Version 53.1 by Xiaoling on 2022/07/08 11:12

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224
225
226 [[image:1657249864775-321.png]]
227
228
229
230 [[image:1657249930215-289.png]]
231
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236 This feature is supported since firmware version v110
237
238
239 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 * (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 * (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246
247 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
248
249 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
250
251
252 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
253
254
255 === 2.2.7 Use TCP protocol to uplink data ===
256
257
258 This feature is supported since firmware version v110
259
260
261 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
263
264 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
265
266
267
268 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
269
270
271 === 2.2.8 Change Update Interval ===
272
273 User can use below command to change the (% style="color:green" %)**uplink interval**.
274
275 **~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
276
277
278 (% style="color:red" %)**NOTE:**
279
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281
282
283
284
285
286
287
288 == 2.3 Uplink Payload ==
289
290
291 === 2.3.1 MOD~=0(Default Mode) ===
292
293 LSE01 will uplink payload via LoRaWAN with below payload format: 
294
295 (((
296 Uplink payload includes in total 11 bytes.
297 )))
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
300 |(((
301 **Size**
302
303 **(bytes)**
304 )))|**2**|**2**|**2**|**2**|**2**|**1**
305 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
306 Temperature
307
308 (Reserve, Ignore now)
309 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
310 MOD & Digital Interrupt
311
312 (Optional)
313 )))
314
315 === 2.3.2 MOD~=1(Original value) ===
316
317 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
318
319 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
320 |(((
321 **Size**
322
323 **(bytes)**
324 )))|**2**|**2**|**2**|**2**|**2**|**1**
325 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
326 Temperature
327
328 (Reserve, Ignore now)
329 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
330 MOD & Digital Interrupt
331
332 (Optional)
333 )))
334
335 === 2.3.3 Battery Info ===
336
337 (((
338 Check the battery voltage for LSE01.
339 )))
340
341 (((
342 Ex1: 0x0B45 = 2885mV
343 )))
344
345 (((
346 Ex2: 0x0B49 = 2889mV
347 )))
348
349
350
351 === 2.3.4 Soil Moisture ===
352
353 (((
354 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
355 )))
356
357 (((
358 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
359 )))
360
361 (((
362
363 )))
364
365 (((
366 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
367 )))
368
369
370
371 === 2.3.5 Soil Temperature ===
372
373 (((
374 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
375 )))
376
377 (((
378 **Example**:
379 )))
380
381 (((
382 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
383 )))
384
385 (((
386 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
387 )))
388
389
390
391 === 2.3.6 Soil Conductivity (EC) ===
392
393 (((
394 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
395 )))
396
397 (((
398 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
399 )))
400
401 (((
402 Generally, the EC value of irrigation water is less than 800uS / cm.
403 )))
404
405 (((
406
407 )))
408
409 (((
410
411 )))
412
413 === 2.3.7 MOD ===
414
415 Firmware version at least v2.1 supports changing mode.
416
417 For example, bytes[10]=90
418
419 mod=(bytes[10]>>7)&0x01=1.
420
421
422 **Downlink Command:**
423
424 If payload = 0x0A00, workmode=0
425
426 If** **payload =** **0x0A01, workmode=1
427
428
429
430 === 2.3.8 ​Decode payload in The Things Network ===
431
432 While using TTN network, you can add the payload format to decode the payload.
433
434
435 [[image:1654505570700-128.png]]
436
437 (((
438 The payload decoder function for TTN is here:
439 )))
440
441 (((
442 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
443 )))
