Version 57.5 by Xiaoling on 2022/07/08 11:42

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224 [[image:1657249864775-321.png]]
225
226
227 [[image:1657249930215-289.png]]
228
229
230
231 === 2.2.6 Use MQTT protocol to uplink data ===
232
233 This feature is supported since firmware version v110
234
235
236 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
243
244 [[image:1657249978444-674.png]]
245
246
247 [[image:1657249990869-686.png]]
248
249
250 (((
251 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 )))
253
254
255
256 === 2.2.7 Use TCP protocol to uplink data ===
257
258 This feature is supported since firmware version v110
259
260
261 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
263
264 [[image:1657250217799-140.png]]
265
266
267 [[image:1657250255956-604.png]]
268
269
270 === 2.2.8 Change Update Interval ===
271
272 User can use below command to change the (% style="color:green" %)**uplink interval**.
273
274 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
275
276 (((
277 (% style="color:red" %)**NOTE:**
278 )))
279
280 (((
281 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282 )))
283
284
285
286 == 2.3  Uplink Payload ==
287
288 In this mode, uplink payload includes in total 18 bytes
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
291 |=(% style="width: 50px;" %)(((
292 **Size(bytes)**
293 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
295
296 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
297
298
299 [[image:image-20220708111918-4.png]]
300
301
302 The payload is ASCII string, representative same HEX:
303
304 0x72403155615900640c7817075e0a8c02f900 where:
305
306 * Device ID: 0x 724031556159 = 724031556159
307 * Version: 0x0064=100=1.0.0
308
309 * BAT: 0x0c78 = 3192 mV = 3.192V
310 * Singal: 0x17 = 23
311 * Soil Moisture: 0x075e= 1886 = 18.86  %
312 * Soil Temperature:0x0a8c =2700=27 °C
313 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
314 * Interrupt: 0x00 = 0
315
316
317
318
319 == 2.4  Payload Explanation and Sensor Interface ==
320
321 === 2.4.1  Device ID ===
322
323 By default, the Device ID equal to the last 6 bytes of IMEI.
324
325 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
326
327 **Example:**
328
329 AT+DEUI=A84041F15612
330
331 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
332
333
334
335 === 2.4.2  Version Info ===
336
337 Specify the software version: 0x64=100, means firmware version 1.00.
338
339 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
340
341
342
343 === 2.4.3  Battery Info ===
344
345 (((
346 Check the battery voltage for LSE01.
347 )))
348
349 (((
350 Ex1: 0x0B45 = 2885mV
351 )))
352
353 (((
354 Ex2: 0x0B49 = 2889mV
355 )))
356
357
358
359 === 2.3.4 Soil Moisture ===
360
361 (((
362 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
363 )))
364
365 (((
366 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
367 )))
368
369 (((
370
371 )))
372
373 (((
374 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
375 )))
376
377
378
379 === 2.3.5 Soil Temperature ===
380
381 (((
382 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
383 )))
384
385 (((
386 **Example**:
387 )))
388
389 (((
390 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
391 )))
392
393 (((
394 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
395 )))
396
397
398
399 === 2.3.6 Soil Conductivity (EC) ===
400
401 (((
402 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
403 )))
404
405 (((
406 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
407 )))
408
409 (((
410 Generally, the EC value of irrigation water is less than 800uS / cm.
411 )))
412
413 (((
414
415 )))
416
417 (((
418
419 )))
420
421 === 2.3.7 MOD ===
422
423 Firmware version at least v2.1 supports changing mode.
424
425 For example, bytes[10]=90
426
427 mod=(bytes[10]>>7)&0x01=1.
