Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62
63
64 == 1.3  Specification ==
65
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.1v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72
73 (% style="color:#037691" %)**NB-IoT Spec:**
74
75 * - B1 @H-FDD: 2100MHz
76 * - B3 @H-FDD: 1800MHz
77 * - B8 @H-FDD: 900MHz
78 * - B5 @H-FDD: 850MHz
79 * - B20 @H-FDD: 800MHz
80 * - B28 @H-FDD: 700MHz
81
82
83 (% style="color:#037691" %)**Probe Specification:**
84
85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86
87 [[image:image-20220708101224-1.png]]
88
89
90
91 == ​1.4  Applications ==
92
93 * Smart Agriculture
94
95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96
97
98 == 1.5  Pin Definitions ==
99
100
101 [[image:1657246476176-652.png]]
102
103
104
105 = 2.  Use NSE01 to communicate with IoT Server =
106
107 == 2.1  How it works ==
108
109
110 (((
111 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
112 )))
113
114
115 (((
116 The diagram below shows the working flow in default firmware of NSE01:
117 )))
118
119 [[image:image-20220708101605-2.png]]
120
121 (((
122
123 )))
124
125
126
127 == 2.2 ​ Configure the NSE01 ==
128
129 === 2.2.1 Test Requirement ===
130
131
132 To use NSE01 in your city, make sure meet below requirements:
133
134 * Your local operator has already distributed a NB-IoT Network there.
135 * The local NB-IoT network used the band that NSE01 supports.
136 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137
138
139 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
140
141
142 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
143
144
145
146 === 2.2.2 Insert SIM card ===
147
148 Insert the NB-IoT Card get from your provider.
149
150
151 User need to take out the NB-IoT module and insert the SIM card like below:
152
153
154 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155
156
157 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
158
159
160 User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
161
162
163
164
165 Connection:
166
167 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168
169 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
170
171 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172
173
174
175 In the PC, use below serial tool settings:
176
177 * Baud: ** (% style="background-color:green" %)9600**(%%)
178 * Data bits:** (% style="background-color:green" %)8**(%%)
179 * Stop bits: **(% style="background-color:green" %)1**(%%)
180 * Parity: **(% style="background-color:green" %)None**(%%)
181 * Flow Control: **(% style="background-color:green" %)None**
182
183
184 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185
186 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187
188 Note: the valid AT Commands can be found at:
189
190 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191
192
193
194 === 2.2.4 Use CoAP protocol to uplink data === 
195
196
197 (% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198
199 [[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200
201
202 Use below commands:
203
204 * **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 * **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 * **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207
208
209 For parameter description, please refer to AT command set
210
211 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212
213
214 After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215
216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217
218
219 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220
221
222 This feature is supported since firmware version v1.0.1
223
224
225 * **(% style="color:blue" %)AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
226 * **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
227 * **(% style="color:blue" %)AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
228
229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230
231
232
233
234
235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236
237
238 === 2.2.6 Use MQTT protocol to uplink data ===
239
240
241 This feature is supported since firmware version v110
242
243
244 * **(% style="color:blue" %)AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
245 * **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
246 * **(% style="color:blue" %)AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT
247 * **(% style="color:blue" %)AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
248 * **(% style="color:blue" %)AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
249 * **(% style="color:blue" %)AT+PUBTOPIC=NSE01_PUB   **(%%)~/~/Set the sending topic of MQTT
250 * **(% style="color:blue" %)AT+SUBTOPIC=NSE01_SUB    **(%%) ~/~/Set the subscription topic of MQTT
251
252
253 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
254
255 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
256
257
258 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
259
260
261 === 2.2.7 Use TCP protocol to uplink data ===
262
263
264 This feature is supported since firmware version v110
265
266
267 * **(% style="color:blue" %)AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 * **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269
270 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
271
272
273
274 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
275
276
277 === 2.2.8 Change Update Interval ===
278
279 User can use below command to change the **(% style="color:green" %)uplink interval**.
280
281 **~ (% style="color:blue" %)AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282
