Version 57.9 by Xiaoling on 2022/07/08 12:01

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202 For parameter description, please refer to AT command set
203
204 [[image:1657249793983-486.png]]
205
206
207 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208
209 [[image:1657249831934-534.png]]
210
211
212
213 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214
215 This feature is supported since firmware version v1.0.1
216
217
218 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221
222 [[image:1657249864775-321.png]]
223
224
225 [[image:1657249930215-289.png]]
226
227
228
229 === 2.2.6 Use MQTT protocol to uplink data ===
230
231 This feature is supported since firmware version v110
232
233
234 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241
242 [[image:1657249978444-674.png]]
243
244
245 [[image:1657249990869-686.png]]
246
247
248 (((
249 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 )))
251
252
253
254 === 2.2.7 Use TCP protocol to uplink data ===
255
256 This feature is supported since firmware version v110
257
258
259 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261
262 [[image:1657250217799-140.png]]
263
264
265 [[image:1657250255956-604.png]]
266
267
268
269 === 2.2.8 Change Update Interval ===
270
271 User can use below command to change the (% style="color:green" %)**uplink interval**.
272
273 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274
275 (((
276 (% style="color:red" %)**NOTE:**
277 )))
278
279 (((
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 )))
282
283
284
285 == 2.3  Uplink Payload ==
286
287 In this mode, uplink payload includes in total 18 bytes
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 50px;" %)(((
291 **Size(bytes)**
292 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294
295 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296
297
298 [[image:image-20220708111918-4.png]]
299
300
301 The payload is ASCII string, representative same HEX:
302
303 0x72403155615900640c7817075e0a8c02f900 where:
304
305 * Device ID: 0x 724031556159 = 724031556159
306 * Version: 0x0064=100=1.0.0
307
308 * BAT: 0x0c78 = 3192 mV = 3.192V
309 * Singal: 0x17 = 23
310 * Soil Moisture: 0x075e= 1886 = 18.86  %
311 * Soil Temperature:0x0a8c =2700=27 °C
312 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 * Interrupt: 0x00 = 0
314
315
316 == 2.4  Payload Explanation and Sensor Interface ==
317
318
319 === 2.4.1  Device ID ===
320
321 By default, the Device ID equal to the last 6 bytes of IMEI.
322
323 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324
325 **Example:**
326
327 AT+DEUI=A84041F15612
328
329 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330
331
332
333 === 2.4.2  Version Info ===
334
335 Specify the software version: 0x64=100, means firmware version 1.00.
336
337 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338
339
340
341 === 2.4.3  Battery Info ===
342
343 (((
344 Check the battery voltage for LSE01.
345 )))
346
347 (((
348 Ex1: 0x0B45 = 2885mV
349 )))
350
351 (((
352 Ex2: 0x0B49 = 2889mV
353 )))
354
355
356
357 === 2.4.4  Signal Strength ===
358
359 NB-IoT Network signal Strength.
360
361 **Ex1: 0x1d = 29**
362
363 (% style="color:blue" %)**0**(%%)  -113dBm or less
364
365 (% style="color:blue" %)**1**(%%)  -111dBm
366
367 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368
369 (% style="color:blue" %)**31**  (%%) -51dBm or greater
370
371 (% style="color:blue" %)**99**   (%%) Not known or not detectable
372
373
374
375 === 2.4.5  Soil Moisture ===
376
377 (((
378 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 )))
380
381 (((
382 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
391 )))
392
393
394
395 === 2.4.6  Soil Temperature ===
396
397 (((
398 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
399 )))
400
401 (((
402 **Example**:
403 )))
404
405 (((
406 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
407 )))
408
409 (((
410 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
411 )))
412
413
414
415 === 2.4.7  Soil Conductivity (EC) ===
416
417 (((
418 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
419 )))
420
421 (((
422 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 )))
424
425 (((
426 Generally, the EC value of irrigation water is less than 800uS / cm.
427 )))
428
429 (((
430
431 )))
432
433 (((
434
435 )))
436
437 === 2.4.8  Digital Interrupt ===
438
439 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
440
441 The command is:
442
443 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
444
445
446 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
447
448
449 Example:
450
451 0x(00): Normal uplink packet.