428
429
430 **Downlink Command:**
431
432 If payload = 0x0A00, workmode=0
433
434 If** **payload =** **0x0A01, workmode=1
435
436
437
438 === 2.3.8 ​Decode payload in The Things Network ===
439
440 While using TTN network, you can add the payload format to decode the payload.
441
442
443 [[image:1654505570700-128.png]]
444
445 (((
446 The payload decoder function for TTN is here:
447 )))
448
449 (((
450 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
451 )))
452
453
454 == 2.4 Uplink Interval ==
455
456 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
457
458
459
460 == 2.5 Downlink Payload ==
461
462 By default, LSE50 prints the downlink payload to console port.
463
464 [[image:image-20220606165544-8.png]]
465
466
467 (((
468 (% style="color:blue" %)**Examples:**
469 )))
470
471 (((
472
473 )))
474
475 * (((
476 (% style="color:blue" %)**Set TDC**
477 )))
478
479 (((
480 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
481 )))
482
483 (((
484 Payload:    01 00 00 1E    TDC=30S
485 )))
486
487 (((
488 Payload:    01 00 00 3C    TDC=60S
489 )))
490
491 (((
492
493 )))
494
495 * (((
496 (% style="color:blue" %)**Reset**
497 )))
498
499 (((
500 If payload = 0x04FF, it will reset the LSE01
501 )))
502
503
504 * (% style="color:blue" %)**CFM**
505
506 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
507
508
509
510 == 2.6 ​Show Data in DataCake IoT Server ==
511
512 (((
513 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
514 )))
515
516 (((
517
518 )))
519
520 (((
521 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
522 )))
523
524 (((
525 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
526 )))
527
528
529 [[image:1654505857935-743.png]]
530
531
532 [[image:1654505874829-548.png]]
533
534
535 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
536
537 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
538
539
540 [[image:1654505905236-553.png]]
541
542
543 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
544
545 [[image:1654505925508-181.png]]
546
547
548
549 == 2.7 Frequency Plans ==
550
551 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
552
553
554 === 2.7.1 EU863-870 (EU868) ===
555
556 (% style="color:#037691" %)** Uplink:**
557
558 868.1 - SF7BW125 to SF12BW125
559
560 868.3 - SF7BW125 to SF12BW125 and SF7BW250
561
562 868.5 - SF7BW125 to SF12BW125
563
564 867.1 - SF7BW125 to SF12BW125
565
566 867.3 - SF7BW125 to SF12BW125
567
568 867.5 - SF7BW125 to SF12BW125
569
570 867.7 - SF7BW125 to SF12BW125
571
572 867.9 - SF7BW125 to SF12BW125
573
574 868.8 - FSK
575
576
577 (% style="color:#037691" %)** Downlink:**
578
579 Uplink channels 1-9 (RX1)
580
581 869.525 - SF9BW125 (RX2 downlink only)
582
583
584
585 === 2.7.2 US902-928(US915) ===
586
587 Used in USA, Canada and South America. Default use CHE=2
588
589 (% style="color:#037691" %)**Uplink:**
590
591 903.9 - SF7BW125 to SF10BW125
592
593 904.1 - SF7BW125 to SF10BW125
594
595 904.3 - SF7BW125 to SF10BW125
596
597 904.5 - SF7BW125 to SF10BW125
598
599 904.7 - SF7BW125 to SF10BW125
600
601 904.9 - SF7BW125 to SF10BW125
602
603 905.1 - SF7BW125 to SF10BW125
604
605 905.3 - SF7BW125 to SF10BW125
606
607
608 (% style="color:#037691" %)**Downlink:**
609
610 923.3 - SF7BW500 to SF12BW500
611
612 923.9 - SF7BW500 to SF12BW500
613
614 924.5 - SF7BW500 to SF12BW500
615
616 925.1 - SF7BW500 to SF12BW500
617
618 925.7 - SF7BW500 to SF12BW500
619
620 926.3 - SF7BW500 to SF12BW500
621
622 926.9 - SF7BW500 to SF12BW500
623
624 927.5 - SF7BW500 to SF12BW500
625
626 923.3 - SF12BW500(RX2 downlink only)
627
628
629
630 === 2.7.3 CN470-510 (CN470) ===
631
632 Used in China, Default use CHE=1
