Version 32.8 by Xiaoling on 2022/06/07 11:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6 **Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18
19 (((
20 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 )))
22
23 (((
24 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 )))
26
27 (((
28 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 )))
34
35 (((
36 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 )))
38
39
40 [[image:1654503236291-817.png]]
41
42
43 [[image:1654503265560-120.png]]
44
45
46
47 == 1.2 ​Features ==
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra low power consumption
51 * Monitor Soil Moisture
52 * Monitor Soil Temperature
53 * Monitor Soil Conductivity
54 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 * AT Commands to change parameters
56 * Uplink on periodically
57 * Downlink to change configure
58 * IP66 Waterproof Enclosure
59 * 4000mAh or 8500mAh Battery for long term use
60
61 == 1.3 Specification ==
62
63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64
65 [[image:image-20220606162220-5.png]]
66
67
68
69 == ​1.4 Applications ==
70
71 * Smart Agriculture
72
73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74
75
76 == 1.5 Firmware Change log ==
77
78
79 **LSE01 v1.0 :**  Release
80
81
82
83 = 2. Configure LSE01 to connect to LoRaWAN network =
84
85 == 2.1 How it works ==
86
87 (((
88 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 )))
90
91 (((
92 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 )))
94
95
96
97 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98
99 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100
101
102 [[image:1654503992078-669.png]]
103
104
105 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106
107
108 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109
110 Each LSE01 is shipped with a sticker with the default device EUI as below:
111
112 [[image:image-20220606163732-6.jpeg]]
113
114 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115
116 **Add APP EUI in the application**
117
118
119 [[image:1654504596150-405.png]]
120
121
122
123 **Add APP KEY and DEV EUI**
124
125 [[image:1654504683289-357.png]]
126
127
128
129 **Step 2**: Power on LSE01
130
131
132 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133
134 [[image:image-20220606163915-7.png]]
135
136
137 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138
139 [[image:1654504778294-788.png]]
140
141
142
143 == 2.3 Uplink Payload ==
144
145 === 2.3.1 MOD~=0(Default Mode) ===
146
147 LSE01 will uplink payload via LoRaWAN with below payload format: 
148
149 Uplink payload includes in total 11 bytes.
150
151 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
152 |(((
153 **Size**
154
155 **(bytes)**
156 )))|**2**|**2**|**2**|**2**|**2**|**1**
157 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
158 Temperature
159
160 (Reserve, Ignore now)
161 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
162 MOD & Digital Interrupt
163
164 (Optional)
165 )))
166
167
168
169 === 2.3.2 MOD~=1(Original value) ===
170
171 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172
173 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 |(((
175 **Size**
176
177 **(bytes)**
178 )))|**2**|**2**|**2**|**2**|**2**|**1**
179 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 Temperature
181
182 (Reserve, Ignore now)
183 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 MOD & Digital Interrupt
185
186 (Optional)
187 )))
188
189
190
191 === 2.3.3 Battery Info ===
192
193 Check the battery voltage for LSE01.
194
195 Ex1: 0x0B45 = 2885mV
196
197 Ex2: 0x0B49 = 2889mV
198
199
200
201 === 2.3.4 Soil Moisture ===
202
203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204
205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
206
207
208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209
210
211
212 === 2.3.5 Soil Temperature ===
213
214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215
216 **Example**:
217
218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219
220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221
222
223
224 === 2.3.6 Soil Conductivity (EC) ===
225
226 (((
227 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 )))
229
230 (((
231 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 )))
233
234 (((
235 Generally, the EC value of irrigation water is less than 800uS / cm.
236 )))
237
238 (((
239
240 )))
241
242 (((
243
244 )))
245
246 === 2.3.7 MOD ===
247
248 Firmware version at least v2.1 supports changing mode.
249
250 For example, bytes[10]=90
251
252 mod=(bytes[10]>>7)&0x01=1.