452
453 0x(01): Interrupt Uplink Packet.
454
455
456
457
458 === 2.4.9  ​+5V Output ===
459
460
461 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
462
463
464 The 5V output time can be controlled by AT Command.
465
466 (% style="color:blue" %)**AT+5VT=1000**
467
468 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469
470
471
472 == 2.4 Uplink Interval ==
473
474 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
475
476
477
478 == 2.5 Downlink Payload ==
479
480 By default, LSE50 prints the downlink payload to console port.
481
482 [[image:image-20220606165544-8.png]]
483
484
485 (((
486 (% style="color:blue" %)**Examples:**
487 )))
488
489 (((
490
491 )))
492
493 * (((
494 (% style="color:blue" %)**Set TDC**
495 )))
496
497 (((
498 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
499 )))
500
501 (((
502 Payload:    01 00 00 1E    TDC=30S
503 )))
504
505 (((
506 Payload:    01 00 00 3C    TDC=60S
507 )))
508
509 (((
510
511 )))
512
513 * (((
514 (% style="color:blue" %)**Reset**
515 )))
516
517 (((
518 If payload = 0x04FF, it will reset the LSE01
519 )))
520
521
522 * (% style="color:blue" %)**CFM**
523
524 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
525
526
527
528 == 2.6 ​Show Data in DataCake IoT Server ==
529
530 (((
531 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
532 )))
533
534 (((
535
536 )))
537
538 (((
539 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
540 )))
541
542 (((
543 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
544 )))
545
546
547 [[image:1654505857935-743.png]]
548
549
550 [[image:1654505874829-548.png]]
551
552
553 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
554
555 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
556
557
558 [[image:1654505905236-553.png]]
559
560
561 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
562
563 [[image:1654505925508-181.png]]
564
565
566
567 == 2.7 Frequency Plans ==
568
569 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570
571
572 === 2.7.1 EU863-870 (EU868) ===
573
574 (% style="color:#037691" %)** Uplink:**
575
576 868.1 - SF7BW125 to SF12BW125
577
578 868.3 - SF7BW125 to SF12BW125 and SF7BW250
579
580 868.5 - SF7BW125 to SF12BW125
581
582 867.1 - SF7BW125 to SF12BW125
583
584 867.3 - SF7BW125 to SF12BW125
585
586 867.5 - SF7BW125 to SF12BW125
587
588 867.7 - SF7BW125 to SF12BW125
589
590 867.9 - SF7BW125 to SF12BW125
591
592 868.8 - FSK
593
594
595 (% style="color:#037691" %)** Downlink:**
596
597 Uplink channels 1-9 (RX1)
598
599 869.525 - SF9BW125 (RX2 downlink only)
600
601
602
603 === 2.7.2 US902-928(US915) ===
604
605 Used in USA, Canada and South America. Default use CHE=2
606
607 (% style="color:#037691" %)**Uplink:**
608
609 903.9 - SF7BW125 to SF10BW125
610
611 904.1 - SF7BW125 to SF10BW125
612
613 904.3 - SF7BW125 to SF10BW125
614
615 904.5 - SF7BW125 to SF10BW125
616
617 904.7 - SF7BW125 to SF10BW125
618
619 904.9 - SF7BW125 to SF10BW125
620
621 905.1 - SF7BW125 to SF10BW125
622
