Version 32.6 by Xiaoling on 2022/06/07 11:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6 **Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18
19 (((
20 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 )))
22
23 (((
24 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 )))
26
27 (((
28 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 )))
34
35 (((
36 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 )))
38
39
40 [[image:1654503236291-817.png]]
41
42
43 [[image:1654503265560-120.png]]
44
45
46
47 == 1.2 ​Features ==
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra low power consumption
51 * Monitor Soil Moisture
52 * Monitor Soil Temperature
53 * Monitor Soil Conductivity
54 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 * AT Commands to change parameters
56 * Uplink on periodically
57 * Downlink to change configure
58 * IP66 Waterproof Enclosure
59 * 4000mAh or 8500mAh Battery for long term use
60
61 == 1.3 Specification ==
62
63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64
65 [[image:image-20220606162220-5.png]]
66
67
68
69 == ​1.4 Applications ==
70
71 * Smart Agriculture
72
73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74
75
76 == 1.5 Firmware Change log ==
77
78
79 **LSE01 v1.0 :**  Release
80
81
82
83 = 2. Configure LSE01 to connect to LoRaWAN network =
84
85 == 2.1 How it works ==
86
87 (((
88 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 )))
90
91 (((
92 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 )))
94
95
96
97 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98
99 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100
101
102 [[image:1654503992078-669.png]]
103
104
105 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106
107
108 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109
110 Each LSE01 is shipped with a sticker with the default device EUI as below:
111
112 [[image:image-20220606163732-6.jpeg]]
113
114 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115
116 **Add APP EUI in the application**
117
118
119 [[image:1654504596150-405.png]]
120
121
122
123 **Add APP KEY and DEV EUI**
124
125 [[image:1654504683289-357.png]]
126
127
128
129 **Step 2**: Power on LSE01
130
131
132 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133
134 [[image:image-20220606163915-7.png]]
135
136
137 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138
139 [[image:1654504778294-788.png]]
140
141
142
143 == 2.3 Uplink Payload ==
144
145 === 2.3.1 MOD~=0(Default Mode) ===
146
147 LSE01 will uplink payload via LoRaWAN with below payload format: 
148
149
150 Uplink payload includes in total 11 bytes.
151
152
153 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 |(((
155 **Size**
156
157 **(bytes)**
158 )))|**2**|**2**|**2**|**2**|**2**|**1**
159 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 Temperature
161
162 (Reserve, Ignore now)
163 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 MOD & Digital Interrupt
165
166 (Optional)
167 )))
168
169
170
171 === 2.3.2 MOD~=1(Original value) ===
172
173 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174
175 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 |(((
177 **Size**
178
179 **(bytes)**
180 )))|**2**|**2**|**2**|**2**|**2**|**1**
181 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 Temperature
183
184 (Reserve, Ignore now)
185 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 MOD & Digital Interrupt
187
188 (Optional)
189 )))
190
191
192
193 === 2.3.3 Battery Info ===
194
195 Check the battery voltage for LSE01.
196
197 Ex1: 0x0B45 = 2885mV
198
199 Ex2: 0x0B49 = 2889mV
200
201
202
203 === 2.3.4 Soil Moisture ===
204
205 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206
207 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
208
209
210 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211
212
213
214 === 2.3.5 Soil Temperature ===
215
216 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217
218 **Example**:
219
220 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221
222 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223
224
225
226 === 2.3.6 Soil Conductivity (EC) ===
227
228 (((
229 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
230 )))
231
232 (((
233 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
234 )))
235
236 (((
237 Generally, the EC value of irrigation water is less than 800uS / cm.
238 )))
239
240 (((
241
242 )))
243
244 (((
245
246 )))
247
248 === 2.3.7 MOD ===
249
250 Firmware version at least v2.1 supports changing mode.
251
252 For example, bytes[10]=90
253
254 mod=(bytes[10]>>7)&0x01=1.