253
254
255 **Downlink Command:**
256
257 If payload = 0x0A00, workmode=0
258
259 If** **payload =** **0x0A01, workmode=1
260
261
262
263 === 2.3.8 ​Decode payload in The Things Network ===
264
265 While using TTN network, you can add the payload format to decode the payload.
266
267
268 [[image:1654505570700-128.png]]
269
270 The payload decoder function for TTN is here:
271
272 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
273
274
275
276 == 2.4 Uplink Interval ==
277
278 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
279
280
281
282 == 2.5 Downlink Payload ==
283
284 By default, LSE50 prints the downlink payload to console port.
285
286 [[image:image-20220606165544-8.png]]
287
288
289 **Examples:**
290
291
292 * **Set TDC**
293
294 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
295
296 Payload:    01 00 00 1E    TDC=30S
297
298 Payload:    01 00 00 3C    TDC=60S
299
300
301 * **Reset**
302
303 If payload = 0x04FF, it will reset the LSE01
304
305
306 * **CFM**
307
308 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
309
310
311
312 == 2.6 ​Show Data in DataCake IoT Server ==
313
314 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
315
316
317 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
318
319 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
320
321
322 [[image:1654505857935-743.png]]
323
324
325 [[image:1654505874829-548.png]]
326
327 Step 3: Create an account or log in Datacake.
328
329 Step 4: Search the LSE01 and add DevEUI.
330
331
332 [[image:1654505905236-553.png]]
333
334
335 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
336
337 [[image:1654505925508-181.png]]
338
339
340
341 == 2.7 Frequency Plans ==
342
343 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
344
345
346 === 2.7.1 EU863-870 (EU868) ===
347
348 (% style="color:#037691" %)** Uplink:**
349
350 868.1 - SF7BW125 to SF12BW125
351
352 868.3 - SF7BW125 to SF12BW125 and SF7BW250
353
354 868.5 - SF7BW125 to SF12BW125
355
356 867.1 - SF7BW125 to SF12BW125
357
358 867.3 - SF7BW125 to SF12BW125
359
360 867.5 - SF7BW125 to SF12BW125
361
362 867.7 - SF7BW125 to SF12BW125
363
364 867.9 - SF7BW125 to SF12BW125
365
366 868.8 - FSK
367
368
369 (% style="color:#037691" %)** Downlink:**
370
371 Uplink channels 1-9 (RX1)
372
373 869.525 - SF9BW125 (RX2 downlink only)
374
375
376
377 === 2.7.2 US902-928(US915) ===
378
379 Used in USA, Canada and South America. Default use CHE=2
380
381 (% style="color:#037691" %)**Uplink:**
382
383 903.9 - SF7BW125 to SF10BW125
384
385 904.1 - SF7BW125 to SF10BW125
386
387 904.3 - SF7BW125 to SF10BW125
388
389 904.5 - SF7BW125 to SF10BW125
390
391 904.7 - SF7BW125 to SF10BW125
392
393 904.9 - SF7BW125 to SF10BW125
394
395 905.1 - SF7BW125 to SF10BW125
396
397 905.3 - SF7BW125 to SF10BW125
398
399
400 (% style="color:#037691" %)**Downlink:**
401
402 923.3 - SF7BW500 to SF12BW500
403
404 923.9 - SF7BW500 to SF12BW500
405
406 924.5 - SF7BW500 to SF12BW500
407
408 925.1 - SF7BW500 to SF12BW500
409
410 925.7 - SF7BW500 to SF12BW500
411
412 926.3 - SF7BW500 to SF12BW500
413
414 926.9 - SF7BW500 to SF12BW500
415
416 927.5 - SF7BW500 to SF12BW500
417
418 923.3 - SF12BW500(RX2 downlink only)
419
420
421
422 === 2.7.3 CN470-510 (CN470) ===
423
424 Used in China, Default use CHE=1
425
426 (% style="color:#037691" %)**Uplink:**
427
428 486.3 - SF7BW125 to SF12BW125
429
430 486.5 - SF7BW125 to SF12BW125
431
432 486.7 - SF7BW125 to SF12BW125
433
434 486.9 - SF7BW125 to SF12BW125
435
436 487.1 - SF7BW125 to SF12BW125
437
438 487.3 - SF7BW125 to SF12BW125
439
440 487.5 - SF7BW125 to SF12BW125
441
442 487.7 - SF7BW125 to SF12BW125
443
444
445 (% style="color:#037691" %)**Downlink:**
446
447 506.7 - SF7BW125 to SF12BW125
448
449 506.9 - SF7BW125 to SF12BW125
450
451 507.1 - SF7BW125 to SF12BW125
452
453 507.3 - SF7BW125 to SF12BW125
454
455 507.5 - SF7BW125 to SF12BW125
456
457 507.7 - SF7BW125 to SF12BW125
458
459 507.9 - SF7BW125 to SF12BW125
460
461 508.1 - SF7BW125 to SF12BW125
462
463 505.3 - SF12BW125 (RX2 downlink only)
464
465
466
467 === 2.7.4 AU915-928(AU915) ===
468
469 Default use CHE=2
470
