Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 98.1
edited by Xiaoling
on 2022/07/11 14:09
Change comment: There is no comment for this version
To version 56.2
edited by Xiaoling
on 2022/07/08 11:17
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,78 +1,67 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
72 -
73 -
74 74  == 1.3  Specification ==
75 75  
64 +
76 76  (% style="color:#037691" %)**Common DC Characteristics:**
77 77  
78 78  * Supply Voltage: 2.1v ~~ 3.6v
... ... @@ -87,111 +87,90 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
99 99  
100 -* STOP Mode: 10uA @ 3.3v
101 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
102 102  
103 103  
104 -
105 105  == ​1.4  Applications ==
106 106  
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
110 110  * Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 114  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 115  ​
116 116  
117 -
118 118  == 1.5  Pin Definitions ==
119 119  
120 120  
121 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
122 122  
123 123  
124 124  
125 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
126 126  
127 127  == 2.1  How it works ==
128 128  
105 +
129 129  (((
130 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
131 131  )))
132 132  
133 133  
134 134  (((
135 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
136 136  )))
137 137  
138 -(((
139 -
140 -)))
115 +[[image:image-20220708101605-2.png]]
141 141  
142 -[[image:1657328659945-416.png]]
143 -
144 144  (((
145 145  
146 146  )))
147 147  
148 148  
149 -== 2.2 ​ Configure the NDDS75 ==
150 150  
123 +== 2.2 ​ Configure the NSE01 ==
151 151  
125 +
152 152  === 2.2.1 Test Requirement ===
153 153  
154 -(((
155 -To use NDDS75 in your city, make sure meet below requirements:
156 -)))
157 157  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
158 158  * Your local operator has already distributed a NB-IoT Network there.
159 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
160 160  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
161 161  
162 162  (((
163 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
164 164  )))
165 165  
166 166  
167 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
168 168  
169 169  
170 170  
171 171  === 2.2.2 Insert SIM card ===
172 172  
173 -(((
174 174  Insert the NB-IoT Card get from your provider.
175 -)))
176 176  
177 -(((
178 178  User need to take out the NB-IoT module and insert the SIM card like below:
179 -)))
180 180  
181 181  
182 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
183 183  
184 184  
185 185  
186 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
187 187  
188 188  (((
189 189  (((
190 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
191 191  )))
192 192  )))
193 193  
194 -[[image:image-20220709092052-2.png]]
195 195  
196 196  **Connection:**
197 197  
... ... @@ -204,21 +204,19 @@
204 204  
205 205  In the PC, use below serial tool settings:
206 206  
207 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
208 208  * Data bits:** (% style="color:green" %)8(%%)**
209 209  * Stop bits: (% style="color:green" %)**1**
210 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
211 211  * Flow Control: (% style="color:green" %)**None**
212 212  
213 213  (((
214 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
215 215  )))
216 216  
217 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
218 218  
219 -(((
220 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
221 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
222 222  
223 223  
224 224  
... ... @@ -227,66 +227,66 @@
227 227  (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
228 228  
229 229  
230 -(((
231 231  **Use below commands:**
232 -)))
233 233  
234 -* (((
235 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
236 -)))
237 -* (((
238 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
239 -)))
240 -* (((
241 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
242 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
243 243  
244 -(((
202 +
203 +
245 245  For parameter description, please refer to AT command set
246 -)))
247 247  
248 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
249 249  
250 250  
251 -(((
252 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
253 -)))
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
254 254  
255 -[[image:1657330472797-498.png]]
211 +[[image:1657249831934-534.png]]
256 256  
257 257  
258 258  
259 259  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
260 260  
217 +This feature is supported since firmware version v1.0.1
261 261  
262 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
263 263  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
264 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
265 265  
266 -[[image:1657330501006-241.png]]
267 267  
268 268  
269 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
270 270  
271 271  
272 272  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
273 273  === 2.2.6 Use MQTT protocol to uplink data ===
274 274  
236 +This feature is supported since firmware version v110
275 275  
276 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
278 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
279 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
280 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
281 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
282 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
283 283  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
284 284  [[image:1657249978444-674.png]]
285 285  
286 286  
287 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
288 288  
289 289  
255 +
290 290  (((
291 291  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
292 292  )))
... ... @@ -295,179 +295,151 @@
295 295  
296 296  === 2.2.7 Use TCP protocol to uplink data ===
297 297  
264 +This feature is supported since firmware version v110
298 298  
266 +
299 299  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
300 300  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
301 301  
302 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
303 303  
304 304  
305 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
306 306  
307 307  
308 -
309 309  === 2.2.8 Change Update Interval ===
310 310  
311 311  User can use below command to change the (% style="color:green" %)**uplink interval**.