255
256
257 **Downlink Command:**
258
259 If payload = 0x0A00, workmode=0
260
261 If** **payload =** **0x0A01, workmode=1
262
263
264
265 === 2.3.8 ​Decode payload in The Things Network ===
266
267 While using TTN network, you can add the payload format to decode the payload.
268
269
270 [[image:1654505570700-128.png]]
271
272 The payload decoder function for TTN is here:
273
274 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
275
276
277
278 == 2.4 Uplink Interval ==
279
280 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
281
282
283
284 == 2.5 Downlink Payload ==
285
286 By default, LSE50 prints the downlink payload to console port.
287
288 [[image:image-20220606165544-8.png]]
289
290
291 **Examples:**
292
293
294 * **Set TDC**
295
296 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
297
298 Payload:    01 00 00 1E    TDC=30S
299
300 Payload:    01 00 00 3C    TDC=60S
301
302
303 * **Reset**
304
305 If payload = 0x04FF, it will reset the LSE01
306
307
308 * **CFM**
309
310 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311
312
313
314 == 2.6 ​Show Data in DataCake IoT Server ==
315
316 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
317
318
319 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
320
321 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
322
323
324 [[image:1654505857935-743.png]]
325
326
327 [[image:1654505874829-548.png]]
328
329 Step 3: Create an account or log in Datacake.
330
331 Step 4: Search the LSE01 and add DevEUI.
332
333
334 [[image:1654505905236-553.png]]
335
336
337 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
338
339 [[image:1654505925508-181.png]]
340
341
342
343 == 2.7 Frequency Plans ==
344
345 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
346
347
348 === 2.7.1 EU863-870 (EU868) ===
349
350 (% style="color:#037691" %)** Uplink:**
351
352 868.1 - SF7BW125 to SF12BW125
353
354 868.3 - SF7BW125 to SF12BW125 and SF7BW250
355
356 868.5 - SF7BW125 to SF12BW125
357
358 867.1 - SF7BW125 to SF12BW125
359
360 867.3 - SF7BW125 to SF12BW125
361
362 867.5 - SF7BW125 to SF12BW125
363
364 867.7 - SF7BW125 to SF12BW125
365
366 867.9 - SF7BW125 to SF12BW125
367
368 868.8 - FSK
369
370
371 (% style="color:#037691" %)** Downlink:**
372
373 Uplink channels 1-9 (RX1)
374
375 869.525 - SF9BW125 (RX2 downlink only)
376
377
378
379 === 2.7.2 US902-928(US915) ===
380
381 Used in USA, Canada and South America. Default use CHE=2
382
383 (% style="color:#037691" %)**Uplink:**
384
385 903.9 - SF7BW125 to SF10BW125
386
387 904.1 - SF7BW125 to SF10BW125
388
389 904.3 - SF7BW125 to SF10BW125
390
391 904.5 - SF7BW125 to SF10BW125
392
393 904.7 - SF7BW125 to SF10BW125
394
395 904.9 - SF7BW125 to SF10BW125
396
397 905.1 - SF7BW125 to SF10BW125
398
399 905.3 - SF7BW125 to SF10BW125
400
401
402 (% style="color:#037691" %)**Downlink:**
403
404 923.3 - SF7BW500 to SF12BW500
405
406 923.9 - SF7BW500 to SF12BW500
407
408 924.5 - SF7BW500 to SF12BW500
409
410 925.1 - SF7BW500 to SF12BW500
411
412 925.7 - SF7BW500 to SF12BW500
413
414 926.3 - SF7BW500 to SF12BW500
415
416 926.9 - SF7BW500 to SF12BW500
417
418 927.5 - SF7BW500 to SF12BW500
419
420 923.3 - SF12BW500(RX2 downlink only)
421
422
423
424 === 2.7.3 CN470-510 (CN470) ===
425
426 Used in China, Default use CHE=1
427
428 (% style="color:#037691" %)**Uplink:**
429
430 486.3 - SF7BW125 to SF12BW125
431
432 486.5 - SF7BW125 to SF12BW125
433
434 486.7 - SF7BW125 to SF12BW125
435