471 (% style="color:#037691" %)**Uplink:**
472
473 916.8 - SF7BW125 to SF12BW125
474
475 917.0 - SF7BW125 to SF12BW125
476
477 917.2 - SF7BW125 to SF12BW125
478
479 917.4 - SF7BW125 to SF12BW125
480
481 917.6 - SF7BW125 to SF12BW125
482
483 917.8 - SF7BW125 to SF12BW125
484
485 918.0 - SF7BW125 to SF12BW125
486
487 918.2 - SF7BW125 to SF12BW125
488
489
490 (% style="color:#037691" %)**Downlink:**
491
492 923.3 - SF7BW500 to SF12BW500
493
494 923.9 - SF7BW500 to SF12BW500
495
496 924.5 - SF7BW500 to SF12BW500
497
498 925.1 - SF7BW500 to SF12BW500
499
500 925.7 - SF7BW500 to SF12BW500
501
502 926.3 - SF7BW500 to SF12BW500
503
504 926.9 - SF7BW500 to SF12BW500
505
506 927.5 - SF7BW500 to SF12BW500
507
508 923.3 - SF12BW500(RX2 downlink only)
509
510
511
512 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
513
514 (% style="color:#037691" %)**Default Uplink channel:**
515
516 923.2 - SF7BW125 to SF10BW125
517
518 923.4 - SF7BW125 to SF10BW125
519
520
521 (% style="color:#037691" %)**Additional Uplink Channel**:
522
523 (OTAA mode, channel added by JoinAccept message)
524
525 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
526
527 922.2 - SF7BW125 to SF10BW125
528
529 922.4 - SF7BW125 to SF10BW125
530
531 922.6 - SF7BW125 to SF10BW125
532
533 922.8 - SF7BW125 to SF10BW125
534
535 923.0 - SF7BW125 to SF10BW125
536
537 922.0 - SF7BW125 to SF10BW125
538
539
540 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
541
542 923.6 - SF7BW125 to SF10BW125
543
544 923.8 - SF7BW125 to SF10BW125
545
546 924.0 - SF7BW125 to SF10BW125
547
548 924.2 - SF7BW125 to SF10BW125
549
550 924.4 - SF7BW125 to SF10BW125
551
552 924.6 - SF7BW125 to SF10BW125
553
554
555 (% style="color:#037691" %)** Downlink:**
556
557 Uplink channels 1-8 (RX1)
558
559 923.2 - SF10BW125 (RX2)
560
561
562
563 === 2.7.6 KR920-923 (KR920) ===
564
565 Default channel:
566
567 922.1 - SF7BW125 to SF12BW125
568
569 922.3 - SF7BW125 to SF12BW125
570
571 922.5 - SF7BW125 to SF12BW125
572
573
574 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
575
576 922.1 - SF7BW125 to SF12BW125
577
578 922.3 - SF7BW125 to SF12BW125
579
580 922.5 - SF7BW125 to SF12BW125
581
582 922.7 - SF7BW125 to SF12BW125
583
584 922.9 - SF7BW125 to SF12BW125
585
586 923.1 - SF7BW125 to SF12BW125
587
588 923.3 - SF7BW125 to SF12BW125
589
590
591 (% style="color:#037691" %)**Downlink:**
592
593 Uplink channels 1-7(RX1)
594
595 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
596
597
598
599 === 2.7.7 IN865-867 (IN865) ===
600
601 (% style="color:#037691" %)** Uplink:**
602
603 865.0625 - SF7BW125 to SF12BW125
604
605 865.4025 - SF7BW125 to SF12BW125
606
607 865.9850 - SF7BW125 to SF12BW125
608
609
610 (% style="color:#037691" %) **Downlink:**
611
612 Uplink channels 1-3 (RX1)
613
614 866.550 - SF10BW125 (RX2)
615
616
617
618
619 == 2.8 LED Indicator ==
620
621 The LSE01 has an internal LED which is to show the status of different state.
622
623 * Blink once when device power on.
624 * Solid ON for 5 seconds once device successful Join the network.
625 * Blink once when device transmit a packet.
626
627
628
629 == 2.9 Installation in Soil ==
630
631 **Measurement the soil surface**
632
633
634 [[image:1654506634463-199.png]] ​
635
636 (((
637 (((
638 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
639 )))
640 )))
641
642
643 [[image:1654506665940-119.png]]
644
645 (((
646 Dig a hole with diameter > 20CM.
647 )))
648
649 (((
650 Horizontal insert the probe to the soil and fill the hole for long term measurement.
651 )))
652
653
654 == 2.10 ​Firmware Change Log ==
655
656 (((
657 **Firmware download link:**
658 )))
659
660 (((
661 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
662 )))
663
664 (((
665
666 )))
667
668 (((
669 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
670 )))
671
672 (((
673
674 )))
675
676 (((
677 **V1.0.**
678 )))
679
680 (((
681 Release
682 )))
683
684
685 == 2.11 ​Battery Analysis ==
686
687 === 2.11.1 ​Battery Type ===
688
689 (((
690 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 )))
692
693 (((
694 The battery is designed to last for more than 5 years for the LSN50.
