**
284 +|=(% style="width: 96px;" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
285 +
259 259  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
260 260  
288 +
261 261  [[image:image-20220907171221-17.png]]
262 262  
291 +
263 263  The payload is ASCII string, representative same HEX:
264 264  
265 -0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
294 +**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
266 266  
267 -* Device ID: 0xf868411056754138 = f868411056754138
268 -* Version: 0x0064=100=1.0.0
296 +where:
269 269  
270 -* BAT: 0x0c78 = 3192 mV = 3.192V
271 -* Singal: 0x17 = 23
272 -* Mod: 0x01 = 1
273 -* Interrupt: 0x00= 0
274 -* Leaf moisture: 0x0225= 549 = 54.9%
275 -* Leaf Temperature:0x010B =267=26.7 °C
276 -* Time stamp : 0x6315537b =1662342011
277 -* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
278 -* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
298 +* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
279 279  
300 +* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
301 +
302 +* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
303 +
304 +* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
305 +
306 +* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
307 +
308 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
309 +
310 +* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
311 +
312 +* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
313 +
314 +* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
315 +
316 +* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
317 +
318 +* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
319 +
280 280  == 2.4  Payload Explanation and Sensor Interface ==
281 281  
282 282  === 2.4.1  Device ID ===
283 283  
324 +
284 284  By default, the Device ID equal to the last 15 bits of IMEI.
285 285  
286 -User can use **AT+DEUI** to set Device ID
327 +User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
287 287  
288 -**Example:**
289 289  
330 +(% style="color:blue" %)**Example**:
331 +
290 290  AT+DEUI=868411056754138
291 291  
292 292  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
293 293  
336 +
294 294  === 2.4.2  Version Info ===
295 295  
339 +
296 296  Specify the software version: 0x64=100, means firmware version 1.00.
297 297  
298 298  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
299 299  
344 +
300 300  === 2.4.3  Battery Info ===
301 301  
347 +
302 302  Check the battery voltage for NLMS01.
303 303  
304 304  Ex1: 0x0B45 = 2885mV
... ... @@ -305,12 +305,15 @@
305 305  
306 306  Ex2: 0x0B49 = 2889mV
307 307  
354 +
308 308  === 2.4.4  Signal Strength ===
309 309  
357 +
310 310  NB-IoT Network signal Strength.
311 311  
312 -**Ex1: 0x1d = 29**
313 313  
361 +(% style="color:blue" %)**Ex1: 0x1d = 29**
362 +
314 314  **0**  -113dBm or less
315 315  
316 316  **1**  -111dBm
... ... @@ -321,37 +321,45 @@
321 321  
322 322  **99**    Not known or not detectable
323 323  
373 +
324 324  === 2.4.5  Leaf moisture ===
325 325  
326 -Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
327 327  
328 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
377 +Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
329 329  
330 -**0229(H) = 549(D) /100 = 54.9.**
379 +For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
331 331  
381 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
382 +
383 +
332 332  === 2.4.6  Leaf Temperature ===
333 333  
334 -Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
335 335  
336 -**Example**:
387 +Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
337 337  
338 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
389 +(% style="color:blue" %)**Example**:
339 339  
340 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
391 +If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
341 341  
393 +If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
394 +
395 +
342 342  === 2.4.7  Timestamp ===
343 343  
398 +
344 344  Time stamp : 0x6315537b =1662342011
345 345  
346 346  Convert Unix timestamp to time 2022-9-5 9:40:11.
347 347  
403 +
348 348  === 2.4.8  Digital Interrupt ===
349 349  
350 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
351 351  
407 +Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
408 +
352 352  The command is:
353 353  
354 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
411 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
355 355  
356 356  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
357 357  
... ... @@ -361,13 +361,15 @@
361 361  
362 362  0x(01): Interrupt Uplink Packet.