312 312  
313 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
280 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
314 314  
315 -(((
282 +
316 316  (% style="color:red" %)**NOTE:**
317 -)))
318 318  
319 -(((
320 320  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
321 -)))
322 322  
323 323  
324 324  
325 -== 2.3  Uplink Payload ==
326 326  
327 -In this mode, uplink payload includes in total 14 bytes
328 328  
329 329  
330 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
331 -|=(% style="width: 60px;" %)(((
332 -**Size(bytes)**
333 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
334 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
335 335  
336 -(((
337 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
338 -)))
293 +== 2.3 Uplink Payload ==
339 339  
340 340  
341 -[[image:1657331036973-987.png]]
296 +=== 2.3.1 MOD~=0(Default Mode) ===
342 342  
343 -(((
344 -The payload is ASCII string, representative same HEX:
345 -)))
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
346 346  
347 347  (((
348 -0x72403155615900640c6c19029200 where:
301 +Uplink payload includes in total 11 bytes.
349 349  )))
350 350  
351 -* (((
352 -Device ID: 0x724031556159 = 724031556159
353 -)))
354 -* (((
355 -Version: 0x0064=100=1.0.0
356 -)))
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
357 357  
358 -* (((
359 -BAT: 0x0c6c = 3180 mV = 3.180V
360 -)))
361 -* (((
362 -Signal: 0x19 = 25
363 -)))
364 -* (((
365 -Distance: 0x0292= 658 mm
366 -)))
367 -* (((
368 -Interrupt: 0x00 = 0
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
369 369  
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
370 370  
371 -
372 -
317 +(Optional)
373 373  )))
374 374  
375 -== 2. Payload Explanation and Sensor Interface ==
320 +=== 2.3.2 MOD~=1(Original value) ===
376 376  
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
377 377  
378 -=== 2.4.1  Device ID ===
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
379 379  
380 -(((
381 -By default, the Device ID equal to the last 6 bytes of IMEI.
382 -)))
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
383 383  
384 -(((
385 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
336 +
337 +(Optional)
386 386  )))
387 387  
340 +=== 2.3.3 Battery Info ===
341 +
388 388  (((
389 -**Example:**
343 +Check the battery voltage for LSE01.
390 390  )))
391 391  
392 392  (((
393 -AT+DEUI=A84041F15612
347 +Ex1: 0x0B45 = 2885mV
394 394  )))
395 395  
396 396  (((
397 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
351 +Ex2: 0x0B49 = 2889mV
398 398  )))
399 399  
400 400  
401 401  
402 -=== 2.4. Version Info ===
356 +=== 2.3.4 Soil Moisture ===
403 403  
404 404  (((
405 -Specify the software version: 0x64=100, means firmware version 1.00.
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
406 406  )))
407 407  
408 408  (((
409 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
410 410  )))
411 411  
412 -
413 -
414 -=== 2.4.3  Battery Info ===
415 -
416 416  (((
417 -Ex1: 0x0B45 = 2885mV
367 +
418 418  )))
419 419  
420 420  (((
421 -Ex2: 0x0B49 = 2889mV
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
422 422  )))
423 423  
424 424  
425 425  
426 -=== 2.4. Signal Strength ===
376 +=== 2.3.5 Soil Temperature ===
427 427  
428 428  (((
429 -NB-IoT Network signal Strength.
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
430 430  )))
431 431  
432 432  (((
433 -**Ex1: 0x1d = 29**
383 +**Example**:
434 434  )))
435 435  
436 436  (((
437 -(% style="color:blue" %)**0**(%%)  -113dBm or less
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
438 438  )))
439 439  
440 440  (((
441 -(% style="color:blue" %)**1**(%%)  -111dBm
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
442 442  )))
443 443  
444 -(((
445 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
446 -)))
447 447  
448 -(((
449 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
450 -)))
451 451  
396 +=== 2.3.6 Soil Conductivity (EC) ===
397 +
452 452  (((
453 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
454 454  )))
455 455  
456 -
457 -
458 -=== 2.4.5  Distance ===
459 -
460 -Get the distance. Flat object range 280mm - 7500mm.
461 -
462 462  (((
463 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
464 464  )))
465 465  
466 466  (((
467 -(((
468 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
469 469  )))
470 -)))
471 471  
472 472  (((
473 473  
... ... @@ -477,68 +477,52 @@
477 477  
478 478  )))
479 479  
480 -=== 2.4. Digital Interrupt ===
418 +=== 2.3.7 MOD ===
481 481  
482 -(((
483 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
484 -)))
420 +Firmware version at least v2.1 supports changing mode.
