<
From version < 26.1 >
edited by David Huang
on 2022/09/07 17:38
To version < 33.6 >
edited by Xiaoling
on 2022/09/13 09:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -1,77 +1,68 @@
1 -[[image:image-20220907171221-1.jpeg]]​
1 +(% style="text-align:center" %)
2 +[[image:image-20220907171221-1.jpeg]]
2 2  
4 +​
3 3  
6 +{{toc/}}
4 4  
5 -= 1. Introduction =
6 6  
7 -== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
8 8  
10 += 1.  Introduction =
9 9  
10 -The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
11 11  
12 -NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
13 +== 1.1 What is NLMS01 Leaf Moisture Sensor ==
13 13  
15 +
16 +The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 +
18 +NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 +
14 14  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
15 -\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
16 -\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
17 -\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
21 +\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 +\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
18 18  
25 +
19 19  ​[[image:image-20220907171221-2.png]]
20 20  
28 +
21 21  ​ [[image:image-20220907171221-3.png]]
22 22  
23 -== ​1.2 Features ==
24 24  
25 -* (((
26 -NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
27 -)))
28 -* (((
29 -Monitor Leaf moisture
30 -)))
31 31  
32 -* (((
33 - Monitor Leaf temperature
34 -)))
33 +== ​1.2  Features ==
35 35  
36 -* (((
37 -Moisture and Temperature alarm function
35 +
36 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 +* Monitor Leaf moisture
38 +* Monitor Leaf temperature
39 +* Moisture and Temperature alarm function
40 +* Monitor Battery Level
41 +* Uplink on periodically
42 +* Downlink to change configure
43 +* IP66 Waterproof Enclosure
44 +* IP67 rate for the Sensor Probe
45 +* Ultra-Low Power consumption
46 +* AT Commands to change parameters
47 +* Micro SIM card slot for NB-IoT SIM
48 +* 8500mAh Battery for long term use
49 +
50 +(((
51 +
52 +
53 +
54 +
38 38  )))
39 -* (((
40 -Monitor Battery Level
41 -)))
42 -* (((
43 -Uplink on periodically
44 -)))
45 -* (((
46 -Downlink to change configure
47 -)))
48 -* (((
49 -IP66 Waterproof Enclosure
50 -)))
51 -* (((
52 -IP67 rate for the Sensor Probe
53 -)))
54 -* (((
55 -Ultra-Low Power consumption
56 -)))
57 -* (((
58 -AT Commands to change parameters
59 -)))
60 -* (((
61 -Micro SIM card slot for NB-IoT SIM
62 -)))
63 -* (((
64 -8500mAh Battery for long term use
65 -)))
66 66  
67 67  == 1.3  Specification ==
68 68  
69 -**Common DC Characteristics:**
70 70  
60 +(% style="color:#037691" %)**Common DC Characteristics:**
61 +
71 71  * Supply Voltage: 2.1v ~~ 3.6v
72 72  * Operating Temperature: -40 ~~ 85°C
73 73  
74 -**NB-IoT Spec:**
65 +(% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 76  * - B1 @H-FDD: 2100MHz
77 77  * - B3 @H-FDD: 1800MHz
... ... @@ -80,11 +80,14 @@
80 80  * - B20 @H-FDD: 800MHz
81 81  * - B28 @H-FDD: 700MHz
82 82  
83 -== 1.4 Probe Specification ==
84 84  
85 85  
86 -**Leaf Moisture: percentage of water drop over total leaf surface**
87 87  
77 +== 1.4  Probe Specification ==
78 +
79 +
80 +(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
81 +
88 88  * Range 0-100%
89 89  * Resolution: 0.1%
90 90  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -91,7 +91,7 @@
91 91  * IP67 Protection
92 92  * Length: 3.5 meters
93 93  
94 -**Leaf Temperature:**
88 +(% style="color:#037691" %)**Leaf Temperature:**
95 95  
96 96  * Range -50℃~80℃
97 97  * Resolution: 0.1℃
... ... @@ -99,30 +99,46 @@
99 99  * IP67 Protection
100 100  * Length: 3.5 meters
101 101  
102 -== 1.5 ​Applications ==
103 103  
97 +
98 +
99 +== 1.5 ​ Applications ==
100 +
101 +
104 104  * Smart Agriculture
105 105  
106 -== 1.6 Pin mapping and power on ==
107 107  
105 +
106 +
107 +== 1.6  Pin mapping and power on ==
108 +
109 +
108 108  ​[[image:image-20220907171221-4.png]]
109 109  
110 110  **~ **
111 111  
114 +
112 112  = 2.  Use NLMS01 to communicate with IoT Server =
113 113  
117 +
114 114  == 2.1  How it works ==
115 115  
120 +
116 116  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
117 117  
118 118  The diagram below shows the working flow in default firmware of NLMS01:
119 119  
125 +
120 120  [[image:image-20220907171221-5.png]]
121 121  
122 -== **2.2 ​ Configure the NLMS01** ==
123 123  
124 -**2.2.1 Test Requirement**
125 125  
130 +== 2.2 ​ Configure the NLMS01 ==
131 +
132 +
133 +=== 2.2.1 Test Requirement ===
134 +
135 +