363 363  
421 +
364 364  === 2.4.9  ​+5V Output ===
365 365  
424 +
366 366  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
367 367  
368 368  The 5V output time can be controlled by AT Command.
369 369  
370 -**AT+5VT=1000**
429 +(% style="color:blue" %)**AT+5VT=1000**
371 371  
372 372  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
373 373  
... ... @@ -374,14 +374,17 @@
374 374  
375 375  == 2.5  Downlink Payload ==
376 376  
436 +
377 377  By default, NLMS01 prints the downlink payload to console port.
378 378  
379 379  [[image:image-20220907171221-18.png]] ​
380 380  
381 -**Examples:**
382 382  
383 -* **Set TDC**
442 +(% style="color:blue" %)**Examples:**
384 384  
444 +
445 +* (% style="color:#037691" %)**Set TDC**
446 +
385 385  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
386 386  
387 387  Payload:    01 00 00 1E    TDC=30S
... ... @@ -388,16 +388,22 @@
388 388  
389 389  Payload:    01 00 00 3C    TDC=60S
390 390  
391 -* **Reset**
392 392  
454 +
455 +* (% style="color:#037691" %)**Reset**
456 +
393 393  If payload = 0x04FF, it will reset the NLMS01
394 394  
395 -* **INTMOD**
396 396  
460 +
461 +* (% style="color:#037691" %)**INTMOD**
462 +
397 397  Downlink Payload: 06000003, Set AT+INTMOD=3
398 398  
465 +
399 399  == 2.6  ​LED Indicator ==
400 400  
468 +
401 401  The NLMS01 has an internal LED which is to show the status of different state.
402 402  
403 403  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -405,18 +405,22 @@
405 405  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
406 406  * For each uplink probe, LED will be on for 500ms.
407 407  
408 -== 2.7 Installation ==
476 +== 2.7  Installation ==
409 409  
478 +
410 410  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
411 411  
481 +
412 412  [[image:image-20220907171221-19.png]]
413 413  
414 -== 2.8 Moisture and Temperature alarm function ==
415 415  
416 - AT Command:
485 +== 2.8  Moisture and Temperature alarm function ==
417 417  
418 -AT+ HUMALARM =min,max
419 419  
488 +(% style="color:blue" %)**➢ AT Command:**
489 +
490 +(% style="color:#037691" %)**AT+ HUMALARM =min,max**
491 +
420 420  ² When min=0, and max≠0, Alarm higher than max
421 421  
422 422  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -423,8 +423,9 @@
423 423  
424 424  ² When min≠0 and max≠0, Alarm higher than max or lower than min
425 425  
426 -Example:
427 427  
499 +(% style="color:blue" %)**Example:**
500 +
428 428  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
429 429  
430 430  AT+ TEMPALARM=min,max
... ... @@ -435,196 +435,199 @@
435 435  
436 436  ² When min≠0 and max≠0, Alarm higher than max or lower than min
437 437  
438 -Example:
439 439  
512 +(% style="color:blue" %)**Example:**
513 +
440 440  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
441 441  
442 442  
443 -== 2.9 Set the number of data to be uploaded and the recording time ==
517 +== 2.9  Set the number of data to be uploaded and the recording time ==
444 444  
445 -➢ AT Command:
446 446  
447 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
520 +(% style="color:blue" %)**➢ AT Command:**
448 448  
449 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
522 +* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
523 +* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
450 450  
451 -== 2.10 Read or Clear cached data ==
525 + The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
452 452  
453 -➢ AT Command:
527 +[[image:image-20221009001002-1.png||height="706" width="982"]]
454 454  
455 -AT+CDP    ~/~/ Read cached data
456 456  
457 -[[image:image-20220907171221-20.png]]
530 +== 2.10  Read or Clear cached data ==
458 458  
459 459  
460 -AT+CDP=0    ~/~/ Clear cached data
533 +(% style="color:blue" %)**➢ AT Command:**
461 461  
535 +* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
536 +* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
462 462  
463 -== 2.11  ​Firmware Change Log ==
538 +[[image:image-20220907171221-20.png]]
464 464  
465 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
466 466  
467 -Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
541 +== 2.11  Firmware Change Log ==
468 468  
469 -== 2.12  ​Battery Analysis ==
470 470  
471 -=== 2.12.1  ​Battery Type ===
544 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
472 472  
473 -The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
546 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
474 474  
475 -The battery is designed to last for several years depends on the actually use environment and update interval. 
