Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.9
edited by Xiaoling
on 2022/07/09 11:30
Change comment: There is no comment for this version
To version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,668 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 20  
18 +
19 +
20 +
21 += 1. Introduction =
22 +
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
21 21  (((
22 22  
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 -)))
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 +
33 33  
34 34  )))
35 35  
36 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
37 37  
38 38  
42 +[[image:1657245163077-232.png]]
39 39  
40 -== 1.2 ​ Features ==
41 41  
42 42  
43 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
44 44  * Ultra low power consumption
45 -* Distance Detection by Ultrasonic technology
46 -* Flat object range 280mm - 7500mm
47 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
48 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
49 49  * AT Commands to change parameters
50 50  * Uplink on periodically
51 51  * Downlink to change configure
52 52  * IP66 Waterproof Enclosure
53 -* Micro SIM card slot for NB-IoT SIM
54 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
55 55  
60 +== 1.3 Specification ==
56 56  
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
57 57  
58 -== 1.3  Specification ==
64 +[[image:image-20220606162220-5.png]]
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
62 62  
63 -* Supply Voltage: 2.1v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
68 +== ​1.4 Applications ==
65 65  
66 -(% style="color:#037691" %)**NB-IoT Spec:**
70 +* Smart Agriculture
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
74 74  
75 -(% style="color:#037691" %)**Battery:**
75 +== 1.5 Firmware Change log ==
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
78 +**LSE01 v1.0 :**  Release
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: 350mA@3.3v
87 87  
88 88  
82 += 2. Configure LSE01 to connect to LoRaWAN network =
89 89  
90 -== ​1. Applications ==
84 +== 2.1 How it works ==
91 91  
92 -* Smart Buildings & Home Automation
93 -* Logistics and Supply Chain Management
94 -* Smart Metering
95 -* Smart Agriculture
96 -* Smart Cities
97 -* Smart Factory
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
98 98  
99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 -​
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
101 101  
102 102  
103 -== 1.5  Pin Definitions ==
104 104  
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105 105  
106 -[[image:1657328609906-564.png]]
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
107 107  
108 108  
101 +[[image:1654503992078-669.png]]
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
111 111  
112 -== 2.1  How it works ==
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
113 113  
106 +
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 +
111 +[[image:image-20220606163732-6.jpeg]]
112 +
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +
115 +**Add APP EUI in the application**
116 +
117 +
118 +[[image:1654504596150-405.png]]
119 +
120 +
121 +
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
116 116  )))
117 117  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
118 118  
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
187 +)))
188 +
189 +=== 2.3.3 Battery Info ===
190 +
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
192 +Check the battery voltage for LSE01.
121 121  )))
122 122  
123 123  (((
124 -
196 +Ex1: 0x0B45 = 2885mV
125 125  )))
126 126  
127 -[[image:1657328659945-416.png]]
128 -
129 129  (((
130 -
200 +Ex2: 0x0B49 = 2889mV
131 131  )))
132 132  
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
205 +=== 2.3.4 Soil Moisture ===
136 136  
137 -=== 2.2.1 Test Requirement ===
207 +(((
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +)))
138 138  
139 139  (((
140 -To use NDDS75 in your city, make sure meet below requirements:
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 141  )))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
215 +(((
216 +
217 +)))
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 149  )))
150 150  
151 151  
152 -[[image:1657328756309-230.png]]
153 153  
225 +=== 2.3.5 Soil Temperature ===
154 154  
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
155 155  
156 -=== 2.2.2 Insert SIM card ===
231 +(((
232 +**Example**:
233 +)))
157 157  
158 158  (((
159 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 160  )))
161 161  
162 162  (((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 164  )))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
168 168  
245 +=== 2.3.6 Soil Conductivity (EC) ===
169 169  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
172 172  
173 173  (((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
258 +
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
260 +
176 176  )))
262 +
263 +(((
264 +
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
180 180  
181 -**Connection:**
269 +Firmware version at least v2.1 supports changing mode.
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 +For example, bytes[10]=90
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 +mod=(bytes[10]>>7)&0x01=1.
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
188 188  
276 +**Downlink Command:**
189 189  
190 -In the PC, use below serial tool settings:
278 +If payload = 0x0A00, workmode=0
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
280 +If** **payload =** **0x0A01, workmode=1
197 197  
282 +
283 +
284 +=== 2.3.8 ​Decode payload in The Things Network ===
285 +
286 +While using TTN network, you can add the payload format to decode the payload.
287 +
288 +
289 +[[image:1654505570700-128.png]]
290 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
292 +The payload decoder function for TTN is here:
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
203 -
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
206 206  )))
207 207  
208 208  
300 +== 2.4 Uplink Interval ==
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
213 213  
214 214  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
215 215  (((
216 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
217 217  )))
218 218  
219 -* (((
220 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
221 221  )))
320 +
222 222  * (((
223 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
224 224  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
225 225  * (((
226 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
227 227  )))
228 228  
229 229  (((
230 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
231 231  )))
232 232  
233 -[[image:1657330452568-615.png]]
234 234  
350 +* (% style="color:blue" %)**CFM**
235 235  
236 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
237 237  
238 -[[image:1657330472797-498.png]]
239 239  
240 240  
356 +== 2.6 ​Show Data in DataCake IoT Server ==
241 241  
242 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
358 +(((
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
360 +)))
243 243  
362 +(((
363 +
364 +)))
244 244  
245 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
247 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
248 248  
249 -[[image:1657330501006-241.png]]
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
250 250  
251 251  
252 -[[image:1657330533775-472.png]]
375 +[[image:1654505857935-743.png]]
253 253  
254 254  
378 +[[image:1654505874829-548.png]]
255 255  
256 -=== 2.2.6 Use MQTT protocol to uplink data ===
257 257  
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
258 258  
259 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
261 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
262 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
263 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
264 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
265 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
266 266  
267 -[[image:1657249978444-674.png]]
268 268  
386 +[[image:1654505905236-553.png]]
269 269  
270 -[[image:1657330723006-866.png]]
271 271  
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
272 272  
273 -(((
274 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
275 -)))
391 +[[image:1654505925508-181.png]]
276 276  
277 277  
278 278  
279 -=== 2.2.7 Use TCP protocol to uplink data ===
395 +== 2.7 Frequency Plans ==
280 280  
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
281 281  
282 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
284 284  
285 -[[image:image-20220709093918-1.png]]
400 +=== 2.7.1 EU863-870 (EU868) ===
286 286  
402 +(% style="color:#037691" %)** Uplink:**
287 287  
288 -[[image:image-20220709093918-2.png]]
404 +868.1 - SF7BW125 to SF12BW125
289 289  
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
290 290  
408 +868.5 - SF7BW125 to SF12BW125
291 291  
292 -=== 2.2.8 Change Update Interval ===
410 +867.1 - SF7BW125 to SF12BW125
293 293  
294 -User can use below command to change the (% style="color:green" %)**uplink interval**.