126 126  To use NLMS01 in your city, make sure meet below requirements:
127 127  
128 128  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -129,90 +129,116 @@
129 129  * The local NB-IoT network used the band that NLMS01 supports.
130 130  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
131 131  
132 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
133 133  
144 +
134 134  [[image:image-20220907171221-6.png]] ​
135 135  
136 -**2.2.2 Insert SIM card**
137 137  
148 +
149 +=== 2.2.2 Insert SIM card ===
150 +
151 +
138 138  Insert the NB-IoT Card get from your provider.
139 139  
140 140  User need to take out the NB-IoT module and insert the SIM card like below:
141 141  
156 +
142 142  [[image:image-20220907171221-7.png]] ​
143 143  
144 -**2.2.3 Connect USB – TTL to NLMS01 to configure it**
145 145  
146 -User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
147 147  
148 -**Connection:**
161 +=== 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
149 149  
150 - USB TTL GND <~-~-~-~-> GND
151 151  
152 - USB TTL TXD <~-~-~-~-> UART_RXD
164 +User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
153 153  
154 - USB TTL RXD <~-~-~-~-> UART_TXD
155 155  
167 +(% style="color:blue" %)**Connection:**
168 +
169 +**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
170 +
171 +**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
172 +
173 +**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
174 +
175 +
156 156  In the PC, use below serial tool settings:
157 157  
158 -* Baud:  **9600**
159 -* Data bits:** 8**
160 -* Stop bits: **1**
161 -* Parity:  **None**
162 -* Flow Control: **None**
178 +* Baud:  (% style="color:green" %)**9600**
179 +* Data bits:**  (% style="color:green" %)8(%%)**
180 +* Stop bits:  (% style="color:green" %)**1**
181 +* Parity:  (% style="color:green" %)**None**
182 +* Flow Control: (% style="color:green" %)**None**
163 163  
164 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
165 165  
166 -​[[image:image-20220907171221-8.png]]
186 +​[[image:image-20220913090720-1.png]]
167 167  
168 -**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
169 169  
170 -**2.2.4 Use CoAP protocol to uplink data**
189 +(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
171 171  
172 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
173 173  
174 -**Use below commands:**
175 175  
176 -* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
177 -* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
178 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
193 +=== 2.2.4 Use CoAP protocol to uplink data ===
179 179  
195 +
196 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
197 +
198 +
199 +(% style="color:blue" %)**Use below commands:**
200 +
201 +* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
202 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
203 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
204 +
180 180  For parameter description, please refer to AT command set
181 181  
182 182  [[image:image-20220907171221-9.png]]
183 183  
184 -After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
185 185  
210 +After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
211 +
186 186  [[image:image-20220907171221-10.png]] ​
187 187  
188 -**2.2.5 Use UDP protocol to uplink data(Default protocol)**
189 189  
215 +
216 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
217 +
218 +
190 190  This feature is supported since firmware version v1.0.1
191 191  
192 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
193 -* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
194 -* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
221 +* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
222 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
223 +* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
195 195  
225 +
226 +
196 196  ​ [[image:image-20220907171221-11.png]]
197 197  
229 +
198 198  [[image:image-20220907171221-12.png]]
199 199  
200 200  ​
201 201  
202 -**2.2.6 Use MQTT protocol to uplink data**
203 203  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
236 +
237 +
204 204  This feature is supported since firmware version v110
205 205  
206 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
207 -* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
208 -* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
209 -* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
210 -* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
211 -* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