283
284 **(% style="color:red" %)NOTE:**
285
286 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287
288
289
290
291
292
293
294 == 2.3 Uplink Payload ==
295
296
297 === 2.3.1 MOD~=0(Default Mode) ===
298
299 LSE01 will uplink payload via LoRaWAN with below payload format: 
300
301 (((
302 Uplink payload includes in total 11 bytes.
303 )))
304
305 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
306 |(((
307 **Size**
308
309 **(bytes)**
310 )))|**2**|**2**|**2**|**2**|**2**|**1**
311 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
312 Temperature
313
314 (Reserve, Ignore now)
315 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
316 MOD & Digital Interrupt
317
318 (Optional)
319 )))
320
321 === 2.3.2 MOD~=1(Original value) ===
322
323 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
324
325 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
326 |(((
327 **Size**
328
329 **(bytes)**
330 )))|**2**|**2**|**2**|**2**|**2**|**1**
331 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
332 Temperature
333
334 (Reserve, Ignore now)
335 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
336 MOD & Digital Interrupt
337
338 (Optional)
339 )))
340
341 === 2.3.3 Battery Info ===
342
343 (((
344 Check the battery voltage for LSE01.
345 )))
346
347 (((
348 Ex1: 0x0B45 = 2885mV
349 )))
350
351 (((
352 Ex2: 0x0B49 = 2889mV
353 )))
354
355
356
357 === 2.3.4 Soil Moisture ===
358
359 (((
360 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
361 )))
362
363 (((
364 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
365 )))
366
367 (((
368
369 )))
370
371 (((
372 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
373 )))
374
375
376
377 === 2.3.5 Soil Temperature ===
378
379 (((
380 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
381 )))
382
383 (((
384 **Example**:
385 )))
386
387 (((
388 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
389 )))
390
391 (((
392 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
393 )))
394
395
396
397 === 2.3.6 Soil Conductivity (EC) ===
398
399 (((
400 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
401 )))
402
403 (((
404 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
405 )))
406
407 (((
408 Generally, the EC value of irrigation water is less than 800uS / cm.
409 )))
410
411 (((
412
413 )))
414
415 (((
416
417 )))
418
419 === 2.3.7 MOD ===
420
421 Firmware version at least v2.1 supports changing mode.
422
423 For example, bytes[10]=90
424
425 mod=(bytes[10]>>7)&0x01=1.
426
427
428 **Downlink Command:**
429
430 If payload = 0x0A00, workmode=0
431
432 If** **payload =** **0x0A01, workmode=1
433
434
435
436 === 2.3.8 ​Decode payload in The Things Network ===
437
438 While using TTN network, you can add the payload format to decode the payload.
439
440
441 [[image:1654505570700-128.png]]
442
443 (((
444 The payload decoder function for TTN is here:
445 )))
446
447 (((
448 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
449 )))
450
451
452 == 2.4 Uplink Interval ==
453
454 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
455
456
457
458 == 2.5 Downlink Payload ==
459
460 By default, LSE50 prints the downlink payload to console port.
461
462 [[image:image-20220606165544-8.png]]
463
464
465 (((
466 (% style="color:blue" %)**Examples:**
467 )))
468
469 (((
470
471 )))
472
473 * (((
474 (% style="color:blue" %)**Set TDC**
475 )))
476
477 (((
478 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
479 )))
480
481 (((
482 Payload:    01 00 00 1E    TDC=30S
483 )))
484
485 (((
486 Payload:    01 00 00 3C    TDC=60S
487 )))
488
489 (((
490
491 )))
492
493 * (((
494 (% style="color:blue" %)**Reset**
495 )))
496
497 (((
498 If payload = 0x04FF, it will reset the LSE01
499 )))
500
501
502 * (% style="color:blue" %)**CFM**
503
504 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
505
506
507