476 476  
477 -The battery related documents as below:
549 +== 2.12 Battery & Power Consumption ==
478 478  
479 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
480 -* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
481 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
482 482  
483 -[[image:image-20220907171221-21.png]]
552 +NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
484 484  
485 -=== 2.12.2  Power consumption Analyze ===
554 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
486 486  
487 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
488 488  
489 -Instruction to use as below:
557 += 3. ​ Access NB-IoT Module =
490 490  
491 -**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
492 492  
493 -**Step 2: ** Open it and choose
560 +Users can directly access the AT command set of the NB-IoT module.
494 494  
495 -* Product Model
496 -* Uplink Interval
497 -* Working Mode
562 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
498 498  
499 -And the Life expectation in difference case will be shown on the right.
500 500  
501 -[[image:image-20220907171221-22.jpeg]] ​
565 +[[image:image-20220907171221-23.png]] ​
502 502  
503 -=== 2.12.3  ​Battery Note ===
504 504  
505 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
568 += 4.  Using the AT Commands =
506 506  
507 -=== 2.12.4  Replace the battery ===
570 +== 4.1  Access AT Commands ==
508 508  
509 -The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
510 510  
511 -= 3. Access NB-IoT Module =
573 +See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
512 512  
513 -Users can directly access the AT command set of the NB-IoT module.
575 +AT+<CMD>?  Help on <CMD>
514 514  
515 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
577 +AT+<CMD>  Run <CMD>
516 516  
517 -[[image:image-20220907171221-23.png]]
579 +AT+<CMD>=<value>:  Set the value
518 518  
519 -= 4.  Using the AT Commands =
581 +AT+<CMD>= :  Get the value
520 520  
521 -== 4.1  Access AT Commands ==
522 522  
523 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
584 +(% style="color:#037691" %)**General Commands**      
524 524  
525 -AT+<CMD>?  : Help on <CMD>
586 +AT  Attention       
526 526  
527 -AT+<CMD>         : Run <CMD>
588 +AT?  :  Short Help     
528 528  
529 -AT+<CMD>=<value> : Set the value
590 +AT MCU Reset    
530 530  
531 -AT+<CMD>=?  : Get the value
592 +AT+TDC  :  Application Data Transmission Interval
532 532  
533 -**General Commands**      
594 +AT+CFG  :  Print all configurations
534 534  
535 -AT  : Attention       
596 +AT+CFGMOD  Working mode selection
536 536  
537 -AT?  : Short Help     
598 +AT+INTMOD  Set the trigger interrupt mode
538 538  
539 -ATZ  : MCU Reset    
600 +AT+5VT  Set extend the time of 5V power  
540 540  
541 -AT+TDC  : Application Data Transmission Interval
602 +AT+PRO :  Choose agreement
542 542  
543 -AT+CFG  : Print all configurations
604 +AT+RXDL:  Extend the sending and receiving time
544 544  
545 -AT+CFGMOD           : Working mode selection
606 +AT+SERVADDR :  Server Address
546 546  
547 -AT+INTMOD            : Set the trigger interrupt mode
608 +AT+APN :  Get or set the APN
548 548  
549 -AT+5VT  : Set extend the time of 5V power  
610 +AT+FBAND :  Get or Set whether to automatically modify the frequency band
550 550  
551 -AT+PRO  : Choose agreement
612 +AT+DNSCFG : Get or Set DNS Server
552 552  
553 -AT+RXD : Extend the sending and receiving time
614 +AT+GETSENSORVALUE   : Returns the current sensor measurement
554 554  
555 -AT+SERVADDR  : Server Address
616 +AT+TR :  Get or Set record time"