633
634 (% style="color:#037691" %)**Uplink:**
635
636 486.3 - SF7BW125 to SF12BW125
637
638 486.5 - SF7BW125 to SF12BW125
639
640 486.7 - SF7BW125 to SF12BW125
641
642 486.9 - SF7BW125 to SF12BW125
643
644 487.1 - SF7BW125 to SF12BW125
645
646 487.3 - SF7BW125 to SF12BW125
647
648 487.5 - SF7BW125 to SF12BW125
649
650 487.7 - SF7BW125 to SF12BW125
651
652
653 (% style="color:#037691" %)**Downlink:**
654
655 506.7 - SF7BW125 to SF12BW125
656
657 506.9 - SF7BW125 to SF12BW125
658
659 507.1 - SF7BW125 to SF12BW125
660
661 507.3 - SF7BW125 to SF12BW125
662
663 507.5 - SF7BW125 to SF12BW125
664
665 507.7 - SF7BW125 to SF12BW125
666
667 507.9 - SF7BW125 to SF12BW125
668
669 508.1 - SF7BW125 to SF12BW125
670
671 505.3 - SF12BW125 (RX2 downlink only)
672
673
674
675 === 2.7.4 AU915-928(AU915) ===
676
677 Default use CHE=2
678
679 (% style="color:#037691" %)**Uplink:**
680
681 916.8 - SF7BW125 to SF12BW125
682
683 917.0 - SF7BW125 to SF12BW125
684
685 917.2 - SF7BW125 to SF12BW125
686
687 917.4 - SF7BW125 to SF12BW125
688
689 917.6 - SF7BW125 to SF12BW125
690
691 917.8 - SF7BW125 to SF12BW125
692
693 918.0 - SF7BW125 to SF12BW125
694
695 918.2 - SF7BW125 to SF12BW125
696
697
698 (% style="color:#037691" %)**Downlink:**
699
700 923.3 - SF7BW500 to SF12BW500
701
702 923.9 - SF7BW500 to SF12BW500
703
704 924.5 - SF7BW500 to SF12BW500
705
706 925.1 - SF7BW500 to SF12BW500
707
708 925.7 - SF7BW500 to SF12BW500
709
710 926.3 - SF7BW500 to SF12BW500
711
712 926.9 - SF7BW500 to SF12BW500
713
714 927.5 - SF7BW500 to SF12BW500
715
716 923.3 - SF12BW500(RX2 downlink only)
717
718
719
720 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
721
722 (% style="color:#037691" %)**Default Uplink channel:**
723
724 923.2 - SF7BW125 to SF10BW125
725
726 923.4 - SF7BW125 to SF10BW125
727
728
729 (% style="color:#037691" %)**Additional Uplink Channel**:
730
731 (OTAA mode, channel added by JoinAccept message)
732
733 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
734
735 922.2 - SF7BW125 to SF10BW125
736
737 922.4 - SF7BW125 to SF10BW125
738
739 922.6 - SF7BW125 to SF10BW125
740
741 922.8 - SF7BW125 to SF10BW125
742
743 923.0 - SF7BW125 to SF10BW125
744
745 922.0 - SF7BW125 to SF10BW125
746
747
748 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
749
750 923.6 - SF7BW125 to SF10BW125
751
752 923.8 - SF7BW125 to SF10BW125
753
754 924.0 - SF7BW125 to SF10BW125
755
756 924.2 - SF7BW125 to SF10BW125
757
758 924.4 - SF7BW125 to SF10BW125
759
760 924.6 - SF7BW125 to SF10BW125
761
762
763 (% style="color:#037691" %)** Downlink:**
764
765 Uplink channels 1-8 (RX1)
766
767 923.2 - SF10BW125 (RX2)
768
769
770
771 === 2.7.6 KR920-923 (KR920) ===
772
773 Default channel:
774
775 922.1 - SF7BW125 to SF12BW125
776
777 922.3 - SF7BW125 to SF12BW125
778
779 922.5 - SF7BW125 to SF12BW125
780
781
782 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
783
784 922.1 - SF7BW125 to SF12BW125
785
786 922.3 - SF7BW125 to SF12BW125
787
788 922.5 - SF7BW125 to SF12BW125
789
790 922.7 - SF7BW125 to SF12BW125
791
792 922.9 - SF7BW125 to SF12BW125
793
794 923.1 - SF7BW125 to SF12BW125
795
796 923.3 - SF7BW125 to SF12BW125
797
798
799 (% style="color:#037691" %)**Downlink:**
800
801 Uplink channels 1-7(RX1)
802
803 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
804
805
806
807 === 2.7.7 IN865-867 (IN865) ===
808
809 (% style="color:#037691" %)** Uplink:**
810
811 865.0625 - SF7BW125 to SF12BW125
812
813 865.4025 - SF7BW125 to SF12BW125
814
815 865.9850 - SF7BW125 to SF12BW125
816
817
818 (% style="color:#037691" %) **Downlink:**
819
820 Uplink channels 1-3 (RX1)
821
822 866.550 - SF10BW125 (RX2)