436 486.9 - SF7BW125 to SF12BW125
437
438 487.1 - SF7BW125 to SF12BW125
439
440 487.3 - SF7BW125 to SF12BW125
441
442 487.5 - SF7BW125 to SF12BW125
443
444 487.7 - SF7BW125 to SF12BW125
445
446
447 (% style="color:#037691" %)**Downlink:**
448
449 506.7 - SF7BW125 to SF12BW125
450
451 506.9 - SF7BW125 to SF12BW125
452
453 507.1 - SF7BW125 to SF12BW125
454
455 507.3 - SF7BW125 to SF12BW125
456
457 507.5 - SF7BW125 to SF12BW125
458
459 507.7 - SF7BW125 to SF12BW125
460
461 507.9 - SF7BW125 to SF12BW125
462
463 508.1 - SF7BW125 to SF12BW125
464
465 505.3 - SF12BW125 (RX2 downlink only)
466
467
468
469 === 2.7.4 AU915-928(AU915) ===
470
471 Default use CHE=2
472
473 (% style="color:#037691" %)**Uplink:**
474
475 916.8 - SF7BW125 to SF12BW125
476
477 917.0 - SF7BW125 to SF12BW125
478
479 917.2 - SF7BW125 to SF12BW125
480
481 917.4 - SF7BW125 to SF12BW125
482
483 917.6 - SF7BW125 to SF12BW125
484
485 917.8 - SF7BW125 to SF12BW125
486
487 918.0 - SF7BW125 to SF12BW125
488
489 918.2 - SF7BW125 to SF12BW125
490
491
492 (% style="color:#037691" %)**Downlink:**
493
494 923.3 - SF7BW500 to SF12BW500
495
496 923.9 - SF7BW500 to SF12BW500
497
498 924.5 - SF7BW500 to SF12BW500
499
500 925.1 - SF7BW500 to SF12BW500
501
502 925.7 - SF7BW500 to SF12BW500
503
504 926.3 - SF7BW500 to SF12BW500
505
506 926.9 - SF7BW500 to SF12BW500
507
508 927.5 - SF7BW500 to SF12BW500
509
510 923.3 - SF12BW500(RX2 downlink only)
511
512
513
514 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
515
516 (% style="color:#037691" %)**Default Uplink channel:**
517
518 923.2 - SF7BW125 to SF10BW125
519
520 923.4 - SF7BW125 to SF10BW125
521
522
523 (% style="color:#037691" %)**Additional Uplink Channel**:
524
525 (OTAA mode, channel added by JoinAccept message)
526
527 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
528
529 922.2 - SF7BW125 to SF10BW125
530
531 922.4 - SF7BW125 to SF10BW125
532
533 922.6 - SF7BW125 to SF10BW125
534
535 922.8 - SF7BW125 to SF10BW125
536
537 923.0 - SF7BW125 to SF10BW125
538
539 922.0 - SF7BW125 to SF10BW125
540
541
542 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
543
544 923.6 - SF7BW125 to SF10BW125
545
546 923.8 - SF7BW125 to SF10BW125
547
548 924.0 - SF7BW125 to SF10BW125
549
550 924.2 - SF7BW125 to SF10BW125
551
552 924.4 - SF7BW125 to SF10BW125
553
554 924.6 - SF7BW125 to SF10BW125
555
556
557 (% style="color:#037691" %)** Downlink:**
558
559 Uplink channels 1-8 (RX1)
560
561 923.2 - SF10BW125 (RX2)
562
563
564
565 === 2.7.6 KR920-923 (KR920) ===
566
567 Default channel:
568
569 922.1 - SF7BW125 to SF12BW125
570
571 922.3 - SF7BW125 to SF12BW125
572
573 922.5 - SF7BW125 to SF12BW125
574
575
576 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
577
578 922.1 - SF7BW125 to SF12BW125
579
580 922.3 - SF7BW125 to SF12BW125
581
582 922.5 - SF7BW125 to SF12BW125
583
584 922.7 - SF7BW125 to SF12BW125
585
586 922.9 - SF7BW125 to SF12BW125
587
588 923.1 - SF7BW125 to SF12BW125
589
590 923.3 - SF7BW125 to SF12BW125
591
592
593 (% style="color:#037691" %)**Downlink:**
594
595 Uplink channels 1-7(RX1)
596
597 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
598
599
600
601 === 2.7.7 IN865-867 (IN865) ===
602
603 (% style="color:#037691" %)** Uplink:**
604
605 865.0625 - SF7BW125 to SF12BW125
606
607 865.4025 - SF7BW125 to SF12BW125
608
609 865.9850 - SF7BW125 to SF12BW125
610
611
612 (% style="color:#037691" %) **Downlink:**
613
614 Uplink channels 1-3 (RX1)
615
616 866.550 - SF10BW125 (RX2)
