Version 31.6 by Xiaoling on 2022/06/06 17:24

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3
4
5
6
7
8
9
10
11 = 1. Introduction =
12
13 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14
15 (((
16 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 )))
18
19 (((
20 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 )))
22
23 (((
24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 )))
26
27 (((
28 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 )))
30
31 (((
32 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 )))
34
35
36 [[image:1654503236291-817.png]]
37
38
39 [[image:1654503265560-120.png]]
40
41
42
43 == 1.2 ​Features ==
44
45 * LoRaWAN 1.0.3 Class A
46 * Ultra low power consumption
47 * Monitor Soil Moisture
48 * Monitor Soil Temperature
49 * Monitor Soil Conductivity
50 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 * AT Commands to change parameters
52 * Uplink on periodically
53 * Downlink to change configure
54 * IP66 Waterproof Enclosure
55 * 4000mAh or 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60
61 [[image:image-20220606162220-5.png]]
62
63
64
65 == ​1.4 Applications ==
66
67 * Smart Agriculture
68
69 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70
71
72 == 1.5 Firmware Change log ==
73
74
75 **LSE01 v1.0 :**  Release
76
77
78
79 = 2. Configure LSE01 to connect to LoRaWAN network =
80
81 == 2.1 How it works ==
82
83 (((
84 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 )))
86
87 (((
88 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 )))
90
91
92
93 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94
95 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96
97
98 [[image:1654503992078-669.png]]
99
100
101 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102
103
104 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105
106 Each LSE01 is shipped with a sticker with the default device EUI as below:
107
108 [[image:image-20220606163732-6.jpeg]]
109
110 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111
112 **Add APP EUI in the application**
113
114
115 [[image:1654504596150-405.png]]
116
117
118
119 **Add APP KEY and DEV EUI**
120
121 [[image:1654504683289-357.png]]
122
123
124
125 **Step 2**: Power on LSE01
126
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:image-20220606163915-7.png]]
131
132
133 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134
135 [[image:1654504778294-788.png]]
136
137
138
139 == 2.3 Uplink Payload ==
140
141 === 2.3.1 MOD~=0(Default Mode) ===
142
143 LSE01 will uplink payload via LoRaWAN with below payload format: 
144
145
146 Uplink payload includes in total 11 bytes.
147
148
149 |(((
150 **Size**
151
152 **(bytes)**
153 )))|**2**|**2**|**2**|**2**|**2**|**1**
154 |**Value**|[[BAT>>path:#bat]]|(((
155 Temperature
156
157 (Reserve, Ignore now)
158 )))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 MOD & Digital Interrupt
160
161 (Optional)
162 )))
163
164 [[image:1654504881641-514.png]]
165
166
167
168 === 2.3.2 MOD~=1(Original value) ===
169
170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171
172 |(((
173 **Size**
174
175 **(bytes)**
176 )))|**2**|**2**|**2**|**2**|**2**|**1**
177 |**Value**|[[BAT>>path:#bat]]|(((
178 Temperature
179
180 (Reserve, Ignore now)
181 )))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 MOD & Digital Interrupt
183
184 (Optional)
185 )))
186
187 [[image:1654504907647-967.png]]
188
189
190
191 === 2.3.3 Battery Info ===
192
193 Check the battery voltage for LSE01.
194
195 Ex1: 0x0B45 = 2885mV
196
197 Ex2: 0x0B49 = 2889mV
198
199
200
201 === 2.3.4 Soil Moisture ===
202
203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204
205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
206
207
208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209
210
211
212 === 2.3.5 Soil Temperature ===
213
214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215
216 **Example**:
217
218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219
220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221
222
223
224 === 2.3.6 Soil Conductivity (EC) ===
225
226 (((
227 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 )))
229
230 (((
231 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 )))
233
234 (((
235 Generally, the EC value of irrigation water is less than 800uS / cm.
236 )))
237
238 (((
239
240 )))
241
242 (((
243
244 )))
245
246 === 2.3.7 MOD ===
247
248 Firmware version at least v2.1 supports changing mode.
249
250 For example, bytes[10]=90
251
252 mod=(bytes[10]>>7)&0x01=1.