508 == 2.6 ​Show Data in DataCake IoT Server ==
509
510 (((
511 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 )))
513
514 (((
515
516 )))
517
518 (((
519 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
520 )))
521
522 (((
523 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
524 )))
525
526
527 [[image:1654505857935-743.png]]
528
529
530 [[image:1654505874829-548.png]]
531
532
533 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
534
535 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
536
537
538 [[image:1654505905236-553.png]]
539
540
541 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
542
543 [[image:1654505925508-181.png]]
544
545
546
547 == 2.7 Frequency Plans ==
548
549 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
550
551
552 === 2.7.1 EU863-870 (EU868) ===
553
554 (% style="color:#037691" %)** Uplink:**
555
556 868.1 - SF7BW125 to SF12BW125
557
558 868.3 - SF7BW125 to SF12BW125 and SF7BW250
559
560 868.5 - SF7BW125 to SF12BW125
561
562 867.1 - SF7BW125 to SF12BW125
563
564 867.3 - SF7BW125 to SF12BW125
565
566 867.5 - SF7BW125 to SF12BW125
567
568 867.7 - SF7BW125 to SF12BW125
569
570 867.9 - SF7BW125 to SF12BW125
571
572 868.8 - FSK
573
574
575 (% style="color:#037691" %)** Downlink:**
576
577 Uplink channels 1-9 (RX1)
578
579 869.525 - SF9BW125 (RX2 downlink only)
580
581
582
583 === 2.7.2 US902-928(US915) ===
584
585 Used in USA, Canada and South America. Default use CHE=2
586
587 (% style="color:#037691" %)**Uplink:**
588
589 903.9 - SF7BW125 to SF10BW125
590
591 904.1 - SF7BW125 to SF10BW125
592
593 904.3 - SF7BW125 to SF10BW125
594
595 904.5 - SF7BW125 to SF10BW125
596
597 904.7 - SF7BW125 to SF10BW125
598
599 904.9 - SF7BW125 to SF10BW125
600
601 905.1 - SF7BW125 to SF10BW125
602
603 905.3 - SF7BW125 to SF10BW125
604
605
606 (% style="color:#037691" %)**Downlink:**
607
608 923.3 - SF7BW500 to SF12BW500
609
610 923.9 - SF7BW500 to SF12BW500
611
612 924.5 - SF7BW500 to SF12BW500
613
614 925.1 - SF7BW500 to SF12BW500
615
616 925.7 - SF7BW500 to SF12BW500
617
618 926.3 - SF7BW500 to SF12BW500
619
620 926.9 - SF7BW500 to SF12BW500
621
622 927.5 - SF7BW500 to SF12BW500
623
624 923.3 - SF12BW500(RX2 downlink only)
625
626
627
628 === 2.7.3 CN470-510 (CN470) ===
629
630 Used in China, Default use CHE=1
631
632 (% style="color:#037691" %)**Uplink:**
633
634 486.3 - SF7BW125 to SF12BW125
635
636 486.5 - SF7BW125 to SF12BW125
637
638 486.7 - SF7BW125 to SF12BW125
639
640 486.9 - SF7BW125 to SF12BW125
641
642 487.1 - SF7BW125 to SF12BW125
643
644 487.3 - SF7BW125 to SF12BW125
645
646 487.5 - SF7BW125 to SF12BW125
647
648 487.7 - SF7BW125 to SF12BW125
649
650
651 (% style="color:#037691" %)**Downlink:**
652
653 506.7 - SF7BW125 to SF12BW125
654
655 506.9 - SF7BW125 to SF12BW125
656
657 507.1 - SF7BW125 to SF12BW125
658
659 507.3 - SF7BW125 to SF12BW125
660
661 507.5 - SF7BW125 to SF12BW125
662
663 507.7 - SF7BW125 to SF12BW125
664
665 507.9 - SF7BW125 to SF12BW125
666
667 508.1 - SF7BW125 to SF12BW125
668
669 505.3 - SF12BW125 (RX2 downlink only)
670
671
672
673 === 2.7.4 AU915-928(AU915) ===
674
675 Default use CHE=2
676
677 (% style="color:#037691" %)**Uplink:**
678
679 916.8 - SF7BW125 to SF12BW125
680
681 917.0 - SF7BW125 to SF12BW125
682
683 917.2 - SF7BW125 to SF12BW125
684
685 917.4 - SF7BW125 to SF12BW125
686
687 917.6 - SF7BW125 to SF12BW125
688
689 917.8 - SF7BW125 to SF12BW125
690
691 918.0 - SF7BW125 to SF12BW125
692
693 918.2 - SF7BW125 to SF12BW125
694
695
696 (% style="color:#037691" %)**Downlink:**
697
698 923.3 - SF7BW500 to SF12BW500
699
700 923.9 - SF7BW500 to SF12BW500
701
702 924.5 - SF7BW500 to SF12BW500
703
704 925.1 - SF7BW500 to SF12BW500
705
706 925.7 - SF7BW500 to SF12BW500
707
708 926.3 - SF7BW500 to SF12BW500
709
710 926.9 - SF7BW500 to SF12BW500
711
712 927.5 - SF7BW500 to SF12BW500
713
714 923.3 - SF12BW500(RX2 downlink only)
715
716
