Version 45.6 by Xiaoling on 2022/07/08 10:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62
63
64 == 1.3  Specification ==
65
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.1v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72
73 (% style="color:#037691" %)**NB-IoT Spec:**
74
75 * - B1 @H-FDD: 2100MHz
76 * - B3 @H-FDD: 1800MHz
77 * - B8 @H-FDD: 900MHz
78 * - B5 @H-FDD: 850MHz
79 * - B20 @H-FDD: 800MHz
80 * - B28 @H-FDD: 700MHz
81
82
83 (% style="color:#037691" %)**Probe Specification:**
84
85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86
87 [[image:image-20220708101224-1.png]]
88
89
90
91 == ​1.4  Applications ==
92
93 * Smart Agriculture
94
95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96
97
98 == 1.5  Pin Definitions ==
99
100
101 [[image:1657246476176-652.png]]
102
103
104
105 = 2.  Use NSE01 to communicate with IoT Server =
106
107 == 2.1  How it works ==
108
109
110 (((
111 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
112 )))
113
114
115 (((
116 The diagram below shows the working flow in default firmware of NSE01:
117 )))
118
119 [[image:image-20220708101605-2.png]]
120
121 (((
122
123 )))
124
125
126
127 == 2.2 ​ Configure the NSE01 ==
128
129 === 2.2.1 Test Requirement ===
130
131
132 To use NSE01 in your city, make sure meet below requirements:
133
134 * Your local operator has already distributed a NB-IoT Network there.
135 * The local NB-IoT network used the band that NSE01 supports.
136 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137
138
139 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
140
141
142 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
143
144
145
146 === 2.2.2 Insert SIM card ===
147
148 Insert the NB-IoT Card get from your provider.
149
150
151 User need to take out the NB-IoT module and insert the SIM card like below:
152
153
154 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155
156
157 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
158
159
160 User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
161
162
163
164
165 Connection:
166
167 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168
169 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
170
171 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172
173
174
175 In the PC, use below serial tool settings:
176
177 * Baud: ** (% style="background-color:green" %)9600**(%%)
178 * Data bits:** (% style="background-color:green" %)8**(%%)
179 * Stop bits: **(% style="background-color:green" %)1**(%%)
180 * Parity: **(% style="background-color:green" %)None**(%%)
181 * Flow Control: **(% style="background-color:green" %)None**
182
183
184 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185
186 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187
188 Note: the valid AT Commands can be found at:
189
190 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191
192
193
194 === 2.2.4 Use CoAP protocol to uplink data === 
195
196
197 (% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198
199 [[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200
201
202 Use below commands:
203
204 * **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 * **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 * **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207
208
209 For parameter description, please refer to AT command set
210
211 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212
213
214 After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215
216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217
218
219 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220
221
222 This feature is supported since firmware version v1.0.1
223
224
225 * **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
226 * **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
227 * **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
228
229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230
231
232
233
234
235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236
237
238 1.
239 11.
240 111. Use MQTT protocol to uplink data
241
242
243 This feature is supported since firmware version v110
244
245
246 * **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
247 * **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
248 * **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
249 * **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
250 * **AT+PWD=PWD                                      **~/~/Set the password of MQTT
251 * **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
252 * **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
253
254
255 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
256
257 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
258
259
260 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261
262
263 1.
264 11.
265 111. Use TCP protocol to uplink data
266
267
268 This feature is supported since firmware version v110
269
270
271 * **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
272 * **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
273
274 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
275
276
277
278 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
279
280
281 1.
282 11.
283 111. Change Update Interval
284
285 User can use below command to change the **uplink interval**.
286
287 **~ AT+TDC=600      **~/~/ Set Update Interval to 600s
288
289
290 **NOTE:**
291
292 1. By default, the device will send an uplink message every 1 hour.