253
254
255 Downlink Command:
256
257 If payload = 0x0A00, workmode=0
258
259 If** **payload =** **0x0A01, workmode=1
260
261
262
263 === 2.3.8 ​Decode payload in The Things Network ===
264
265 While using TTN network, you can add the payload format to decode the payload.
266
267
268 [[image:1654505570700-128.png]]
269
270 The payload decoder function for TTN is here:
271
272 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
273
274
275 == 2.4 Uplink Interval ==
276
277 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
278
279 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280
281
282
283 == 2.5 Downlink Payload ==
284
285 By default, LSE50 prints the downlink payload to console port.
286
287 [[image:image-20220606165544-8.png]]
288
289
290 **Examples:**
291
292
293 * **Set TDC**
294
295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
296
297 Payload:    01 00 00 1E    TDC=30S
298
299 Payload:    01 00 00 3C    TDC=60S
300
301
302 * **Reset**
303
304 If payload = 0x04FF, it will reset the LSE01
305
306
307 * **CFM**
308
309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310
311
312
313 == 2.6 ​Show Data in DataCake IoT Server ==
314
315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316
317
318 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
319
320 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
321
322
323 [[image:1654505857935-743.png]]
324
325
326 [[image:1654505874829-548.png]]
327
328 Step 3: Create an account or log in Datacake.
329
330 Step 4: Search the LSE01 and add DevEUI.
331
332
333 [[image:1654505905236-553.png]]
334
335
336 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
337
338 [[image:1654505925508-181.png]]
339
340
341
342 == 2.7 Frequency Plans ==
343
344 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
345
346
347 === 2.7.1 EU863-870 (EU868) ===
348
349 (% style="color:#037691" %)** Uplink:**
350
351 868.1 - SF7BW125 to SF12BW125
352
353 868.3 - SF7BW125 to SF12BW125 and SF7BW250
354
355 868.5 - SF7BW125 to SF12BW125
356
357 867.1 - SF7BW125 to SF12BW125
358
359 867.3 - SF7BW125 to SF12BW125
360
361 867.5 - SF7BW125 to SF12BW125
362
363 867.7 - SF7BW125 to SF12BW125
364
365 867.9 - SF7BW125 to SF12BW125
366
367 868.8 - FSK
368
369
370 (% style="color:#037691" %)** Downlink:**
371
372 Uplink channels 1-9 (RX1)
373
374 869.525 - SF9BW125 (RX2 downlink only)
375
376
377
378 === 2.7.2 US902-928(US915) ===
379
380 Used in USA, Canada and South America. Default use CHE=2
381
382 (% style="color:#037691" %)**Uplink:**
383
384 903.9 - SF7BW125 to SF10BW125
385
386 904.1 - SF7BW125 to SF10BW125
387
388 904.3 - SF7BW125 to SF10BW125
389
390 904.5 - SF7BW125 to SF10BW125
391
392 904.7 - SF7BW125 to SF10BW125
393
394 904.9 - SF7BW125 to SF10BW125
395
396 905.1 - SF7BW125 to SF10BW125
397
398 905.3 - SF7BW125 to SF10BW125
399
400
401 (% style="color:#037691" %)**Downlink:**
402
403 923.3 - SF7BW500 to SF12BW500
404
405 923.9 - SF7BW500 to SF12BW500
406
407 924.5 - SF7BW500 to SF12BW500
408
409 925.1 - SF7BW500 to SF12BW500
410
411 925.7 - SF7BW500 to SF12BW500
412
413 926.3 - SF7BW500 to SF12BW500
414
415 926.9 - SF7BW500 to SF12BW500
416
417 927.5 - SF7BW500 to SF12BW500
418
419 923.3 - SF12BW500(RX2 downlink only)
420
421
422
423 === 2.7.3 CN470-510 (CN470) ===
424
425 Used in China, Default use CHE=1
426
427 (% style="color:#037691" %)**Uplink:**
428
429 486.3 - SF7BW125 to SF12BW125
430
431 486.5 - SF7BW125 to SF12BW125
432
433 486.7 - SF7BW125 to SF12BW125
434
435 486.9 - SF7BW125 to SF12BW125
436
437 487.1 - SF7BW125 to SF12BW125
438
439 487.3 - SF7BW125 to SF12BW125
440
441 487.5 - SF7BW125 to SF12BW125
442
443 487.7 - SF7BW125 to SF12BW125
444
445
446 (% style="color:#037691" %)**Downlink:**
447
448 506.7 - SF7BW125 to SF12BW125
449
450 506.9 - SF7BW125 to SF12BW125
451
452 507.1 - SF7BW125 to SF12BW125
453
454 507.3 - SF7BW125 to SF12BW125
455
456 507.5 - SF7BW125 to SF12BW125
457
458 507.7 - SF7BW125 to SF12BW125
459
460 507.9 - SF7BW125 to SF12BW125
461
462 508.1 - SF7BW125 to SF12BW125