212 -* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
240 +* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
241 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
242 +* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
243 +* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
244 +* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
245 +* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
246 +* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
213 213  
214 214  ​ [[image:image-20220907171221-13.png]]
215 215  
250 +
251 +
216 216  [[image:image-20220907171221-14.png]]
217 217  
218 218  ​
... ... @@ -219,81 +219,109 @@
219 219  
220 220  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
221 221  
222 -**2.2.7 Use TCP protocol to uplink data**
223 223  
259 +
260 +=== 2.2.7 Use TCP protocol to uplink data ===
261 +
262 +
224 224  This feature is supported since firmware version v110
225 225  
226 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
227 -* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
265 +* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
266 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
228 228  
268 +
269 +
229 229  ​ [[image:image-20220907171221-15.png]]
230 230  
272 +
273 +
231 231  [[image:image-20220907171221-16.png]]
232 232  
233 233  ​
234 234  
235 -**2.2.8 Change Update Interval**
236 236  
279 +=== 2.2.8 Change Update Interval ===
280 +
281 +
237 237  User can use below command to change the **uplink interval**.
238 238  
239 -* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
284 +* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
240 240  
241 -**NOTE:**
242 242  
243 -**~1. By default, the device will send an uplink message every 2 hour.**
244 244  
288 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
289 +
290 +
291 +
245 245  == 2.3  Uplink Payload ==
246 246  
294 +
247 247  In this mode, uplink payload includes 87 bytes in total by default.
248 248  
249 249  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
250 250  
251 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
252 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
253 253  
300 +(% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
301 +|(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
302 +|(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
303 +
254 254  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
255 255  
306 +
256 256  [[image:image-20220907171221-17.png]]
257 257  
309 +
258 258  The payload is ASCII string, representative same HEX:
259 259  
260 -0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
312 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
261 261  
262 -* Device ID: 0xf868411056754138 = f868411056754138
263 -* Version: 0x0064=100=1.0.0
264 -
265 -* BAT: 0x0c78 = 3192 mV = 3.192V
266 -* Singal: 0x17 = 23
267 -* Mod: 0x01 = 1
268 -* Interrupt: 0x00= 0
314 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
315 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0
316 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
317 +* (% style="color:red" %)Singal: 0x17 = 23
318 +* (% style="color:blue" %)Mod: 0x01 = 1
319 +* (% style="color:green" %)Interrupt: 0x00= 0
269 269  * Leaf moisture: 0x0225= 549 = 54.9%
270 270  * Leaf Temperature:0x010B =267=26.7 °C
271 -* Time stamp : 0x6315537b =1662342011
322 +* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
272 272  * Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
273 -* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
324 +* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
274 274  
326 +
327 +
328 +
329 +
275 275  == 2.4  Payload Explanation and Sensor Interface ==
276 276  
277 -**2.4.1  Device ID**
278 278  
333 +=== 2.4.1  Device ID ===
334 +
335 +
279 279  By default, the Device ID equal to the last 15 bits of IMEI.
280 280  
281 -User can use **AT+DEUI** to set Device ID
338 +User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
282 282  
283 -**Example:**
284 284  
341 +(% style="color:blue" %)**Example**:
342 +
285 285  AT+DEUI=868411056754138
286 286  
287 287  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
288 288  
289 -**2.4.2  Version Info**
290 290  
348 +
349 +=== 2.4.2  Version Info ===
350 +
351 +
291 291  Specify the software version: 0x64=100, means firmware version 1.00.
292 292  
293 293  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
294 294  
295 -**2.4.3  Battery Info**
296 296  
357 +
358 +=== 2.4.3  Battery Info ===
359 +
360 +
297 297  Check the battery voltage for NLMS01.