444
445
446 == 2.4 Uplink Interval ==
447
448 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
449
450
451
452 == 2.5 Downlink Payload ==
453
454 By default, LSE50 prints the downlink payload to console port.
455
456 [[image:image-20220606165544-8.png]]
457
458
459 (((
460 (% style="color:blue" %)**Examples:**
461 )))
462
463 (((
464
465 )))
466
467 * (((
468 (% style="color:blue" %)**Set TDC**
469 )))
470
471 (((
472 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
473 )))
474
475 (((
476 Payload:    01 00 00 1E    TDC=30S
477 )))
478
479 (((
480 Payload:    01 00 00 3C    TDC=60S
481 )))
482
483 (((
484
485 )))
486
487 * (((
488 (% style="color:blue" %)**Reset**
489 )))
490
491 (((
492 If payload = 0x04FF, it will reset the LSE01
493 )))
494
495
496 * (% style="color:blue" %)**CFM**
497
498 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
499
500
501
502 == 2.6 ​Show Data in DataCake IoT Server ==
503
504 (((
505 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
506 )))
507
508 (((
509
510 )))
511
512 (((
513 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
514 )))
515
516 (((
517 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518 )))
519
520
521 [[image:1654505857935-743.png]]
522
523
524 [[image:1654505874829-548.png]]
525
526
527 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
528
529 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
530
531
532 [[image:1654505905236-553.png]]
533
534
535 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
536
537 [[image:1654505925508-181.png]]
538
539
540
541 == 2.7 Frequency Plans ==
542
543 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
544
545
546 === 2.7.1 EU863-870 (EU868) ===
547
548 (% style="color:#037691" %)** Uplink:**
549
550 868.1 - SF7BW125 to SF12BW125
551
552 868.3 - SF7BW125 to SF12BW125 and SF7BW250
553
554 868.5 - SF7BW125 to SF12BW125
555
556 867.1 - SF7BW125 to SF12BW125
557
558 867.3 - SF7BW125 to SF12BW125
559
560 867.5 - SF7BW125 to SF12BW125
561
562 867.7 - SF7BW125 to SF12BW125
563
564 867.9 - SF7BW125 to SF12BW125
565
566 868.8 - FSK
567
568
569 (% style="color:#037691" %)** Downlink:**
570
571 Uplink channels 1-9 (RX1)
572
573 869.525 - SF9BW125 (RX2 downlink only)
574
575
576
577 === 2.7.2 US902-928(US915) ===
578
579 Used in USA, Canada and South America. Default use CHE=2
580
581 (% style="color:#037691" %)**Uplink:**
582
583 903.9 - SF7BW125 to SF10BW125
584
585 904.1 - SF7BW125 to SF10BW125
586
587 904.3 - SF7BW125 to SF10BW125
588
589 904.5 - SF7BW125 to SF10BW125
590
591 904.7 - SF7BW125 to SF10BW125
592
593 904.9 - SF7BW125 to SF10BW125
594
595 905.1 - SF7BW125 to SF10BW125
596
597 905.3 - SF7BW125 to SF10BW125
598
599
600 (% style="color:#037691" %)**Downlink:**
601
602 923.3 - SF7BW500 to SF12BW500
603
604 923.9 - SF7BW500 to SF12BW500
605
606 924.5 - SF7BW500 to SF12BW500
607
608 925.1 - SF7BW500 to SF12BW500
609
610 925.7 - SF7BW500 to SF12BW500
611
612 926.3 - SF7BW500 to SF12BW500
613
614 926.9 - SF7BW500 to SF12BW500
615
616 927.5 - SF7BW500 to SF12BW500
617
618 923.3 - SF12BW500(RX2 downlink only)
619
620
621
622 === 2.7.3 CN470-510 (CN470) ===
623
624 Used in China, Default use CHE=1
625
626 (% style="color:#037691" %)**Uplink:**
627
628 486.3 - SF7BW125 to SF12BW125
629
630 486.5 - SF7BW125 to SF12BW125
631
632 486.7 - SF7BW125 to SF12BW125
633
634 486.9 - SF7BW125 to SF12BW125
635
636 487.1 - SF7BW125 to SF12BW125