463
464 505.3 - SF12BW125 (RX2 downlink only)
465
466
467
468 === 2.7.4 AU915-928(AU915) ===
469
470 Default use CHE=2
471
472 (% style="color:#037691" %)**Uplink:**
473
474 916.8 - SF7BW125 to SF12BW125
475
476 917.0 - SF7BW125 to SF12BW125
477
478 917.2 - SF7BW125 to SF12BW125
479
480 917.4 - SF7BW125 to SF12BW125
481
482 917.6 - SF7BW125 to SF12BW125
483
484 917.8 - SF7BW125 to SF12BW125
485
486 918.0 - SF7BW125 to SF12BW125
487
488 918.2 - SF7BW125 to SF12BW125
489
490
491 (% style="color:#037691" %)**Downlink:**
492
493 923.3 - SF7BW500 to SF12BW500
494
495 923.9 - SF7BW500 to SF12BW500
496
497 924.5 - SF7BW500 to SF12BW500
498
499 925.1 - SF7BW500 to SF12BW500
500
501 925.7 - SF7BW500 to SF12BW500
502
503 926.3 - SF7BW500 to SF12BW500
504
505 926.9 - SF7BW500 to SF12BW500
506
507 927.5 - SF7BW500 to SF12BW500
508
509 923.3 - SF12BW500(RX2 downlink only)
510
511
512
513 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
514
515 (% style="color:#037691" %)**Default Uplink channel:**
516
517 923.2 - SF7BW125 to SF10BW125
518
519 923.4 - SF7BW125 to SF10BW125
520
521
522 (% style="color:#037691" %)**Additional Uplink Channel**:
523
524 (OTAA mode, channel added by JoinAccept message)
525
526 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
527
528 922.2 - SF7BW125 to SF10BW125
529
530 922.4 - SF7BW125 to SF10BW125
531
532 922.6 - SF7BW125 to SF10BW125
533
534 922.8 - SF7BW125 to SF10BW125
535
536 923.0 - SF7BW125 to SF10BW125
537
538 922.0 - SF7BW125 to SF10BW125
539
540
541 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
542
543 923.6 - SF7BW125 to SF10BW125
544
545 923.8 - SF7BW125 to SF10BW125
546
547 924.0 - SF7BW125 to SF10BW125
548
549 924.2 - SF7BW125 to SF10BW125
550
551 924.4 - SF7BW125 to SF10BW125
552
553 924.6 - SF7BW125 to SF10BW125
554
555
556 (% style="color:#037691" %)** Downlink:**
557
558 Uplink channels 1-8 (RX1)
559
560 923.2 - SF10BW125 (RX2)
561
562
563
564 === 2.7.6 KR920-923 (KR920) ===
565
566 Default channel:
567
568 922.1 - SF7BW125 to SF12BW125
569
570 922.3 - SF7BW125 to SF12BW125
571
572 922.5 - SF7BW125 to SF12BW125
573
574
575 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
576
577 922.1 - SF7BW125 to SF12BW125
578
579 922.3 - SF7BW125 to SF12BW125
580
581 922.5 - SF7BW125 to SF12BW125
582
583 922.7 - SF7BW125 to SF12BW125
584
585 922.9 - SF7BW125 to SF12BW125
586
587 923.1 - SF7BW125 to SF12BW125
588
589 923.3 - SF7BW125 to SF12BW125
590
591
592 (% style="color:#037691" %)**Downlink:**
593
594 Uplink channels 1-7(RX1)
595
596 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
597
598
599
600 === 2.7.7 IN865-867 (IN865) ===
601
602 (% style="color:#037691" %)** Uplink:**
603
604 865.0625 - SF7BW125 to SF12BW125
605
606 865.4025 - SF7BW125 to SF12BW125
607
608 865.9850 - SF7BW125 to SF12BW125
609
610
611 (% style="color:#037691" %) **Downlink:**
612
613 Uplink channels 1-3 (RX1)
614
615 866.550 - SF10BW125 (RX2)
616
617
618
619
620 == 2.8 LED Indicator ==
621
622 The LSE01 has an internal LED which is to show the status of different state.
623
624 * Blink once when device power on.
625 * Solid ON for 5 seconds once device successful Join the network.
626 * Blink once when device transmit a packet.
627
628
629 == 2.9 Installation in Soil ==
630
631 **Measurement the soil surface**
632
633
634 [[image:1654506634463-199.png]] ​
635
636 (((
637 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
638 )))
639
640
641
642 [[image:1654506665940-119.png]]
643
644 Dig a hole with diameter > 20CM.
645
646 Horizontal insert the probe to the soil and fill the hole for long term measurement.
647
648
649 == 2.10 ​Firmware Change Log ==
650
651 **Firmware download link:**
652
653 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
654
655
656 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
657
658
659 **V1.0.**
660
661 Release
662
663
664 == 2.11 ​Battery Analysis ==
665
666 === 2.11.1 ​Battery Type ===
667
668 (((
669 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
670 )))