298 298  
299 299  Ex1: 0x0B45 = 2885mV
... ... @@ -300,12 +300,16 @@
300 300  
301 301  Ex2: 0x0B49 = 2889mV
302 302  
303 -**2.4.4  Signal Strength**
304 304  
368 +
369 +=== 2.4.4  Signal Strength ===
370 +
371 +
305 305  NB-IoT Network signal Strength.
306 306  
307 -**Ex1: 0x1d = 29**
308 308  
375 +(% style="color:blue" %)**Ex1: 0x1d = 29**
376 +
309 309  **0**  -113dBm or less
310 310  
311 311  **1**  -111dBm
... ... @@ -316,37 +316,49 @@
316 316  
317 317  **99**    Not known or not detectable
318 318  
319 -**2.4.5  Leaf** moisture
320 320  
321 -Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
322 322  
323 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
389 +=== 2.4.5  Leaf moisture ===
324 324  
325 -**0229(H) = 549(D) /100 = 54.9.**
326 326  
327 -**2.4.6  Leaf Temperature**
392 +Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
328 328  
329 -Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
394 +For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
330 330  
331 -**Example**:
396 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
332 332  
333 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
334 334  
335 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
336 336  
337 -**2.4.7  Timestamp**
400 +=== 2.4.6  Leaf Temperature ===
338 338  
402 +
403 +Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
404 +
405 +(% style="color:blue" %)**Example**:
406 +
407 +If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
408 +
409 +If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
410 +
411 +
412 +
413 +=== 2.4.7  Timestamp ===
414 +
415 +
339 339  Time stamp : 0x6315537b =1662342011
340 340  
341 341  Convert Unix timestamp to time 2022-9-5 9:40:11.
342 342  
343 -**2.4.8  Digital Interrupt**
344 344  
345 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
346 346  
422 +=== 2.4.8  Digital Interrupt ===
423 +
424 +
425 +Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
426 +
347 347  The command is:
348 348  
349 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
429 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
350 350  
351 351  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
352 352  
... ... @@ -356,27 +356,34 @@
356 356  
357 357  0x(01): Interrupt Uplink Packet.
358 358  
359 -**2.4.9  ​+5V Output**
360 360  
440 +
441 +=== 2.4.9  ​+5V Output ===
442 +
443 +
361 361  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
362 362  
363 363  The 5V output time can be controlled by AT Command.
364 364  
365 -**AT+5VT=1000**
448 +(% style="color:blue" %)**AT+5VT=1000**
366 366  
367 367  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
368 368  
369 369  
453 +
370 370  == 2.5  Downlink Payload ==
371 371  
456 +
372 372  By default, NLMS01 prints the downlink payload to console port.
373 373  
374 374  [[image:image-20220907171221-18.png]] ​
375 375  
376 -**Examples:**
377 377  
378 -* **Set TDC**
462 +(% style="color:blue" %)**Examples:**
379 379  
464 +
465 +* (% style="color:#037691" %)**Set TDC**
466 +
380 380  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
381 381  
382 382  Payload:    01 00 00 1E    TDC=30S
... ... @@ -383,16 +383,23 @@
383 383  
384 384  Payload:    01 00 00 3C    TDC=60S
385 385  
386 -* **Reset**
387 387  
474 +
475 +* (% style="color:#037691" %)**Reset**
476 +
388 388  If payload = 0x04FF, it will reset the NLMS01
389 389  
390 -* **INTMOD**
391 391  
480 +
481 +* (% style="color:#037691" %)**INTMOD**
482 +
392 392  Downlink Payload: 06000003, Set AT+INTMOD=3
393 393  
485 +
486 +
394 394  == 2.6  ​LED Indicator ==
395 395  
489 +
396 396  The NLMS01 has an internal LED which is to show the status of different state.
397 397  
398 398  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -400,18 +400,27 @@
400 400  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
401 401  * For each uplink probe, LED will be on for 500ms.