485 485  
486 -(((
487 -The command is:
488 -)))
422 +For example, bytes[10]=90
489 489  
490 -(((
491 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
492 -)))
424 +mod=(bytes[10]>>7)&0x01=1.
493 493  
494 494  
495 -(((
496 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
497 -)))
427 +**Downlink Command:**
498 498  
429 +If payload = 0x0A00, workmode=0
499 499  
500 -(((
501 -Example:
502 -)))
431 +If** **payload =** **0x0A01, workmode=1
503 503  
504 -(((
505 -0x(00): Normal uplink packet.
506 -)))
507 507  
508 -(((
509 -0x(01): Interrupt Uplink Packet.
510 -)))
511 511  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
512 512  
437 +While using TTN network, you can add the payload format to decode the payload.
513 513  
514 -=== 2.4.7  ​+5V Output ===
515 515  
516 -(((
517 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
518 -)))
440 +[[image:1654505570700-128.png]]
519 519  
520 -
521 521  (((
522 -The 5V output time can be controlled by AT Command.
443 +The payload decoder function for TTN is here:
523 523  )))
524 524  
525 525  (((
526 -(% style="color:blue" %)**AT+5VT=1000**
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
527 527  )))
528 528  
529 -(((
530 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
531 -)))
532 532  
451 +== 2.4 Uplink Interval ==
533 533  
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
534 534  
535 -== 2.5  Downlink Payload ==
536 536  
537 -By default, NDDS75 prints the downlink payload to console port.
538 538  
539 -[[image:image-20220709100028-1.png]]
457 +== 2.5 Downlink Payload ==
540 540  
459 +By default, LSE50 prints the downlink payload to console port.
541 541  
461 +[[image:image-20220606165544-8.png]]
462 +
463 +
542 542  (((
543 543  (% style="color:blue" %)**Examples:**
544 544  )))
... ... @@ -552,7 +552,7 @@
552 552  )))
553 553  
554 554  (((
555 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
477 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
556 556  )))
557 557  
558 558  (((
... ... @@ -572,120 +572,432 @@
572 572  )))
573 573  
574 574  (((
575 -If payload = 0x04FF, it will reset the NDDS75
497 +If payload = 0x04FF, it will reset the LSE01
576 576  )))
577 577  
578 578  
579 -* (% style="color:blue" %)**INTMOD**
501 +* (% style="color:blue" %)**CFM**
580 580  
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
504 +
505 +
506 +
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
581 581  (((
582 -Downlink Payload: 06000003, Set AT+INTMOD=3
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
583 583  )))
584 584  
513 +(((
514 +
515 +)))
585 585  
517 +(((
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
519 +)))
586 586  
587 -== 2.6  ​LED Indicator ==
521 +(((
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 +)))
588 588  
589 589  
590 -The NDDS75 has an internal LED which is to show the status of different state.
526 +[[image:1654505857935-743.png]]
591 591  
592 592  
593 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
594 -* Then the LED will be on for 1 second means device is boot normally.
595 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
596 -* For each uplink probe, LED will be on for 500ms.
529 +[[image:1654505874829-548.png]]
597 597  
598 -(((
599 -
600 -)))
601 601  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
602 602  
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
603 603  
604 -== 2.7  ​Firmware Change Log ==
605 605  
537 +[[image:1654505905236-553.png]]
606 606  
607 -(((
608 -Download URL & Firmware Change log
609 -)))
610 610  
611 -(((
612 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
613 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
614 614  
542 +[[image:1654505925508-181.png]]
615 615  
616 -(((
617 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
618 -)))
619 619  
620 620  
546 +== 2.7 Frequency Plans ==
621 621  
622 -== 2. ​Battery Analysis ==
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
623 623  
624 -=== 2.8.1  ​Battery Type ===
625 625  
551 +=== 2.7.1 EU863-870 (EU868) ===
626 626  
553 +(% style="color:#037691" %)** Uplink:**
554 +
555 +868.1 - SF7BW125 to SF12BW125
556 +
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
558 +
559 +868.5 - SF7BW125 to SF12BW125
560 +
561 +867.1 - SF7BW125 to SF12BW125
562 +
563 +867.3 - SF7BW125 to SF12BW125
564 +
565 +867.5 - SF7BW125 to SF12BW125
566 +