556 556  
557 -AT+TR      : Get or Set record time"
618 +AT+NOUD :  Get or Set the number of data to be uploaded
558 558  
620 +AT+CDP :  Read or Clear cached data
559 559  
560 -AT+NOUD      : Get or Set the number of data to be uploaded
622 +AT+TEMPALARM :  Get or Set alarm of temp
561 561  
624 +AT+HUMALARM :  Get or Set alarm of humidity
562 562  
563 -AT+CDP     : Read or Clear cached data
564 564  
627 +(% style="color:#037691" %)**COAP Management**      
565 565  
566 -AT+TEMPALARM      : Get or Set alarm of temp
629 +AT+URI :  Resource parameters
567 567  
568 -AT+HUMALARM     : Get or Set alarm of PH
569 569  
632 +(% style="color:#037691" %)**UDP Management**
570 570  
571 -**COAP Management**      
634 +AT+CFM :  Upload confirmation mode (only valid for UDP)
572 572  
573 -AT+URI            : Resource parameters
574 574  
575 -**UDP Management**
637 +(% style="color:#037691" %)**MQTT Management**
576 576  
577 -AT+CFM          : Upload confirmation mode (only valid for UDP)
639 +AT+CLIENT  :  Get or Set MQTT client
578 578  
579 -**MQTT Management**
641 +AT+UNAME  : Get or Set MQTT Username
580 580  
581 -AT+CLIENT               : Get or Set MQTT client
643 +AT+PWD  :  Get or Set MQTT password
582 582  
583 -AT+UNAME  : Get or Set MQTT Username
645 +AT+PUBTOPIC  :  Get or Set MQTT publish topic
584 584  
585 -AT+PWD                  : Get or Set MQTT password
647 +AT+SUBTOPIC :  Get or Set MQTT subscription topic
586 586  
587 -AT+PUBTOPIC  : Get or Set MQTT publish topic
588 588  
589 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
650 +(% style="color:#037691" %)**Information**          
590 590  
591 -**Information**          
652 +AT+FDR :  Factory Data Reset
592 592  
593 -AT+FDR  : Factory Data Reset
654 +AT+PWORD :  Serial Access Password
594 594  
595 -AT+PWORD  : Serial Access Password
596 596  
597 597  = ​5.  FAQ =
598 598  
599 599  == 5.1 ​ How to Upgrade Firmware ==
600 600  
661 +
601 601  User can upgrade the firmware for 1) bug fix, 2) new feature release.
602 602  
603 603  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
604 604  
605 -**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
606 606  
667 +(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
668 +
669 +
607 607  = 6.  Trouble Shooting =
608 608  
609 609  == 6.1  ​Connection problem when uploading firmware ==
610 610  
674 +
611 611  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
612 612  
677 +
613 613  == 6.2  AT Command input doesn't work ==
614 614  
615 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
616 616  
681 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
682 +
683 +
684 +== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
685 +
686 +
687 +This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
688 +
689 +
617 617  = 7. ​ Order Info =
618 618  
692 +
619 619  Part Number**:** NLMS01
620 620  
695 +
621 621  = 8.  Packing Info =
622 622  
623 -**Package Includes**:
624 624  
699 +(% style="color:#037691" %)**Package Includes:**
700 +
625 625  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
626 626  
627 -**Dimension and weight**:
703 +(% style="color:#037691" %)**Dimension and weight**:
628 628  
629 629  * Device Size: cm
630 630  * Device Weight: g
... ... @@ -633,8 +633,8 @@
633 633  
634 634  = 9.  Support =
635 635  
712 +
636 636  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
637 637  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
638 638  
639 639  ​
640 -
image-20220913090720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0