617
618
619
620
621 == 2.8 LED Indicator ==
622
623 The LSE01 has an internal LED which is to show the status of different state.
624
625 * Blink once when device power on.
626 * Solid ON for 5 seconds once device successful Join the network.
627 * Blink once when device transmit a packet.
628
629
630
631 == 2.9 Installation in Soil ==
632
633 **Measurement the soil surface**
634
635
636 [[image:1654506634463-199.png]] ​
637
638 (((
639 (((
640 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
641 )))
642 )))
643
644
645 [[image:1654506665940-119.png]]
646
647 (((
648 Dig a hole with diameter > 20CM.
649 )))
650
651 (((
652 Horizontal insert the probe to the soil and fill the hole for long term measurement.
653 )))
654
655
656 == 2.10 ​Firmware Change Log ==
657
658 (((
659 **Firmware download link:**
660 )))
661
662 (((
663 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
664 )))
665
666 (((
667
668 )))
669
670 (((
671 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
672 )))
673
674 (((
675
676 )))
677
678 (((
679 **V1.0.**
680 )))
681
682 (((
683 Release
684 )))
685
686
687 == 2.11 ​Battery Analysis ==
688
689 === 2.11.1 ​Battery Type ===
690
691 (((
692 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 )))
694
695 (((
696 The battery is designed to last for more than 5 years for the LSN50.
697 )))
698
699 (((
700 (((
701 The battery-related documents are as below:
702 )))
703 )))
704
705 * (((
706 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 )))
708 * (((
709 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
710 )))
711 * (((
712 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
713 )))
714
715 [[image:image-20220606171726-9.png]]
716
717
718
719 === 2.11.2 ​Battery Note ===
720
721 (((
722 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
723 )))