402 402  
403 -== 2.7 Installation ==
404 404  
498 +
499 +
500 +
501 +== 2.7  Installation ==
502 +
503 +
405 405  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
406 406  
506 +
407 407  [[image:image-20220907171221-19.png]]
408 408  
409 -== 2.8 Moisture and Temperature alarm function ==
410 410  
411 -➢ AT Command:
412 412  
413 -AT+ HUMALARM =min,max
511 +== 2.8  Moisture and Temperature alarm function ==
414 414  
513 +
514 +(% style="color:blue" %)**➢ AT Command:**
515 +
516 +(% style="color:#037691" %)**AT+ HUMALARM =min,max**
517 +
415 415  ² When min=0, and max≠0, Alarm higher than max
416 416  
417 417  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -418,8 +418,9 @@
418 418  
419 419  ² When min≠0 and max≠0, Alarm higher than max or lower than min
420 420  
421 -Example:
422 422  
525 +(% style="color:blue" %)**Example:**
526 +
423 423  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
424 424  
425 425  AT+ TEMPALARM=min,max
... ... @@ -430,41 +430,54 @@
430 430  
431 431  ² When min≠0 and max≠0, Alarm higher than max or lower than min
432 432  
433 -Example:
434 434  
538 +(% style="color:blue" %)**Example:**
539 +
435 435  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
436 436  
437 437  
438 -== 2.9 Set the number of data to be uploaded and the recording time ==
439 439  
440 - AT Command:
544 +== 2.9  Set the number of data to be uploaded and the recording time ==
441 441  
442 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
443 443  
444 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
547 +(% style="color:blue" %)**➢ AT Command:**
445 445  
446 -== 2.10 Read or Clear cached data ==
549 +* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
550 +* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
447 447  
448 -➢ AT Command:
449 449  
450 -AT+CDP    ~/~/ Read cached data
451 451  
452 -[[image:image-20220907171221-20.png]]
453 453  
454 454  
455 -AT+CDP=0    ~/~/ Clear cached data
556 +== 2.1Read or Clear cached data ==
456 456  
457 457  
559 +(% style="color:blue" %)**➢ AT Command:**
560 +
561 +* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
562 +* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
563 +
564 +
565 +
566 +[[image:image-20220907171221-20.png]]
567 +
568 +
569 +
458 458  == 2.11  ​Firmware Change Log ==
459 459  
460 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
461 461  
462 -Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
573 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
463 463  
575 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
576 +
577 +
578 +
464 464  == 2.12  ​Battery Analysis ==
465 465  
466 -**2.12.1  ​Battery Type**
467 467  
582 +=== 2.12.1  ​Battery Type ===
583 +
584 +
468 468  The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
469 469  
470 470  The battery is designed to last for several years depends on the actually use environment and update interval. 
... ... @@ -477,15 +477,18 @@
477 477  
478 478  [[image:image-20220907171221-21.png]] ​
479 479  
480 -**2.12.2  Power consumption Analyze**
481 481  
598 +
599 +=== 2.12.2  Power consumption Analyze ===
600 +
601 +
482 482  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
483 483  
484 484  Instruction to use as below:
485 485  
486 -**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
606 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
487 487  
488 -**Step 2: ** Open it and choose
608 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
489 489  
490 490  * Product Model
491 491  * Uplink Interval
... ... @@ -495,26 +495,39 @@
495 495  
496 496  [[image:image-20220907171221-22.jpeg]] ​
497 497  
498 -**2.12.3  ​Battery Note**
499 499  
619 +=== 2.12.3  ​Battery Note ===
620 +
621 +
500 500  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
501 501  
502 -**2.12.4  Replace the battery**
503 503  
625 +
626 +=== 2.12.4  Replace the battery ===
627 +
628 +
504 504  The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
505 505  
631 +
632 +
506 506  = 3. ​ Access NB-IoT Module =
507 507  
635 +
508 508  Users can directly access the AT command set of the NB-IoT module.