717
718 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
719
720 (% style="color:#037691" %)**Default Uplink channel:**
721
722 923.2 - SF7BW125 to SF10BW125
723
724 923.4 - SF7BW125 to SF10BW125
725
726
727 (% style="color:#037691" %)**Additional Uplink Channel**:
728
729 (OTAA mode, channel added by JoinAccept message)
730
731 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
732
733 922.2 - SF7BW125 to SF10BW125
734
735 922.4 - SF7BW125 to SF10BW125
736
737 922.6 - SF7BW125 to SF10BW125
738
739 922.8 - SF7BW125 to SF10BW125
740
741 923.0 - SF7BW125 to SF10BW125
742
743 922.0 - SF7BW125 to SF10BW125
744
745
746 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
747
748 923.6 - SF7BW125 to SF10BW125
749
750 923.8 - SF7BW125 to SF10BW125
751
752 924.0 - SF7BW125 to SF10BW125
753
754 924.2 - SF7BW125 to SF10BW125
755
756 924.4 - SF7BW125 to SF10BW125
757
758 924.6 - SF7BW125 to SF10BW125
759
760
761 (% style="color:#037691" %)** Downlink:**
762
763 Uplink channels 1-8 (RX1)
764
765 923.2 - SF10BW125 (RX2)
766
767
768
769 === 2.7.6 KR920-923 (KR920) ===
770
771 Default channel:
772
773 922.1 - SF7BW125 to SF12BW125
774
775 922.3 - SF7BW125 to SF12BW125
776
777 922.5 - SF7BW125 to SF12BW125
778
779
780 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
781
782 922.1 - SF7BW125 to SF12BW125
783
784 922.3 - SF7BW125 to SF12BW125
785
786 922.5 - SF7BW125 to SF12BW125
787
788 922.7 - SF7BW125 to SF12BW125
789
790 922.9 - SF7BW125 to SF12BW125
791
792 923.1 - SF7BW125 to SF12BW125
793
794 923.3 - SF7BW125 to SF12BW125
795
796
797 (% style="color:#037691" %)**Downlink:**
798
799 Uplink channels 1-7(RX1)
800
801 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
802
803
804
805 === 2.7.7 IN865-867 (IN865) ===
806
807 (% style="color:#037691" %)** Uplink:**
808
809 865.0625 - SF7BW125 to SF12BW125
810
811 865.4025 - SF7BW125 to SF12BW125
812
813 865.9850 - SF7BW125 to SF12BW125
814
815
816 (% style="color:#037691" %) **Downlink:**
817
818 Uplink channels 1-3 (RX1)
819
820 866.550 - SF10BW125 (RX2)
821
822
823
824
825 == 2.8 LED Indicator ==
826
827 The LSE01 has an internal LED which is to show the status of different state.
828
829 * Blink once when device power on.
830 * Solid ON for 5 seconds once device successful Join the network.
831 * Blink once when device transmit a packet.
832
833 == 2.9 Installation in Soil ==
834
835 **Measurement the soil surface**
836
837
838 [[image:1654506634463-199.png]] ​
839
840 (((
841 (((
842 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
843 )))
844 )))
845
846
847
848 [[image:1654506665940-119.png]]
849
850 (((
851 Dig a hole with diameter > 20CM.
852 )))
853
854 (((
855 Horizontal insert the probe to the soil and fill the hole for long term measurement.
856 )))
857
858
859 == 2.10 ​Firmware Change Log ==
860
861 (((
862 **Firmware download link:**
863 )))
864
865 (((
866 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
867 )))
868
869 (((
870
871 )))
872
873 (((
874 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
875 )))
876
877 (((
878
879 )))
880
881 (((
882 **V1.0.**
883 )))
884
885 (((
886 Release
887 )))
888
889
890 == 2.11 ​Battery Analysis ==
891
892 === 2.11.1 ​Battery Type ===
893
894 (((
895 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
896 )))
897
898 (((
899 The battery is designed to last for more than 5 years for the LSN50.
900 )))
901
902 (((
903 (((
904 The battery-related documents are as below:
905 )))
906 )))
907
908 * (((
909 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
910 )))
911 * (((
912 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
913 )))
914 * (((
915 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
916 )))
917
918 [[image:image-20220610172436-1.png]]
919
920
921
922 === 2.11.2 ​Battery Note ===
923
924 (((
925 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
926 )))