823
824
825
826
827 == 2.8 LED Indicator ==
828
829 The LSE01 has an internal LED which is to show the status of different state.
830
831 * Blink once when device power on.
832 * Solid ON for 5 seconds once device successful Join the network.
833 * Blink once when device transmit a packet.
834
835 == 2.9 Installation in Soil ==
836
837 **Measurement the soil surface**
838
839
840 [[image:1654506634463-199.png]] ​
841
842 (((
843 (((
844 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
845 )))
846 )))
847
848
849
850 [[image:1654506665940-119.png]]
851
852 (((
853 Dig a hole with diameter > 20CM.
854 )))
855
856 (((
857 Horizontal insert the probe to the soil and fill the hole for long term measurement.
858 )))
859
860
861 == 2.10 ​Firmware Change Log ==
862
863 (((
864 **Firmware download link:**
865 )))
866
867 (((
868 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
869 )))
870
871 (((
872
873 )))
874
875 (((
876 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
877 )))
878
879 (((
880
881 )))
882
883 (((
884 **V1.0.**
885 )))
886
887 (((
888 Release
889 )))
890
891
892 == 2.11 ​Battery Analysis ==
893
894 === 2.11.1 ​Battery Type ===
895
896 (((
897 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
898 )))
899
900 (((
901 The battery is designed to last for more than 5 years for the LSN50.
902 )))
903
904 (((
905 (((
906 The battery-related documents are as below:
907 )))
908 )))
909
910 * (((
911 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
912 )))
913 * (((
914 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
915 )))
916 * (((
917 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
918 )))
919
920 [[image:image-20220610172436-1.png]]
921
922
923
924 === 2.11.2 ​Battery Note ===
925
926 (((
927 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
928 )))