623 905.3 - SF7BW125 to SF10BW125
624
625
626 (% style="color:#037691" %)**Downlink:**
627
628 923.3 - SF7BW500 to SF12BW500
629
630 923.9 - SF7BW500 to SF12BW500
631
632 924.5 - SF7BW500 to SF12BW500
633
634 925.1 - SF7BW500 to SF12BW500
635
636 925.7 - SF7BW500 to SF12BW500
637
638 926.3 - SF7BW500 to SF12BW500
639
640 926.9 - SF7BW500 to SF12BW500
641
642 927.5 - SF7BW500 to SF12BW500
643
644 923.3 - SF12BW500(RX2 downlink only)
645
646
647
648 === 2.7.3 CN470-510 (CN470) ===
649
650 Used in China, Default use CHE=1
651
652 (% style="color:#037691" %)**Uplink:**
653
654 486.3 - SF7BW125 to SF12BW125
655
656 486.5 - SF7BW125 to SF12BW125
657
658 486.7 - SF7BW125 to SF12BW125
659
660 486.9 - SF7BW125 to SF12BW125
661
662 487.1 - SF7BW125 to SF12BW125
663
664 487.3 - SF7BW125 to SF12BW125
665
666 487.5 - SF7BW125 to SF12BW125
667
668 487.7 - SF7BW125 to SF12BW125
669
670
671 (% style="color:#037691" %)**Downlink:**
672
673 506.7 - SF7BW125 to SF12BW125
674
675 506.9 - SF7BW125 to SF12BW125
676
677 507.1 - SF7BW125 to SF12BW125
678
679 507.3 - SF7BW125 to SF12BW125
680
681 507.5 - SF7BW125 to SF12BW125
682
683 507.7 - SF7BW125 to SF12BW125
684
685 507.9 - SF7BW125 to SF12BW125
686
687 508.1 - SF7BW125 to SF12BW125
688
689 505.3 - SF12BW125 (RX2 downlink only)
690
691
692
693 === 2.7.4 AU915-928(AU915) ===
694
695 Default use CHE=2
696
697 (% style="color:#037691" %)**Uplink:**
698
699 916.8 - SF7BW125 to SF12BW125
700
701 917.0 - SF7BW125 to SF12BW125
702
703 917.2 - SF7BW125 to SF12BW125
704
705 917.4 - SF7BW125 to SF12BW125
706
707 917.6 - SF7BW125 to SF12BW125
708
709 917.8 - SF7BW125 to SF12BW125
710
711 918.0 - SF7BW125 to SF12BW125
712
713 918.2 - SF7BW125 to SF12BW125
714
715
716 (% style="color:#037691" %)**Downlink:**
717
718 923.3 - SF7BW500 to SF12BW500
719
720 923.9 - SF7BW500 to SF12BW500
721
722 924.5 - SF7BW500 to SF12BW500
723
724 925.1 - SF7BW500 to SF12BW500
725
726 925.7 - SF7BW500 to SF12BW500
727
728 926.3 - SF7BW500 to SF12BW500
729
730 926.9 - SF7BW500 to SF12BW500
731
732 927.5 - SF7BW500 to SF12BW500
733
734 923.3 - SF12BW500(RX2 downlink only)
735
736
737
738 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
739
740 (% style="color:#037691" %)**Default Uplink channel:**
741
742 923.2 - SF7BW125 to SF10BW125
743
744 923.4 - SF7BW125 to SF10BW125
745
746
747 (% style="color:#037691" %)**Additional Uplink Channel**:
748
749 (OTAA mode, channel added by JoinAccept message)
750
751 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
752
753 922.2 - SF7BW125 to SF10BW125
754
755 922.4 - SF7BW125 to SF10BW125
756
757 922.6 - SF7BW125 to SF10BW125
758
759 922.8 - SF7BW125 to SF10BW125
760
761 923.0 - SF7BW125 to SF10BW125
762
763 922.0 - SF7BW125 to SF10BW125
764
765
766 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
767
768 923.6 - SF7BW125 to SF10BW125
769
770 923.8 - SF7BW125 to SF10BW125
771
772 924.0 - SF7BW125 to SF10BW125
773
774 924.2 - SF7BW125 to SF10BW125
775
776 924.4 - SF7BW125 to SF10BW125
777