637
638 487.3 - SF7BW125 to SF12BW125
639
640 487.5 - SF7BW125 to SF12BW125
641
642 487.7 - SF7BW125 to SF12BW125
643
644
645 (% style="color:#037691" %)**Downlink:**
646
647 506.7 - SF7BW125 to SF12BW125
648
649 506.9 - SF7BW125 to SF12BW125
650
651 507.1 - SF7BW125 to SF12BW125
652
653 507.3 - SF7BW125 to SF12BW125
654
655 507.5 - SF7BW125 to SF12BW125
656
657 507.7 - SF7BW125 to SF12BW125
658
659 507.9 - SF7BW125 to SF12BW125
660
661 508.1 - SF7BW125 to SF12BW125
662
663 505.3 - SF12BW125 (RX2 downlink only)
664
665
666
667 === 2.7.4 AU915-928(AU915) ===
668
669 Default use CHE=2
670
671 (% style="color:#037691" %)**Uplink:**
672
673 916.8 - SF7BW125 to SF12BW125
674
675 917.0 - SF7BW125 to SF12BW125
676
677 917.2 - SF7BW125 to SF12BW125
678
679 917.4 - SF7BW125 to SF12BW125
680
681 917.6 - SF7BW125 to SF12BW125
682
683 917.8 - SF7BW125 to SF12BW125
684
685 918.0 - SF7BW125 to SF12BW125
686
687 918.2 - SF7BW125 to SF12BW125
688
689
690 (% style="color:#037691" %)**Downlink:**
691
692 923.3 - SF7BW500 to SF12BW500
693
694 923.9 - SF7BW500 to SF12BW500
695
696 924.5 - SF7BW500 to SF12BW500
697
698 925.1 - SF7BW500 to SF12BW500
699
700 925.7 - SF7BW500 to SF12BW500
701
702 926.3 - SF7BW500 to SF12BW500
703
704 926.9 - SF7BW500 to SF12BW500
705
706 927.5 - SF7BW500 to SF12BW500
707
708 923.3 - SF12BW500(RX2 downlink only)
709
710
711
712 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
713
714 (% style="color:#037691" %)**Default Uplink channel:**
715
716 923.2 - SF7BW125 to SF10BW125
717
718 923.4 - SF7BW125 to SF10BW125
719
720
721 (% style="color:#037691" %)**Additional Uplink Channel**:
722
723 (OTAA mode, channel added by JoinAccept message)
724
725 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
726
727 922.2 - SF7BW125 to SF10BW125
728
729 922.4 - SF7BW125 to SF10BW125
730
731 922.6 - SF7BW125 to SF10BW125
732
733 922.8 - SF7BW125 to SF10BW125
734
735 923.0 - SF7BW125 to SF10BW125
736
737 922.0 - SF7BW125 to SF10BW125
738
739
740 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
741
742 923.6 - SF7BW125 to SF10BW125
743
744 923.8 - SF7BW125 to SF10BW125
745
746 924.0 - SF7BW125 to SF10BW125
747
748 924.2 - SF7BW125 to SF10BW125
749
750 924.4 - SF7BW125 to SF10BW125
751
752 924.6 - SF7BW125 to SF10BW125
753
754
755 (% style="color:#037691" %)** Downlink:**
756
757 Uplink channels 1-8 (RX1)
758
759 923.2 - SF10BW125 (RX2)
760
761
762
763 === 2.7.6 KR920-923 (KR920) ===
764
765 Default channel:
766
767 922.1 - SF7BW125 to SF12BW125
768
769 922.3 - SF7BW125 to SF12BW125
770
771 922.5 - SF7BW125 to SF12BW125
772
773
774 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
775
776 922.1 - SF7BW125 to SF12BW125
777
778 922.3 - SF7BW125 to SF12BW125
779
780 922.5 - SF7BW125 to SF12BW125
781
782 922.7 - SF7BW125 to SF12BW125
783
784 922.9 - SF7BW125 to SF12BW125
785
786 923.1 - SF7BW125 to SF12BW125
787
788 923.3 - SF7BW125 to SF12BW125
789
790
791 (% style="color:#037691" %)**Downlink:**
792
793 Uplink channels 1-7(RX1)
794
795 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
796
797
798
799 === 2.7.7 IN865-867 (IN865) ===
800
801 (% style="color:#037691" %)** Uplink:**
802
803 865.0625 - SF7BW125 to SF12BW125
804
805 865.4025 - SF7BW125 to SF12BW125
806
807 865.9850 - SF7BW125 to SF12BW125
808
809
810 (% style="color:#037691" %) **Downlink:**
811
812 Uplink channels 1-3 (RX1)
813
814 866.550 - SF10BW125 (RX2)