567 +867.7 - SF7BW125 to SF12BW125
568 +
569 +867.9 - SF7BW125 to SF12BW125
570 +
571 +868.8 - FSK
572 +
573 +
574 +(% style="color:#037691" %)** Downlink:**
575 +
576 +Uplink channels 1-9 (RX1)
577 +
578 +869.525 - SF9BW125 (RX2 downlink only)
579 +
580 +
581 +
582 +=== 2.7.2 US902-928(US915) ===
583 +
584 +Used in USA, Canada and South America. Default use CHE=2
585 +
586 +(% style="color:#037691" %)**Uplink:**
587 +
588 +903.9 - SF7BW125 to SF10BW125
589 +
590 +904.1 - SF7BW125 to SF10BW125
591 +
592 +904.3 - SF7BW125 to SF10BW125
593 +
594 +904.5 - SF7BW125 to SF10BW125
595 +
596 +904.7 - SF7BW125 to SF10BW125
597 +
598 +904.9 - SF7BW125 to SF10BW125
599 +
600 +905.1 - SF7BW125 to SF10BW125
601 +
602 +905.3 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**Downlink:**
606 +
607 +923.3 - SF7BW500 to SF12BW500
608 +
609 +923.9 - SF7BW500 to SF12BW500
610 +
611 +924.5 - SF7BW500 to SF12BW500
612 +
613 +925.1 - SF7BW500 to SF12BW500
614 +
615 +925.7 - SF7BW500 to SF12BW500
616 +
617 +926.3 - SF7BW500 to SF12BW500
618 +
619 +926.9 - SF7BW500 to SF12BW500
620 +
621 +927.5 - SF7BW500 to SF12BW500
622 +
623 +923.3 - SF12BW500(RX2 downlink only)
624 +
625 +
626 +
627 +=== 2.7.3 CN470-510 (CN470) ===
628 +
629 +Used in China, Default use CHE=1
630 +
631 +(% style="color:#037691" %)**Uplink:**
632 +
633 +486.3 - SF7BW125 to SF12BW125
634 +
635 +486.5 - SF7BW125 to SF12BW125
636 +
637 +486.7 - SF7BW125 to SF12BW125
638 +
639 +486.9 - SF7BW125 to SF12BW125
640 +
641 +487.1 - SF7BW125 to SF12BW125
642 +
643 +487.3 - SF7BW125 to SF12BW125
644 +
645 +487.5 - SF7BW125 to SF12BW125
646 +
647 +487.7 - SF7BW125 to SF12BW125
648 +
649 +
650 +(% style="color:#037691" %)**Downlink:**
651 +
652 +506.7 - SF7BW125 to SF12BW125
653 +
654 +506.9 - SF7BW125 to SF12BW125
655 +
656 +507.1 - SF7BW125 to SF12BW125
657 +
658 +507.3 - SF7BW125 to SF12BW125
659 +
660 +507.5 - SF7BW125 to SF12BW125
661 +
662 +507.7 - SF7BW125 to SF12BW125
663 +
664 +507.9 - SF7BW125 to SF12BW125
665 +
666 +508.1 - SF7BW125 to SF12BW125
667 +
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
627 627  (((
628 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
629 629  )))
843 +)))
630 630  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
631 631  (((
632 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
633 633  )))
634 634  
635 635  (((
636 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
637 637  )))
638 638  
639 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 642  
858 +== 2.10 ​Firmware Change Log ==
859 +
643 643  (((
644 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
645 645  )))
646 646  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
647 647  
868 +(((
869 +
870 +)))
648 648  
649 -=== 2.8.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
650 650  
651 651  (((
652 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
877 +
653 653  )))
654 654  
880 +(((
881 +**V1.0.**
882 +)))
655 655  
656 656  (((
657 -Instruction to use as below:
885 +Release
658 658  )))
659 659  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
660 660  (((
661 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
662 662  )))
663 663  
897 +(((
898 +The battery is designed to last for more than 5 years for the LSN50.
899 +)))
664 664  
665 665  (((
666 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
667 667  )))
905 +)))
668 668  
669 669  * (((
670 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 671  )))
672 672  * (((
673 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
674 674  )))
675 675  * (((
676 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
677 677  )))
678 678  
679 -(((
680 -And the Life expectation in difference case will be shown on the right.
681 -)))
917 + [[image:image-20220610172436-1.png]]
682 682  
683 -[[image:image-20220709110451-3.png]]
684 684  
685 685  
921 +=== 2.11.2 ​Battery Note ===
686 686  
687 -=== 2.8.3  ​Battery Note ===
688 -
689 689  (((
690 690  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
691 691  )))
... ... @@ -692,169 +692,302 @@
692 692  
693 693  
694 694  
695 -=== 2.8. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
696 696  
697 697  (((
698 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
699 699  )))
700 700  
701 -
702 -
703 -= 3. ​ Access NB-IoT Module =
704 -
705 705  (((
706 -Users can directly access the AT command set of the NB-IoT module.