724
725
726
727 === 2.11.3 Replace the battery ===
728
729 (((
730 If Battery is lower than 2.7v, user should replace the battery of LSE01.
731 )))
732
733 (((
734 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
735 )))
736
737 (((
738 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
739 )))
740
741
742
743 = 3. ​Using the AT Commands =
744
745 == 3.1 Access AT Commands ==
746
747
748 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
749
750 [[image:1654501986557-872.png||height="391" width="800"]]
751
752
753 Or if you have below board, use below connection:
754
755
756 [[image:1654502005655-729.png||height="503" width="801"]]
757
758
759
760 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
761
762
763 [[image:1654502050864-459.png||height="564" width="806"]]
764
765
766 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
767
768
769 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
770
771 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
772
773 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
774
775 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
776
777
778 (% style="color:#037691" %)**General Commands**(%%)      
779
780 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
781
782 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
783
784 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
785
786 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
787
788
789 (% style="color:#037691" %)**Keys, IDs and EUIs management**
790
791 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
792
793 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
794
795 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
796
797 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
798
799 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
800
801 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
802
803 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
804
805 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
806
807 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
808
809 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
810
811 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
812
813 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
814
815 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
816
817 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
818
819 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
820
821 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
822
823
824 (% style="color:#037691" %)**LoRa Network Management**
825
826 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
827
828 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
829
830 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
831
832 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
833
834 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
835
836 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
837
838 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
839
840 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
841
842 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
843
844 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
845
846 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
847
848 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
849
850 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
851
852 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
853
854 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
855
856
857 (% style="color:#037691" %)**Information** 
858
859 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
860
861 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
862
863 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
864
865 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
866
867 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
868
869 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
870
871 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
872
873
874 = ​4. FAQ =
875
876 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
877
878 (((
879 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
880 When downloading the images, choose the required image file for download. ​
881 )))
882
883 (((
884
885 )))
886
887 (((
888 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
889 )))
890
891 (((
892
893 )))
894
895 (((
896 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
897 )))
898
899 (((
900
901 )))
902
903 (((
904 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
905 )))
906
907 [[image:image-20220606154726-3.png]]
908
909
910 When you use the TTN network, the US915 frequency bands use are:
911
912 * 903.9 - SF7BW125 to SF10BW125
913 * 904.1 - SF7BW125 to SF10BW125
914 * 904.3 - SF7BW125 to SF10BW125
915 * 904.5 - SF7BW125 to SF10BW125
916 * 904.7 - SF7BW125 to SF10BW125
917 * 904.9 - SF7BW125 to SF10BW125
918 * 905.1 - SF7BW125 to SF10BW125
919 * 905.3 - SF7BW125 to SF10BW125
920 * 904.6 - SF8BW500
921
922 (((
923 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
924 )))
925
926 (% class="box infomessage" %)
927 (((
928 **AT+CHE=2**
929 )))
930
931 (% class="box infomessage" %)
932 (((
933 **ATZ**
934 )))
935
936 (((
937 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
938 )))
939
940 (((
941
942 )))
943
944 (((
945 The **AU915** band is similar. Below are the AU915 Uplink Channels.
946 )))
947
948 [[image:image-20220606154825-4.png]]
949
950
951
952 = 5. Trouble Shooting =
953
954 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
955
956 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
957
958
959 == 5.2 AT Command input doesn’t work ==
960
961 (((
962 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
963 )))
964
965
966 == 5.3 Device rejoin in at the second uplink packet ==
967
968 (% style="color:#4f81bd" %)**Issue describe as below:**
969
970 [[image:1654500909990-784.png]]
971
972
973 (% style="color:#4f81bd" %)**Cause for this issue:**
974
975 (((
976 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
977 )))
978
979
980 (% style="color:#4f81bd" %)**Solution: **
981
982 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
983
984 [[image:1654500929571-736.png||height="458" width="832"]]
985
986
987 = 6. ​Order Info =
988
989
990 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
991
992
993 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
994
995 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
996 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
997 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
998 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
999 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1000 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1001 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1002 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1003
1004 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1005
1006 * (% style="color:red" %)**4**(%%): 4000mAh battery
1007 * (% style="color:red" %)**8**(%%): 8500mAh battery
1008
1009 (% class="wikigeneratedid" %)
1010 (((
1011
1012 )))
1013
1014 = 7. Packing Info =
1015
1016 (((
1017
1018
1019 (% style="color:#037691" %)**Package Includes**:
1020 )))
1021
1022 * (((
1023 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1024 )))
1025
1026 (((
1027
1028
1029 (% style="color:#037691" %)**Dimension and weight**:
1030 )))
1031
1032 * (((
1033 Device Size: cm
1034 )))
1035 * (((
1036 Device Weight: g
1037 )))
1038 * (((
1039 Package Size / pcs : cm
1040 )))
1041 * (((
1042 Weight / pcs : g
1043
1044
1045
1046 )))
1047
1048 = 8. Support =
1049
1050 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1051 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1052
1053
1054 ~)~)~)
1055 ~)~)~)
1056 ~)~)~)
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0