815
816
817
818
819 == 2.8 LED Indicator ==
820
821 The LSE01 has an internal LED which is to show the status of different state.
822
823 * Blink once when device power on.
824 * Solid ON for 5 seconds once device successful Join the network.
825 * Blink once when device transmit a packet.
826
827 == 2.9 Installation in Soil ==
828
829 **Measurement the soil surface**
830
831
832 [[image:1654506634463-199.png]] ​
833
834 (((
835 (((
836 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
837 )))
838 )))
839
840
841
842 [[image:1654506665940-119.png]]
843
844 (((
845 Dig a hole with diameter > 20CM.
846 )))
847
848 (((
849 Horizontal insert the probe to the soil and fill the hole for long term measurement.
850 )))
851
852
853 == 2.10 ​Firmware Change Log ==
854
855 (((
856 **Firmware download link:**
857 )))
858
859 (((
860 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
861 )))
862
863 (((
864
865 )))
866
867 (((
868 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
869 )))
870
871 (((
872
873 )))
874
875 (((
876 **V1.0.**
877 )))
878
879 (((
880 Release
881 )))
882
883
884 == 2.11 ​Battery Analysis ==
885
886 === 2.11.1 ​Battery Type ===
887
888 (((
889 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
890 )))
891
892 (((
893 The battery is designed to last for more than 5 years for the LSN50.
894 )))
895
896 (((
897 (((
898 The battery-related documents are as below:
899 )))
900 )))
901
902 * (((
903 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
904 )))
905 * (((
906 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
907 )))
908 * (((
909 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
910 )))
911
912 [[image:image-20220610172436-1.png]]
913
914
915
916 === 2.11.2 ​Battery Note ===
917
918 (((
919 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
920 )))
921
922
923
924 === 2.11.3 Replace the battery ===
925
926 (((
927 If Battery is lower than 2.7v, user should replace the battery of LSE01.
928 )))
929
930 (((
931 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
932 )))
933
934 (((
935 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
936 )))
937
938
939
940 = 3. ​Using the AT Commands =
941
942 == 3.1 Access AT Commands ==
943
944
945 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
946
947 [[image:1654501986557-872.png||height="391" width="800"]]
948
949
950 Or if you have below board, use below connection:
951
952
953 [[image:1654502005655-729.png||height="503" width="801"]]
954
955
956
957 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
958
959
960 [[image:1654502050864-459.png||height="564" width="806"]]
961
962
963 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
964
965
966 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
967
968 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
969
970 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
971
972 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
973
974
975 (% style="color:#037691" %)**General Commands**(%%)      
976
977 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
978
979 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
980
981 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
982
983 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
984
985
986 (% style="color:#037691" %)**Keys, IDs and EUIs management**
987
988 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
989
990 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
991
992 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
993
994 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
995
996 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
997
998 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
999
1000 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1001
1002 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1003
1004 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1005
1006 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1007
1008 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1009
1010 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1011
1012 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1013
1014 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1015
1016 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1017
1018 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1019
1020
1021 (% style="color:#037691" %)**LoRa Network Management**
1022
1023 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1024
1025 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1026
1027 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1028
1029 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1030
1031 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1032
1033 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1034
1035 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1036
1037 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1038