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
707 707  )))
708 708  
709 709  (((
710 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
711 711  )))
712 712  
713 -[[image:1657333200519-600.png]]
714 714  
715 715  
945 += 3. ​Using the AT Commands =
716 716  
717 -= 4.  Using the AT Commands =
947 +== 3.1 Access AT Commands ==
718 718  
719 -== 4.1  Access AT Commands ==
720 720  
721 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
722 722  
952 +[[image:1654501986557-872.png||height="391" width="800"]]
723 723  
724 -AT+<CMD>?  : Help on <CMD>
725 725  
726 -AT+<CMD>         : Run <CMD>
955 +Or if you have below board, use below connection:
727 727  
728 -AT+<CMD>=<value> : Set the value
729 729  
730 -AT+<CMD>=?  : Get the value
958 +[[image:1654502005655-729.png||height="503" width="801"]]
731 731  
732 732  
961 +
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
963 +
964 +
965 + [[image:1654502050864-459.png||height="564" width="806"]]
966 +
967 +
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
969 +
970 +
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
733 733  (% style="color:#037691" %)**General Commands**(%%)      
734 734  
735 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
736 736  
737 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
738 738  
739 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
740 740  
741 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
742 742  
743 -AT+CFG  : Print all configurations
744 744  
745 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
746 746  
747 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
748 748  
749 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
750 750  
751 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
752 752  
753 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
754 754  
755 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
756 756  
757 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
758 758  
759 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
760 760  
761 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
762 762  
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
763 763  
764 -(% style="color:#037691" %)**COAP Management**      
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
765 765  
766 -AT+URI            : Resource parameters
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
767 767  
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
768 768  
769 -(% style="color:#037691" %)**UDP Management**
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
770 770  
771 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
772 772  
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
773 773  
774 -(% style="color:#037691" %)**MQTT Management**
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
775 775  
776 -AT+CLIENT               : Get or Set MQTT client
777 777  
778 -AT+UNAME  : Get or Set MQTT Username
1026 +(% style="color:#037691" %)**LoRa Network Management**
779 779  
780 -AT+PWD                  : Get or Set MQTT password
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
781 781  
782 -AT+PUBTOPI : Get or Set MQTT publish topic
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
783 783  
784 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
785 785  
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
786 786  
787 -(% style="color:#037691" %)**Information**          
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
788 788  
789 -AT+FDR  : Factory Data Reset
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
790 790  
791 -AT+PWOR : Serial Access Password
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
792 792  
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
793 793  
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
794 794  
795 -= ​5.  FAQ =
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
796 796  
797 -== 5.1 How to Upgrade Firmware ==
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
798 798  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
799 799  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1053 +
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057 +
1058 +
1059 +(% style="color:#037691" %)**Information** 
1060 +
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
800 800  (((
801 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
802 802  )))
803 803  
804 804  (((
805 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
806 806  )))
807 807  
808 808  (((
809 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
810 810  )))
811 811  
1093 +(((
1094 +
1095 +)))
812 812  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
813 813  
814 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
815 815  
816 -== 6.1  ​Connection problem when uploading firmware ==
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
817 817  
1109 +[[image:image-20220606154726-3.png]]
818 818  
1111 +
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
819 819  (((
820 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
821 821  )))
822 822  
823 -(% class="wikigeneratedid" %)
824 824  (((
825 825  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
826 826  )))
827 827  
1137 +(((
1138 +
1139 +)))
828 828  
829 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
830 830  
1145 +[[image:image-20220606154825-4.png]]
1146 +
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
831 831  (((
832 832  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
833 833  
834 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
835 835  )))
836 836  
837 837  
838 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
839 839  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
840 840  
841 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
842 842  
843 843  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
844 844  (% class="wikigeneratedid" %)
845 845  (((
846 846  
847 847  )))
848 848  
849 -= 8.  Packing Info =
1215 += 7. Packing Info =
850 850  
851 851  (((
852 852  
853 853  
854 854  (% style="color:#037691" %)**Package Includes**:
1221 +)))
855 855  
856 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
857 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
858 858  )))
859 859  
860 860  (((
... ... @@ -861,21 +861,24 @@
861 861  
862 862  
863 863  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
864 864  
865 -* Device Size: 13.0 x 5 x 4.5 cm
866 -* Device Weight: 150g
867 -* Package Size / pcs : 15 x 12x 5.5 cm
868 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
869 869  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
870 870  
871 -(((
872 872  
873 -
874 -
875 -
876 876  )))
877 877  
878 -= 9.  Support =
1248 += 8. Support =
879 879  
880 880  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
881 881  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content