293
294
295
296
297
298
299
300 == 2.3 Uplink Payload ==
301
302
303 === 2.3.1 MOD~=0(Default Mode) ===
304
305 LSE01 will uplink payload via LoRaWAN with below payload format: 
306
307 (((
308 Uplink payload includes in total 11 bytes.
309 )))
310
311 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
312 |(((
313 **Size**
314
315 **(bytes)**
316 )))|**2**|**2**|**2**|**2**|**2**|**1**
317 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
318 Temperature
319
320 (Reserve, Ignore now)
321 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
322 MOD & Digital Interrupt
323
324 (Optional)
325 )))
326
327 === 2.3.2 MOD~=1(Original value) ===
328
329 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
330
331 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
332 |(((
333 **Size**
334
335 **(bytes)**
336 )))|**2**|**2**|**2**|**2**|**2**|**1**
337 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
338 Temperature
339
340 (Reserve, Ignore now)
341 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
342 MOD & Digital Interrupt
343
344 (Optional)
345 )))
346
347 === 2.3.3 Battery Info ===
348
349 (((
350 Check the battery voltage for LSE01.
351 )))
352
353 (((
354 Ex1: 0x0B45 = 2885mV
355 )))
356
357 (((
358 Ex2: 0x0B49 = 2889mV
359 )))
360
361
362
363 === 2.3.4 Soil Moisture ===
364
365 (((
366 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
367 )))
368
369 (((
370 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
371 )))
372
373 (((
374
375 )))
376
377 (((
378 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
379 )))
380
381
382
383 === 2.3.5 Soil Temperature ===
384
385 (((
386 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
387 )))
388
389 (((
390 **Example**:
391 )))
392
393 (((
394 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
395 )))
396
397 (((
398 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
399 )))
400
401
402
403 === 2.3.6 Soil Conductivity (EC) ===
404
405 (((
406 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
407 )))
408
409 (((
410 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
411 )))
412
413 (((
414 Generally, the EC value of irrigation water is less than 800uS / cm.
415 )))
416
417 (((
418
419 )))
420
421 (((
422
423 )))
424
425 === 2.3.7 MOD ===
426
427 Firmware version at least v2.1 supports changing mode.
428
429 For example, bytes[10]=90
430
431 mod=(bytes[10]>>7)&0x01=1.
432
433
434 **Downlink Command:**
435
436 If payload = 0x0A00, workmode=0
437
438 If** **payload =** **0x0A01, workmode=1
439
440
441
442 === 2.3.8 ​Decode payload in The Things Network ===
443
444 While using TTN network, you can add the payload format to decode the payload.
445
446
447 [[image:1654505570700-128.png]]
448
449 (((
450 The payload decoder function for TTN is here:
451 )))
452
453 (((
454 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
455 )))
456
457
458 == 2.4 Uplink Interval ==
459
460 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
461
462
463
464 == 2.5 Downlink Payload ==
465
466 By default, LSE50 prints the downlink payload to console port.
467
468 [[image:image-20220606165544-8.png]]
469
470
471 (((
472 (% style="color:blue" %)**Examples:**
473 )))
474
475 (((
476
477 )))
478
479 * (((
480 (% style="color:blue" %)**Set TDC**
481 )))
482
483 (((
484 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
485 )))
486
487 (((
488 Payload:    01 00 00 1E    TDC=30S
489 )))
490
491 (((
492 Payload:    01 00 00 3C    TDC=60S
493 )))
494
495 (((
496
497 )))
498
499 * (((
500 (% style="color:blue" %)**Reset**
501 )))
502
503 (((
504 If payload = 0x04FF, it will reset the LSE01
505 )))
506
507
508 * (% style="color:blue" %)**CFM**
509
510 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
511
512
513
514 == 2.6 ​Show Data in DataCake IoT Server ==
515
516 (((