695 )))
696
697 (((
698 (((
699 The battery-related documents are as below:
700 )))
701 )))
702
703 * (((
704 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
705 )))
706 * (((
707 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
708 )))
709 * (((
710 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 )))
712
713 [[image:image-20220606171726-9.png]]
714
715
716
717 === 2.11.2 ​Battery Note ===
718
719 (((
720 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
721 )))
722
723
724
725 === 2.11.3 Replace the battery ===
726
727 (((
728 If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 )))
730
731 (((
732 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
733 )))
734
735 (((
736 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
737 )))
738
739
740
741 = 3. ​Using the AT Commands =
742
743 == 3.1 Access AT Commands ==
744
745
746 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
747
748 [[image:1654501986557-872.png||height="391" width="800"]]
749
750
751 Or if you have below board, use below connection:
752
753
754 [[image:1654502005655-729.png||height="503" width="801"]]
755
756
757
758 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
759
760
761 [[image:1654502050864-459.png||height="564" width="806"]]
762
763
764 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
765
766
767 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
768
769 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
770
771 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
772
773 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
774
775
776 (% style="color:#037691" %)**General Commands**(%%)      
777
778 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
779
780 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
781
782 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
783
784 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
785
786
787 (% style="color:#037691" %)**Keys, IDs and EUIs management**
788
789 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
790
791 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
792
793 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
794
795 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
796
797 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
798
799 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
800
801 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
802
803 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
804
805 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
806
807 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
808
809 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
810
811 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
812
813 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
814
815 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
816
817 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
818
819 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
820
821
822 (% style="color:#037691" %)**LoRa Network Management**
823
824 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
825
826 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
827
828 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
829
830 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
831
832 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
833
834 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
835
836 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
837
838 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
839
840 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
841
842 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
843
844 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
845
846 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
847
848 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
849
850 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
851
852 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
853
854
855 (% style="color:#037691" %)**Information** 
856
857 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
858
859 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