927
928
929
930 === 2.11.3 Replace the battery ===
931
932 (((
933 If Battery is lower than 2.7v, user should replace the battery of LSE01.
934 )))
935
936 (((
937 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
938 )))
939
940 (((
941 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
942 )))
943
944
945
946 = 3. ​Using the AT Commands =
947
948 == 3.1 Access AT Commands ==
949
950
951 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
952
953 [[image:1654501986557-872.png||height="391" width="800"]]
954
955
956 Or if you have below board, use below connection:
957
958
959 [[image:1654502005655-729.png||height="503" width="801"]]
960
961
962
963 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
964
965
966 [[image:1654502050864-459.png||height="564" width="806"]]
967
968
969 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
970
971
972 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
973
974 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
975
976 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
977
978 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
979
980
981 (% style="color:#037691" %)**General Commands**(%%)      
982
983 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
984
985 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
986
987 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
988
989 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
990
991
992 (% style="color:#037691" %)**Keys, IDs and EUIs management**
993
994 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
995
996 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
997
998 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
999
1000 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1001
1002 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1003
1004 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1005
1006 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1007
1008 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1009
1010 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1011
1012 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1013
1014 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1015
1016 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1017
1018 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1019
1020 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1021
1022 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1023
1024 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1025
1026
1027 (% style="color:#037691" %)**LoRa Network Management**
1028
1029 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1030
1031 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1032
1033 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1034
1035 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1036
1037 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1038
1039 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1040
1041 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1042
1043 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1044
1045 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1046
1047 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1048
1049 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1050
1051 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1052
1053 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1054
1055 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1056
1057 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1058
1059
1060 (% style="color:#037691" %)**Information** 
1061
1062 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1063
1064 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1065
1066 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1067
1068 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1069
1070 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1071
1072 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1073
1074 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1075
1076
1077 = ​4. FAQ =
1078
1079 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1080
1081 (((
1082 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1083 When downloading the images, choose the required image file for download. ​
1084 )))
1085
1086 (((
1087
1088 )))
1089
1090 (((
1091 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1092 )))
1093
1094 (((
1095
1096 )))
1097
1098 (((
1099 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1100 )))
1101
1102 (((
1103
1104 )))
1105
1106 (((
1107 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1108 )))
1109
1110 [[image:image-20220606154726-3.png]]
1111
1112
1113 When you use the TTN network, the US915 frequency bands use are:
1114
1115 * 903.9 - SF7BW125 to SF10BW125
1116 * 904.1 - SF7BW125 to SF10BW125
1117 * 904.3 - SF7BW125 to SF10BW125
1118 * 904.5 - SF7BW125 to SF10BW125
1119 * 904.7 - SF7BW125 to SF10BW125
1120 * 904.9 - SF7BW125 to SF10BW125
1121 * 905.1 - SF7BW125 to SF10BW125
1122 * 905.3 - SF7BW125 to SF10BW125
1123 * 904.6 - SF8BW500
1124
1125 (((
1126 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1127
1128 * (% style="color:#037691" %)**AT+CHE=2**
1129 * (% style="color:#037691" %)**ATZ**
1130 )))
1131
1132 (((
1133
1134
1135 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1136 )))
1137
1138 (((
1139
1140 )))
1141
1142 (((
1143 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1144 )))
1145
1146 [[image:image-20220606154825-4.png]]
1147
1148
1149 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1150
1151 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1152
1153
1154 = 5. Trouble Shooting =
1155
1156 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1157
1158 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1159
1160
1161 == 5.2 AT Command input doesn't work ==
1162
1163 (((
1164 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1165 )))
1166
1167
1168 == 5.3 Device rejoin in at the second uplink packet ==
1169
1170 (% style="color:#4f81bd" %)**Issue describe as below:**
1171
1172 [[image:1654500909990-784.png]]
1173
1174
1175 (% style="color:#4f81bd" %)**Cause for this issue:**
1176
1177 (((
1178 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1179 )))
1180
1181
1182 (% style="color:#4f81bd" %)**Solution: **
1183
1184 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1185
1186 [[image:1654500929571-736.png||height="458" width="832"]]
1187
1188
1189 = 6. ​Order Info =
1190
1191
1192 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1193
1194
1195 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1196
1197 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1198 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1199 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1200 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1201 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1202 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1203 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1204 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1205
1206 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1207
1208 * (% style="color:red" %)**4**(%%): 4000mAh battery
1209 * (% style="color:red" %)**8**(%%): 8500mAh battery
1210
1211 (% class="wikigeneratedid" %)
1212 (((
1213
1214 )))
1215
1216 = 7. Packing Info =
1217
1218 (((
1219
1220
1221 (% style="color:#037691" %)**Package Includes**:
1222 )))
1223
1224 * (((
1225 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1226 )))
1227
1228 (((
1229
1230
1231 (% style="color:#037691" %)**Dimension and weight**:
1232 )))
1233
1234 * (((
1235 Device Size: cm
1236 )))
1237 * (((
1238 Device Weight: g
1239 )))
1240 * (((
1241 Package Size / pcs : cm
1242 )))
1243 * (((
1244 Weight / pcs : g
1245
1246
1247 )))
1248
1249 = 8. Support =
1250
1251 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1252 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0