929
930
931
932 === 2.11.3 Replace the battery ===
933
934 (((
935 If Battery is lower than 2.7v, user should replace the battery of LSE01.
936 )))
937
938 (((
939 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
940 )))
941
942 (((
943 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
944 )))
945
946
947
948 = 3. ​Using the AT Commands =
949
950 == 3.1 Access AT Commands ==
951
952
953 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
954
955 [[image:1654501986557-872.png||height="391" width="800"]]
956
957
958 Or if you have below board, use below connection:
959
960
961 [[image:1654502005655-729.png||height="503" width="801"]]
962
963
964
965 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
966
967
968 [[image:1654502050864-459.png||height="564" width="806"]]
969
970
971 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
972
973
974 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
975
976 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
977
978 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
979
980 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
981
982
983 (% style="color:#037691" %)**General Commands**(%%)      
984
985 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
986
987 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
988
989 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
990
991 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
992
993
994 (% style="color:#037691" %)**Keys, IDs and EUIs management**
995
996 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
997
998 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
999
1000 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1001
1002 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1003
1004 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1005
1006 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1007
1008 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1009
1010 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1011
1012 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1013
1014 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1015
1016 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1017
1018 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1019
1020 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1021
1022 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1023
1024 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1025
1026 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1027
1028
1029 (% style="color:#037691" %)**LoRa Network Management**
1030
1031 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1032
1033 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1034
1035 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1036
1037 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1038
1039 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1040
1041 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1042
1043 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1044
1045 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1046
1047 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1048
1049 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1050
1051 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1052
1053 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1054
1055 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1056
1057 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1058
1059 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1060
1061
1062 (% style="color:#037691" %)**Information** 
1063
1064 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1065
1066 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1067
1068 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1069
1070 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1071
1072 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1073
1074 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1075
1076 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1077
1078
1079 = ​4. FAQ =
1080
1081 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1082
1083 (((
1084 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1085 When downloading the images, choose the required image file for download. ​
1086 )))
1087
1088 (((
1089
1090 )))
1091
1092 (((
1093 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1094 )))
1095
1096 (((
1097
1098 )))
1099
1100 (((
1101 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1102 )))
1103
1104 (((
1105
1106 )))
1107
1108 (((
1109 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1110 )))
1111
1112 [[image:image-20220606154726-3.png]]
1113
1114
1115 When you use the TTN network, the US915 frequency bands use are:
1116
1117 * 903.9 - SF7BW125 to SF10BW125
1118 * 904.1 - SF7BW125 to SF10BW125
1119 * 904.3 - SF7BW125 to SF10BW125
1120 * 904.5 - SF7BW125 to SF10BW125
1121 * 904.7 - SF7BW125 to SF10BW125
1122 * 904.9 - SF7BW125 to SF10BW125
1123 * 905.1 - SF7BW125 to SF10BW125
1124 * 905.3 - SF7BW125 to SF10BW125
1125 * 904.6 - SF8BW500
1126
1127 (((
1128 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1129
1130 * (% style="color:#037691" %)**AT+CHE=2**
1131 * (% style="color:#037691" %)**ATZ**
1132 )))
1133
1134 (((
1135
1136
1137 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1138 )))
1139
1140 (((
1141
1142 )))
1143
1144 (((
1145 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1146 )))
1147
1148 [[image:image-20220606154825-4.png]]
1149
1150
1151 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1152
1153 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1154
1155
1156 = 5. Trouble Shooting =
1157
1158 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1159
1160 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1161
1162
1163 == 5.2 AT Command input doesn't work ==
1164
1165 (((
1166 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1167 )))
1168
1169
1170 == 5.3 Device rejoin in at the second uplink packet ==
1171
1172 (% style="color:#4f81bd" %)**Issue describe as below:**
1173
1174 [[image:1654500909990-784.png]]
1175
1176
1177 (% style="color:#4f81bd" %)**Cause for this issue:**
1178
1179 (((
1180 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1181 )))
1182
1183
1184 (% style="color:#4f81bd" %)**Solution: **
1185
1186 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1187
1188 [[image:1654500929571-736.png||height="458" width="832"]]
1189
1190
1191 = 6. ​Order Info =
1192
1193
1194 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1195
1196
1197 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1198
1199 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1200 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1201 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1202 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1203 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1204 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1205 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1206 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1207
1208 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1209
1210 * (% style="color:red" %)**4**(%%): 4000mAh battery
1211 * (% style="color:red" %)**8**(%%): 8500mAh battery
1212
1213 (% class="wikigeneratedid" %)
1214 (((
1215
1216 )))
1217
1218 = 7. Packing Info =
1219
1220 (((
1221
1222
1223 (% style="color:#037691" %)**Package Includes**:
1224 )))
1225
1226 * (((
1227 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1228 )))
1229
1230 (((
1231
1232
1233 (% style="color:#037691" %)**Dimension and weight**:
1234 )))
1235
1236 * (((
1237 Device Size: cm
1238 )))
1239 * (((
1240 Device Weight: g
1241 )))
1242 * (((
1243 Package Size / pcs : cm
1244 )))
1245 * (((
1246 Weight / pcs : g
1247
1248
1249 )))
1250
1251 = 8. Support =
1252
1253 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1254 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]