509 509  
510 510  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
511 511  
640 +
512 512  [[image:image-20220907171221-23.png]] ​
513 513  
643 +
644 +
514 514  = 4.  Using the AT Commands =
515 515  
516 -**4.1  Access AT Commands**
517 517  
648 +== 4.1  Access AT Commands ==
649 +
650 +
518 518  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
519 519  
520 520  AT+<CMD>?  : Help on <CMD>
... ... @@ -525,8 +525,9 @@
525 525  
526 526  AT+<CMD>=?  : Get the value
527 527  
528 -**General Commands**      
529 529  
662 +(% style="color:#037691" %)**General Commands**      
663 +
530 530  AT  : Attention       
531 531  
532 532  AT?  : Short Help     
... ... @@ -549,30 +549,37 @@
549 549  
550 550  AT+SERVADDR  : Server Address
551 551  
552 -AT+TR      : Get or Set record time"
686 +AT+APN     : Get or set the APN
553 553  
688 +AT+FBAND   : Get or Set whether to automatically modify the frequency band
554 554  
555 -AT+NOU     : Get or Set the number of data to be uploaded
690 +AT+DNSCFG  : Get or Set DNS Server
556 556  
692 +AT+GETSENSORVALUE   : Returns the current sensor measurement
557 557  
558 -AT+CDP     : Read or Clear cached data
694 +AT+TR      : Get or Set record time"
559 559  
696 +AT+NOUD      : Get or Set the number of data to be uploaded
560 560  
698 +AT+CDP     : Read or Clear cached data
699 +
561 561  AT+TEMPALARM      : Get or Set alarm of temp
562 562  
563 563  AT+HUMALARM     : Get or Set alarm of PH
564 564  
565 565  
566 -**COAP Management**      
705 +(% style="color:#037691" %)**COAP Management**      
567 567  
568 568  AT+URI            : Resource parameters
569 569  
570 -**UDP Management**
571 571  
710 +(% style="color:#037691" %)**UDP Management**
711 +
572 572  AT+CFM          : Upload confirmation mode (only valid for UDP)
573 573  
574 -**MQTT Management**
575 575  
715 +(% style="color:#037691" %)**MQTT Management**
716 +
576 576  AT+CLIENT               : Get or Set MQTT client
577 577  
578 578  AT+UNAME  : Get or Set MQTT Username
... ... @@ -583,43 +583,62 @@
583 583  
584 584  AT+SUBTOPIC  : Get or Set MQTT subscription topic
585 585  
586 -**Information**          
587 587  
728 +(% style="color:#037691" %)**Information**          
729 +
588 588  AT+FDR  : Factory Data Reset
589 589  
590 590  AT+PWORD  : Serial Access Password
591 591  
734 +
735 +
592 592  = ​5.  FAQ =
593 593  
594 -**5.1 ​ How to Upgrade Firmware**
595 595  
739 +== 5.1 ​ How to Upgrade Firmware ==
740 +
741 +
596 596  User can upgrade the firmware for 1) bug fix, 2) new feature release.
597 597  
598 598  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
599 599  
600 -**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
601 601  
747 +(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
748 +
749 +
750 +
602 602  = 6.  Trouble Shooting =
603 603  
604 -**6.1  ​Connection problem when uploading firmware**
605 605  
754 +== 6.1  ​Connection problem when uploading firmware ==
755 +
756 +
606 606  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
607 607  
608 -**6.2  AT Command input doesn't work**
609 609  
610 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
611 611  
761 +== 6.2  AT Command input doesn't work ==
762 +
763 +
764 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
765 +
766 +
767 +
612 612  = 7. ​ Order Info =
613 613  
770 +
614 614  Part Number**:** NLMS01
615 615  
773 +
774 +
616 616  = 8.  Packing Info =
617 617  
618 -**Package Includes**:
619 619  
778 +(% style="color:#037691" %)**Package Includes:**
779 +
620 620  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
621 621  
622 -**Dimension and weight**:
782 +(% style="color:#037691" %)**Dimension and weight**:
623 623  
624 624  * Device Size: cm
625 625  * Device Weight: g
... ... @@ -626,11 +626,13 @@
626 626  * Package Size / pcs : cm
627 627  * Weight / pcs : g
628 628  
789 +
790 +
791 +
629 629  = 9.  Support =
630 630  
794 +
631 631  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
632 632  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
633 633  
634 634  ​
635 -
636 -
image-20220913090720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +224.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0