671
672 (((
673 The battery is designed to last for more than 5 years for the LSN50.
674 )))
675
676 (((
677 (((
678 The battery-related documents are as below:
679 )))
680 )))
681
682 * (((
683 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
684 )))
685 * (((
686 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
687 )))
688 * (((
689 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
690 )))
691
692 [[image:image-20220606171726-9.png]]
693
694
695
696 === 2.11.2 ​Battery Note ===
697
698 (((
699 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 )))
701
702
703
704 === 2.11.3 Replace the battery ===
705
706 (((
707 If Battery is lower than 2.7v, user should replace the battery of LSE01.
708 )))
709
710 (((
711 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
712 )))
713
714 (((
715 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
716 )))
717
718
719
720 = 3. ​Using the AT Commands =
721
722 == 3.1 Access AT Commands ==
723
724
725 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
726
727 [[image:1654501986557-872.png]]
728
729
730 Or if you have below board, use below connection:
731
732
733 [[image:1654502005655-729.png]]
734
735
736
737 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
738
739
740 [[image:1654502050864-459.png]]
741
742
743 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
744
745
746 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
747
748 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
749
750 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
751
752 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
753
754
755 (% style="color:#037691" %)**General Commands**(%%)      
756
757 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
758
759 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
760
761 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
762
763 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
764
765
766 (% style="color:#037691" %)**Keys, IDs and EUIs management**
767
768 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
769
770 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
771
772 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
773
774 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
775
776 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
777
778 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
779
780 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
781
782 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
783
784 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
785
786 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
787
788 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
789
790 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
791
792 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
793
794 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
795
796 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
797
798 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
799
800
801 (% style="color:#037691" %)**LoRa Network Management**
802
803 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
804
805 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
806
807 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
808
809 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
810
811 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
812
813 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
814
815 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
816
817 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
818
819 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
820
821 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
822
823 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
824
825 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
826
827 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
828
829 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
830
831 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
832
833
834 (% style="color:#037691" %)**Information** 
835
836 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
837
838 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
839
840 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
841
842 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
843
844 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
845
846 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
847
848 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
849
850
851 = ​4. FAQ =
852
853 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
854
855 You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
856 When downloading the images, choose the required image file for download. ​
857
858
859 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
860
861
862 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
863
864
865 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
866
867 [[image:image-20220606154726-3.png]]
868
869 When you use the TTN network, the US915 frequency bands use are:
870
871 * 903.9 - SF7BW125 to SF10BW125
872 * 904.1 - SF7BW125 to SF10BW125
873 * 904.3 - SF7BW125 to SF10BW125
874 * 904.5 - SF7BW125 to SF10BW125
875 * 904.7 - SF7BW125 to SF10BW125
876 * 904.9 - SF7BW125 to SF10BW125
877 * 905.1 - SF7BW125 to SF10BW125
878 * 905.3 - SF7BW125 to SF10BW125
879 * 904.6 - SF8BW500
880
881 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
882
883 (% class="box infomessage" %)
884 (((
885 **AT+CHE=2**
886 )))
887
888 (% class="box infomessage" %)
889 (((
890 **ATZ**
891 )))
892
893 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
894
895
896 The **AU915** band is similar. Below are the AU915 Uplink Channels.
897
898 [[image:image-20220606154825-4.png]]
899
900
901
902 = 5. Trouble Shooting =
903
904 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
905
906 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
907
908
909 == 5.2 AT Command input doesn’t work ==
910
911 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
912
913
914 == 5.3 Device rejoin in at the second uplink packet ==
915
916 (% style="color:#4f81bd" %)**Issue describe as below:**
917
918 [[image:1654500909990-784.png]]
919
920
921 (% style="color:#4f81bd" %)**Cause for this issue:**
922
923 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
924
925
926 (% style="color:#4f81bd" %)**Solution: **
927
928 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
929
930 [[image:1654500929571-736.png]]
931
932
933 = 6. ​Order Info =
934
935
936 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
937
938
939 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
940
941 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
942 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
943 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
944 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
945 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
946 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
947 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
948 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
949
950 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
951
952 * (% style="color:red" %)**4**(%%): 4000mAh battery
953 * (% style="color:red" %)**8**(%%): 8500mAh battery
954
955 = 7. Packing Info =
956
957 (((
958 **Package Includes**:
959 )))
960
961 * (((
962 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
963 )))
964
965 (((
966
967 )))
968
969 (((
970 **Dimension and weight**:
971 )))
972
973 * (((
974 Device Size: cm
975 )))
976 * (((
977 Device Weight: g
978 )))
979 * (((
980 Package Size / pcs : cm
981 )))
982 * (((
983 Weight / pcs : g
984 )))
985
986 = 8. Support =
987
988 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
989 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
990
991