860
861 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
862
863 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
864
865 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
866
867 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
868
869 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
870
871
872 = ​4. FAQ =
873
874 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
875
876 (((
877 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 When downloading the images, choose the required image file for download. ​
879 )))
880
881 (((
882
883 )))
884
885 (((
886 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
887 )))
888
889 (((
890
891 )))
892
893 (((
894 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
895 )))
896
897 (((
898
899 )))
900
901 (((
902 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
903 )))
904
905 [[image:image-20220606154726-3.png]]
906
907
908 When you use the TTN network, the US915 frequency bands use are:
909
910 * 903.9 - SF7BW125 to SF10BW125
911 * 904.1 - SF7BW125 to SF10BW125
912 * 904.3 - SF7BW125 to SF10BW125
913 * 904.5 - SF7BW125 to SF10BW125
914 * 904.7 - SF7BW125 to SF10BW125
915 * 904.9 - SF7BW125 to SF10BW125
916 * 905.1 - SF7BW125 to SF10BW125
917 * 905.3 - SF7BW125 to SF10BW125
918 * 904.6 - SF8BW500
919
920 (((
921 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
922 )))
923
924 (% class="box infomessage" %)
925 (((
926 **AT+CHE=2**
927 )))
928
929 (% class="box infomessage" %)
930 (((
931 **ATZ**
932 )))
933
934 (((
935 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
936 )))
937
938 (((
939
940 )))
941
942 (((
943 The **AU915** band is similar. Below are the AU915 Uplink Channels.
944 )))
945
946 [[image:image-20220606154825-4.png]]
947
948
949
950 = 5. Trouble Shooting =
951
952 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
953
954 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
955
956
957 == 5.2 AT Command input doesn’t work ==
958
959 (((
960 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
961 )))
962
963
964 == 5.3 Device rejoin in at the second uplink packet ==
965
966 (% style="color:#4f81bd" %)**Issue describe as below:**
967
968 [[image:1654500909990-784.png]]
969
970
971 (% style="color:#4f81bd" %)**Cause for this issue:**
972
973 (((
974 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
975 )))
976
977
978 (% style="color:#4f81bd" %)**Solution: **
979
980 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
981
982 [[image:1654500929571-736.png||height="458" width="832"]]
983
984
985 = 6. ​Order Info =
986
987
988 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
989
990
991 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
992
993 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
994 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
995 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
996 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
997 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
998 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
999 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1000 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1001
1002 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1003
1004 * (% style="color:red" %)**4**(%%): 4000mAh battery
1005 * (% style="color:red" %)**8**(%%): 8500mAh battery
1006
1007 (% class="wikigeneratedid" %)
1008 (((
1009
1010 )))
1011
1012 = 7. Packing Info =
1013
1014 (((
1015
1016
1017 (% style="color:#037691" %)**Package Includes**:
1018 )))
1019
1020 * (((
1021 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1022 )))
1023
1024 (((
1025
1026
1027 (% style="color:#037691" %)**Dimension and weight**:
1028 )))
1029
1030 * (((
1031 Device Size: cm
1032 )))
1033 * (((
1034 Device Weight: g
1035 )))
1036 * (((
1037 Package Size / pcs : cm
1038 )))
1039 * (((
1040 Weight / pcs : g
1041
1042
1043
1044 )))
1045
1046 = 8. Support =
1047
1048 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1049 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1050
1051
1052 ~)~)~)
1053 ~)~)~)
1054 ~)~)~)