517 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
518 )))
519
520 (((
521
522 )))
523
524 (((
525 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
526 )))
527
528 (((
529 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
530 )))
531
532
533 [[image:1654505857935-743.png]]
534
535
536 [[image:1654505874829-548.png]]
537
538
539 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
540
541 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
542
543
544 [[image:1654505905236-553.png]]
545
546
547 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
548
549 [[image:1654505925508-181.png]]
550
551
552
553 == 2.7 Frequency Plans ==
554
555 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
556
557
558 === 2.7.1 EU863-870 (EU868) ===
559
560 (% style="color:#037691" %)** Uplink:**
561
562 868.1 - SF7BW125 to SF12BW125
563
564 868.3 - SF7BW125 to SF12BW125 and SF7BW250
565
566 868.5 - SF7BW125 to SF12BW125
567
568 867.1 - SF7BW125 to SF12BW125
569
570 867.3 - SF7BW125 to SF12BW125
571
572 867.5 - SF7BW125 to SF12BW125
573
574 867.7 - SF7BW125 to SF12BW125
575
576 867.9 - SF7BW125 to SF12BW125
577
578 868.8 - FSK
579
580
581 (% style="color:#037691" %)** Downlink:**
582
583 Uplink channels 1-9 (RX1)
584
585 869.525 - SF9BW125 (RX2 downlink only)
586
587
588
589 === 2.7.2 US902-928(US915) ===
590
591 Used in USA, Canada and South America. Default use CHE=2
592
593 (% style="color:#037691" %)**Uplink:**
594
595 903.9 - SF7BW125 to SF10BW125
596
597 904.1 - SF7BW125 to SF10BW125
598
599 904.3 - SF7BW125 to SF10BW125
600
601 904.5 - SF7BW125 to SF10BW125
602
603 904.7 - SF7BW125 to SF10BW125
604
605 904.9 - SF7BW125 to SF10BW125
606
607 905.1 - SF7BW125 to SF10BW125
608
609 905.3 - SF7BW125 to SF10BW125
610
611
612 (% style="color:#037691" %)**Downlink:**
613
614 923.3 - SF7BW500 to SF12BW500
615
616 923.9 - SF7BW500 to SF12BW500
617
618 924.5 - SF7BW500 to SF12BW500
619
620 925.1 - SF7BW500 to SF12BW500
621
622 925.7 - SF7BW500 to SF12BW500
623
624 926.3 - SF7BW500 to SF12BW500
625
626 926.9 - SF7BW500 to SF12BW500
627
628 927.5 - SF7BW500 to SF12BW500
629
630 923.3 - SF12BW500(RX2 downlink only)
631
632
633
634 === 2.7.3 CN470-510 (CN470) ===
635
636 Used in China, Default use CHE=1
637
638 (% style="color:#037691" %)**Uplink:**
639
640 486.3 - SF7BW125 to SF12BW125
641
642 486.5 - SF7BW125 to SF12BW125
643
644 486.7 - SF7BW125 to SF12BW125
645
646 486.9 - SF7BW125 to SF12BW125
647
648 487.1 - SF7BW125 to SF12BW125
649
650 487.3 - SF7BW125 to SF12BW125
651
652 487.5 - SF7BW125 to SF12BW125
653
654 487.7 - SF7BW125 to SF12BW125
655
656
657 (% style="color:#037691" %)**Downlink:**
658
659 506.7 - SF7BW125 to SF12BW125
660
661 506.9 - SF7BW125 to SF12BW125
662
663 507.1 - SF7BW125 to SF12BW125
664
665 507.3 - SF7BW125 to SF12BW125
666
667 507.5 - SF7BW125 to SF12BW125
668
669 507.7 - SF7BW125 to SF12BW125
670
671 507.9 - SF7BW125 to SF12BW125
672
673 508.1 - SF7BW125 to SF12BW125
674
675 505.3 - SF12BW125 (RX2 downlink only)
676
677
678
679 === 2.7.4 AU915-928(AU915) ===
680
681 Default use CHE=2
682
683 (% style="color:#037691" %)**Uplink:**
684
685 916.8 - SF7BW125 to SF12BW125
686
687 917.0 - SF7BW125 to SF12BW125
688
689 917.2 - SF7BW125 to SF12BW125
690
691 917.4 - SF7BW125 to SF12BW125
692
693 917.6 - SF7BW125 to SF12BW125
694
695 917.8 - SF7BW125 to SF12BW125
696
697 918.0 - SF7BW125 to SF12BW125
698
699 918.2 - SF7BW125 to SF12BW125
700
701
702 (% style="color:#037691" %)**Downlink:**
703
704 923.3 - SF7BW500 to SF12BW500
705
706 923.9 - SF7BW500 to SF12BW500
707
708 924.5 - SF7BW500 to SF12BW500
709
710 925.1 - SF7BW500 to SF12BW500
711
712 925.7 - SF7BW500 to SF12BW500
713
714 926.3 - SF7BW500 to SF12BW500
715
716 926.9 - SF7BW500 to SF12BW500
717
718 927.5 - SF7BW500 to SF12BW500
719
720 923.3 - SF12BW500(RX2 downlink only)
721
722
723
724 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