778 924.6 - SF7BW125 to SF10BW125
779
780
781 (% style="color:#037691" %)** Downlink:**
782
783 Uplink channels 1-8 (RX1)
784
785 923.2 - SF10BW125 (RX2)
786
787
788
789 === 2.7.6 KR920-923 (KR920) ===
790
791 Default channel:
792
793 922.1 - SF7BW125 to SF12BW125
794
795 922.3 - SF7BW125 to SF12BW125
796
797 922.5 - SF7BW125 to SF12BW125
798
799
800 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
801
802 922.1 - SF7BW125 to SF12BW125
803
804 922.3 - SF7BW125 to SF12BW125
805
806 922.5 - SF7BW125 to SF12BW125
807
808 922.7 - SF7BW125 to SF12BW125
809
810 922.9 - SF7BW125 to SF12BW125
811
812 923.1 - SF7BW125 to SF12BW125
813
814 923.3 - SF7BW125 to SF12BW125
815
816
817 (% style="color:#037691" %)**Downlink:**
818
819 Uplink channels 1-7(RX1)
820
821 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
822
823
824
825 === 2.7.7 IN865-867 (IN865) ===
826
827 (% style="color:#037691" %)** Uplink:**
828
829 865.0625 - SF7BW125 to SF12BW125
830
831 865.4025 - SF7BW125 to SF12BW125
832
833 865.9850 - SF7BW125 to SF12BW125
834
835
836 (% style="color:#037691" %) **Downlink:**
837
838 Uplink channels 1-3 (RX1)
839
840 866.550 - SF10BW125 (RX2)
841
842
843
844
845 == 2.8 LED Indicator ==
846
847 The LSE01 has an internal LED which is to show the status of different state.
848
849 * Blink once when device power on.
850 * Solid ON for 5 seconds once device successful Join the network.
851 * Blink once when device transmit a packet.
852
853 == 2.9 Installation in Soil ==
854
855 **Measurement the soil surface**
856
857
858 [[image:1654506634463-199.png]] ​
859
860 (((
861 (((
862 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
863 )))
864 )))
865
866
867
868 [[image:1654506665940-119.png]]
869
870 (((
871 Dig a hole with diameter > 20CM.
872 )))
873
874 (((
875 Horizontal insert the probe to the soil and fill the hole for long term measurement.
876 )))
877
878
879 == 2.10 ​Firmware Change Log ==
880
881 (((
882 **Firmware download link:**
883 )))
884
885 (((
886 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
887 )))
888
889 (((
890
891 )))
892
893 (((
894 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
895 )))
896
897 (((
898
899 )))
900
901 (((
902 **V1.0.**
903 )))
904
905 (((
906 Release
907 )))
908
909
910 == 2.11 ​Battery Analysis ==
911
912 === 2.11.1 ​Battery Type ===
913
914 (((
915 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
916 )))
917
918 (((
919 The battery is designed to last for more than 5 years for the LSN50.
920 )))
921
922 (((
923 (((
924 The battery-related documents are as below:
925 )))
926 )))
927
928 * (((
929 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
930 )))
931 * (((
932 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
933 )))
934 * (((
935 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
936 )))
937
938 [[image:image-20220610172436-1.png]]
939
940
941
942 === 2.11.2 ​Battery Note ===
943
944 (((
945 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
946 )))