1039 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1040
1041 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1042
1043 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1044
1045 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1046
1047 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1048
1049 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1050
1051 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1052
1053
1054 (% style="color:#037691" %)**Information** 
1055
1056 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1057
1058 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1059
1060 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1061
1062 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1063
1064 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1065
1066 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1067
1068 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1069
1070
1071 = ​4. FAQ =
1072
1073 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1074
1075 (((
1076 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1077 When downloading the images, choose the required image file for download. ​
1078 )))
1079
1080 (((
1081
1082 )))
1083
1084 (((
1085 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1086 )))
1087
1088 (((
1089
1090 )))
1091
1092 (((
1093 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1094 )))
1095
1096 (((
1097
1098 )))
1099
1100 (((
1101 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1102 )))
1103
1104 [[image:image-20220606154726-3.png]]
1105
1106
1107 When you use the TTN network, the US915 frequency bands use are:
1108
1109 * 903.9 - SF7BW125 to SF10BW125
1110 * 904.1 - SF7BW125 to SF10BW125
1111 * 904.3 - SF7BW125 to SF10BW125
1112 * 904.5 - SF7BW125 to SF10BW125
1113 * 904.7 - SF7BW125 to SF10BW125
1114 * 904.9 - SF7BW125 to SF10BW125
1115 * 905.1 - SF7BW125 to SF10BW125
1116 * 905.3 - SF7BW125 to SF10BW125
1117 * 904.6 - SF8BW500
1118
1119 (((
1120 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1121
1122 * (% style="color:#037691" %)**AT+CHE=2**
1123 * (% style="color:#037691" %)**ATZ**
1124 )))
1125
1126 (((
1127
1128
1129 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1130 )))
1131
1132 (((
1133
1134 )))
1135
1136 (((
1137 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1138 )))
1139
1140 [[image:image-20220606154825-4.png]]
1141
1142
1143 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1144
1145 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1146
1147
1148 = 5. Trouble Shooting =
1149
1150 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1151
1152 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1153
1154
1155 == 5.2 AT Command input doesn't work ==
1156
1157 (((
1158 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1159 )))
1160
1161
1162 == 5.3 Device rejoin in at the second uplink packet ==
1163
1164 (% style="color:#4f81bd" %)**Issue describe as below:**
1165
1166 [[image:1654500909990-784.png]]
1167
1168
1169 (% style="color:#4f81bd" %)**Cause for this issue:**
1170
1171 (((
1172 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1173 )))
1174
1175
1176 (% style="color:#4f81bd" %)**Solution: **
1177
1178 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1179
1180 [[image:1654500929571-736.png||height="458" width="832"]]
1181
1182
1183 = 6. ​Order Info =
1184
1185
1186 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1187
1188
1189 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1190
1191 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1192 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1193 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1194 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1195 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1196 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1197 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1198 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1199
1200 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1201
1202 * (% style="color:red" %)**4**(%%): 4000mAh battery
1203 * (% style="color:red" %)**8**(%%): 8500mAh battery
1204
1205 (% class="wikigeneratedid" %)
1206 (((
1207
1208 )))
1209
1210 = 7. Packing Info =
1211
1212 (((
1213
1214
1215 (% style="color:#037691" %)**Package Includes**:
1216 )))
1217
1218 * (((
1219 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1220 )))
1221
1222 (((
1223
1224
1225 (% style="color:#037691" %)**Dimension and weight**:
1226 )))
1227
1228 * (((
1229 Device Size: cm
1230 )))
1231 * (((
1232 Device Weight: g
1233 )))
1234 * (((
1235 Package Size / pcs : cm
1236 )))
1237 * (((
1238 Weight / pcs : g
1239
1240
1241 )))
1242
1243 = 8. Support =
1244
1245 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1246 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0