725
726 (% style="color:#037691" %)**Default Uplink channel:**
727
728 923.2 - SF7BW125 to SF10BW125
729
730 923.4 - SF7BW125 to SF10BW125
731
732
733 (% style="color:#037691" %)**Additional Uplink Channel**:
734
735 (OTAA mode, channel added by JoinAccept message)
736
737 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
738
739 922.2 - SF7BW125 to SF10BW125
740
741 922.4 - SF7BW125 to SF10BW125
742
743 922.6 - SF7BW125 to SF10BW125
744
745 922.8 - SF7BW125 to SF10BW125
746
747 923.0 - SF7BW125 to SF10BW125
748
749 922.0 - SF7BW125 to SF10BW125
750
751
752 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
753
754 923.6 - SF7BW125 to SF10BW125
755
756 923.8 - SF7BW125 to SF10BW125
757
758 924.0 - SF7BW125 to SF10BW125
759
760 924.2 - SF7BW125 to SF10BW125
761
762 924.4 - SF7BW125 to SF10BW125
763
764 924.6 - SF7BW125 to SF10BW125
765
766
767 (% style="color:#037691" %)** Downlink:**
768
769 Uplink channels 1-8 (RX1)
770
771 923.2 - SF10BW125 (RX2)
772
773
774
775 === 2.7.6 KR920-923 (KR920) ===
776
777 Default channel:
778
779 922.1 - SF7BW125 to SF12BW125
780
781 922.3 - SF7BW125 to SF12BW125
782
783 922.5 - SF7BW125 to SF12BW125
784
785
786 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
787
788 922.1 - SF7BW125 to SF12BW125
789
790 922.3 - SF7BW125 to SF12BW125
791
792 922.5 - SF7BW125 to SF12BW125
793
794 922.7 - SF7BW125 to SF12BW125
795
796 922.9 - SF7BW125 to SF12BW125
797
798 923.1 - SF7BW125 to SF12BW125
799
800 923.3 - SF7BW125 to SF12BW125
801
802
803 (% style="color:#037691" %)**Downlink:**
804
805 Uplink channels 1-7(RX1)
806
807 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
808
809
810
811 === 2.7.7 IN865-867 (IN865) ===
812
813 (% style="color:#037691" %)** Uplink:**
814
815 865.0625 - SF7BW125 to SF12BW125
816
817 865.4025 - SF7BW125 to SF12BW125
818
819 865.9850 - SF7BW125 to SF12BW125
820
821
822 (% style="color:#037691" %) **Downlink:**
823
824 Uplink channels 1-3 (RX1)
825
826 866.550 - SF10BW125 (RX2)
827
828
829
830
831 == 2.8 LED Indicator ==
832
833 The LSE01 has an internal LED which is to show the status of different state.
834
835 * Blink once when device power on.
836 * Solid ON for 5 seconds once device successful Join the network.
837 * Blink once when device transmit a packet.
838
839 == 2.9 Installation in Soil ==
840
841 **Measurement the soil surface**
842
843
844 [[image:1654506634463-199.png]] ​
845
846 (((
847 (((
848 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
849 )))
850 )))
851
852
853
854 [[image:1654506665940-119.png]]
855
856 (((
857 Dig a hole with diameter > 20CM.
858 )))
859
860 (((
861 Horizontal insert the probe to the soil and fill the hole for long term measurement.
862 )))
863
864
865 == 2.10 ​Firmware Change Log ==
866
867 (((
868 **Firmware download link:**
869 )))
870
871 (((
872 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
873 )))
874
875 (((
876
877 )))
878
879 (((
880 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
881 )))
882
883 (((
884
885 )))
886
887 (((
888 **V1.0.**
889 )))
890
891 (((
892 Release
893 )))
894
895
896 == 2.11 ​Battery Analysis ==
897
898 === 2.11.1 ​Battery Type ===
899
900 (((
901 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
902 )))
903
904 (((
905 The battery is designed to last for more than 5 years for the LSN50.
906 )))
907
908 (((
909 (((
910 The battery-related documents are as below:
911 )))
912 )))
913
914 * (((
915 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
916 )))
917 * (((
918 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
919 )))
920 * (((
921 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
922 )))
923
924 [[image:image-20220610172436-1.png]]
925
926
927
928 === 2.11.2 ​Battery Note ===
929
930 (((
931 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
932 )))