947
948
949
950 === 2.11.3 Replace the battery ===
951
952 (((
953 If Battery is lower than 2.7v, user should replace the battery of LSE01.
954 )))
955
956 (((
957 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
958 )))
959
960 (((
961 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
962 )))
963
964
965
966 = 3. ​Using the AT Commands =
967
968 == 3.1 Access AT Commands ==
969
970
971 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
972
973 [[image:1654501986557-872.png||height="391" width="800"]]
974
975
976 Or if you have below board, use below connection:
977
978
979 [[image:1654502005655-729.png||height="503" width="801"]]
980
981
982
983 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
984
985
986 [[image:1654502050864-459.png||height="564" width="806"]]
987
988
989 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
990
991
992 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
993
994 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
995
996 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
997
998 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
999
1000
1001 (% style="color:#037691" %)**General Commands**(%%)      
1002
1003 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
1004
1005 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
1006
1007 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
1008
1009 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
1010
1011
1012 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1013
1014 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1015
1016 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1017
1018 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1019
1020 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1021
1022 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1023
1024 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1025
1026 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1027
1028 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1029
1030 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1031
1032 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1033
1034 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1035
1036 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1037
1038 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1039
1040 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1041
1042 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1043
1044 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1045
1046
1047 (% style="color:#037691" %)**LoRa Network Management**
1048
1049 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1050
1051 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1052
1053 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1054
1055 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1056
1057 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1058
1059 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1060
1061 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1062
1063 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1064
1065 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1066
1067 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1068
1069 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1070
1071 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1072
1073 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1074
1075 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1076
1077 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1078
1079
1080 (% style="color:#037691" %)**Information** 
1081
1082 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1083
1084 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1085
1086 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1087
1088 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1089
1090 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1091
1092 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1093
1094 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1095
1096
1097 = ​4. FAQ =
1098
1099 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1100
1101 (((
1102 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1103 When downloading the images, choose the required image file for download. ​
1104 )))
1105
1106 (((
1107
1108 )))
1109
1110 (((
1111 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1112 )))
1113
1114 (((
1115
1116 )))
1117
1118 (((
1119 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1120 )))
1121
1122 (((
1123
1124 )))
1125
1126 (((
1127 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1128 )))
1129
1130 [[image:image-20220606154726-3.png]]
1131
1132
1133 When you use the TTN network, the US915 frequency bands use are:
1134
1135 * 903.9 - SF7BW125 to SF10BW125
1136 * 904.1 - SF7BW125 to SF10BW125
1137 * 904.3 - SF7BW125 to SF10BW125
1138 * 904.5 - SF7BW125 to SF10BW125
1139 * 904.7 - SF7BW125 to SF10BW125
1140 * 904.9 - SF7BW125 to SF10BW125
1141 * 905.1 - SF7BW125 to SF10BW125
1142 * 905.3 - SF7BW125 to SF10BW125
1143 * 904.6 - SF8BW500
1144
1145 (((
1146 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1147
1148 * (% style="color:#037691" %)**AT+CHE=2**
1149 * (% style="color:#037691" %)**ATZ**
1150 )))
1151
1152 (((
1153
1154
1155 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1156 )))
1157
1158 (((
1159
1160 )))
1161
1162 (((
1163 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1164 )))
1165
1166 [[image:image-20220606154825-4.png]]
1167
1168
1169 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1170
1171 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1172
1173
1174 = 5. Trouble Shooting =
1175
1176 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1177
1178 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1179
1180
1181 == 5.2 AT Command input doesn't work ==
1182
1183 (((
1184 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1185 )))
1186
1187
1188 == 5.3 Device rejoin in at the second uplink packet ==
1189
1190 (% style="color:#4f81bd" %)**Issue describe as below:**
1191
1192 [[image:1654500909990-784.png]]
1193
1194
1195 (% style="color:#4f81bd" %)**Cause for this issue:**
1196
1197 (((
1198 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1199 )))
1200
1201
1202 (% style="color:#4f81bd" %)**Solution: **
1203
1204 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1205
1206 [[image:1654500929571-736.png||height="458" width="832"]]
1207
1208
1209 = 6. ​Order Info =
1210
1211
1212 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1213
1214
1215 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1216
1217 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1218 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1219 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1220 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1221 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1222 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1223 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1224 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1225
1226 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1227
1228 * (% style="color:red" %)**4**(%%): 4000mAh battery
1229 * (% style="color:red" %)**8**(%%): 8500mAh battery
1230
1231 (% class="wikigeneratedid" %)
1232 (((
1233
1234 )))
1235
1236 = 7. Packing Info =
1237
1238 (((
1239
1240
1241 (% style="color:#037691" %)**Package Includes**:
1242 )))
1243
1244 * (((
1245 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1246 )))
1247
1248 (((
1249
1250
1251 (% style="color:#037691" %)**Dimension and weight**:
1252 )))
1253
1254 * (((
1255 Device Size: cm
1256 )))
1257 * (((
1258 Device Weight: g
1259 )))
1260 * (((
1261 Package Size / pcs : cm
1262 )))
1263 * (((
1264 Weight / pcs : g
1265
1266
1267 )))
1268
1269 = 8. Support =
1270
1271 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1272 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0