933
934
935
936 === 2.11.3 Replace the battery ===
937
938 (((
939 If Battery is lower than 2.7v, user should replace the battery of LSE01.
940 )))
941
942 (((
943 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
944 )))
945
946 (((
947 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
948 )))
949
950
951
952 = 3. ​Using the AT Commands =
953
954 == 3.1 Access AT Commands ==
955
956
957 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
958
959 [[image:1654501986557-872.png||height="391" width="800"]]
960
961
962 Or if you have below board, use below connection:
963
964
965 [[image:1654502005655-729.png||height="503" width="801"]]
966
967
968
969 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
970
971
972 [[image:1654502050864-459.png||height="564" width="806"]]
973
974
975 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
976
977
978 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
979
980 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
981
982 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
983
984 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
985
986
987 (% style="color:#037691" %)**General Commands**(%%)      
988
989 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
990
991 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
992
993 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
994
995 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
996
997
998 (% style="color:#037691" %)**Keys, IDs and EUIs management**
999
1000 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1001
1002 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1003
1004 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1005
1006 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1007
1008 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1009
1010 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1011
1012 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1013
1014 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1015
1016 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1017
1018 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1019
1020 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1021
1022 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1023
1024 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1025
1026 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1027
1028 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1029
1030 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1031
1032
1033 (% style="color:#037691" %)**LoRa Network Management**
1034
1035 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1036
1037 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1038
1039 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1040
1041 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1042
1043 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1044
1045 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1046
1047 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1048
1049 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1050
1051 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1052
1053 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1054
1055 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1056
1057 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1058
1059 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1060
1061 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1062
1063 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1064
1065
1066 (% style="color:#037691" %)**Information** 
1067
1068 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1069
1070 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1071
1072 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1073
1074 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1075
1076 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1077
1078 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1079
1080 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1081
1082
1083 = ​4. FAQ =
1084
1085 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1086
1087 (((
1088 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1089 When downloading the images, choose the required image file for download. ​
1090 )))
1091
1092 (((
1093
1094 )))
1095
1096 (((
1097 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1098 )))
1099
1100 (((
1101
1102 )))
1103
1104 (((
1105 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1106 )))
1107
1108 (((
1109
1110 )))
1111
1112 (((
1113 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1114 )))
1115
1116 [[image:image-20220606154726-3.png]]
1117
1118
1119 When you use the TTN network, the US915 frequency bands use are:
1120
1121 * 903.9 - SF7BW125 to SF10BW125
1122 * 904.1 - SF7BW125 to SF10BW125
1123 * 904.3 - SF7BW125 to SF10BW125
1124 * 904.5 - SF7BW125 to SF10BW125
1125 * 904.7 - SF7BW125 to SF10BW125
1126 * 904.9 - SF7BW125 to SF10BW125
1127 * 905.1 - SF7BW125 to SF10BW125
1128 * 905.3 - SF7BW125 to SF10BW125
1129 * 904.6 - SF8BW500
1130
1131 (((
1132 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1133
1134 * (% style="color:#037691" %)**AT+CHE=2**
1135 * (% style="color:#037691" %)**ATZ**
1136 )))
1137
1138 (((
1139
1140
1141 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1142 )))
1143
1144 (((
1145
1146 )))
1147
1148 (((
1149 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1150 )))
1151
1152 [[image:image-20220606154825-4.png]]
1153
1154
1155 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1156
1157 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1158
1159
1160 = 5. Trouble Shooting =
1161
1162 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1163
1164 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1165
1166
1167 == 5.2 AT Command input doesn't work ==
1168
1169 (((
1170 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1171 )))
1172
1173
1174 == 5.3 Device rejoin in at the second uplink packet ==
1175
1176 (% style="color:#4f81bd" %)**Issue describe as below:**
1177
1178 [[image:1654500909990-784.png]]
1179
1180
1181 (% style="color:#4f81bd" %)**Cause for this issue:**
1182
1183 (((
1184 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1185 )))
1186
1187
1188 (% style="color:#4f81bd" %)**Solution: **
1189
1190 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1191
1192 [[image:1654500929571-736.png||height="458" width="832"]]
1193
1194
1195 = 6. ​Order Info =
1196
1197
1198 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1199
1200
1201 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1202
1203 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1204 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1205 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1206 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1207 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1208 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1209 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1210 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1211
1212 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1213
1214 * (% style="color:red" %)**4**(%%): 4000mAh battery
1215 * (% style="color:red" %)**8**(%%): 8500mAh battery
1216
1217 (% class="wikigeneratedid" %)
1218 (((
1219
1220 )))
1221
1222 = 7. Packing Info =
1223
1224 (((
1225
1226
1227 (% style="color:#037691" %)**Package Includes**:
1228 )))
1229
1230 * (((
1231 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1232 )))
1233
1234 (((
1235
1236
1237 (% style="color:#037691" %)**Dimension and weight**:
1238 )))
1239
1240 * (((
1241 Device Size: cm
1242 )))
1243 * (((
1244 Device Weight: g
1245 )))
1246 * (((
1247 Package Size / pcs : cm
1248 )))
1249 * (((
1250 Weight / pcs : g
1251
1252
1253 )))
1254
1255 = 8. Support =
1256
1257 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1258 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]