412 +867.3 - SF7BW125 to SF12BW125
295 295  
296 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
414 +867.5 - SF7BW125 to SF12BW125
297 297  
298 -(((
299 -(% style="color:red" %)**NOTE:**
300 -)))
416 +867.7 - SF7BW125 to SF12BW125
301 301  
302 -(((
303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 -)))
418 +867.9 - SF7BW125 to SF12BW125
305 305  
420 +868.8 - FSK
306 306  
307 307  
308 -== 2.3  Uplink Payload ==
423 +(% style="color:#037691" %)** Downlink:**
309 309  
310 -In this mode, uplink payload includes in total 14 bytes
425 +Uplink channels 1-9 (RX1)
311 311  
427 +869.525 - SF9BW125 (RX2 downlink only)
312 312  
313 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
314 -|=(% style="width: 80px;" %)(((
315 -**Size(bytes)**
316 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
317 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
318 318  
319 -(((
320 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
321 -)))
322 322  
431 +=== 2.7.2 US902-928(US915) ===
323 323  
324 -[[image:1657331036973-987.png]]
433 +Used in USA, Canada and South America. Default use CHE=2
325 325  
326 -(((
327 -The payload is ASCII string, representative same HEX:
328 -)))
435 +(% style="color:#037691" %)**Uplink:**
329 329  
330 -(((
331 -0x72403155615900640c6c19029200 where:
332 -)))
437 +903.9 - SF7BW125 to SF10BW125
333 333  
334 -* (((
335 -Device ID: 0x724031556159 = 724031556159
336 -)))
337 -* (((
338 -Version: 0x0064=100=1.0.0
339 -)))
439 +904.1 - SF7BW125 to SF10BW125
340 340  
341 -* (((
342 -BAT: 0x0c6c = 3180 mV = 3.180V
343 -)))
344 -* (((
345 -Signal: 0x19 = 25
346 -)))
347 -* (((
348 -Distance: 0x0292= 658 mm
349 -)))
350 -* (((
351 -Interrupt: 0x00 = 0
441 +904.3 - SF7BW125 to SF10BW125
352 352  
443 +904.5 - SF7BW125 to SF10BW125
353 353  
445 +904.7 - SF7BW125 to SF10BW125
354 354  
355 -
356 -)))
447 +904.9 - SF7BW125 to SF10BW125
357 357  
358 -== 2. Payload Explanation and Sensor Interface ==
449 +905.1 - SF7BW125 to SF10BW125
359 359  
451 +905.3 - SF7BW125 to SF10BW125
360 360  
361 -=== 2.4.1  Device ID ===
362 362  
363 -(((
364 -By default, the Device ID equal to the last 6 bytes of IMEI.
365 -)))
454 +(% style="color:#037691" %)**Downlink:**
366 366  
367 -(((
368 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
369 -)))
456 +923.3 - SF7BW500 to SF12BW500
370 370  
371 -(((
372 -**Example:**
373 -)))
458 +923.9 - SF7BW500 to SF12BW500
374 374  
375 -(((
376 -AT+DEUI=A84041F15612
377 -)))
460 +924.5 - SF7BW500 to SF12BW500
378 378  
379 -(((
380 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
381 -)))
462 +925.1 - SF7BW500 to SF12BW500
382 382  
464 +925.7 - SF7BW500 to SF12BW500
383 383  
466 +926.3 - SF7BW500 to SF12BW500
384 384  
385 -=== 2.4.2  Version Info ===
468 +926.9 - SF7BW500 to SF12BW500
386 386  
387 -(((
388 -Specify the software version: 0x64=100, means firmware version 1.00.
389 -)))
470 +927.5 - SF7BW500 to SF12BW500
390 390  
391 -(((
392 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
393 -)))
472 +923.3 - SF12BW500(RX2 downlink only)
394 394  
395 395  
396 396  
397 -=== 2.4.3  Battery Info ===
476 +=== 2.7.3 CN470-510 (CN470) ===
398 398  
399 -(((
400 -Ex1: 0x0B45 = 2885mV
401 -)))
478 +Used in China, Default use CHE=1
402 402  
403 -(((
404 -Ex2: 0x0B49 = 2889mV
405 -)))
480 +(% style="color:#037691" %)**Uplink:**
406 406  
482 +486.3 - SF7BW125 to SF12BW125
407 407  
484 +486.5 - SF7BW125 to SF12BW125
408 408  
409 -=== 2.4. Signal Strength ===
486 +486.7 - SF7BW125 to SF12BW125
410 410  
411 -(((
412 -NB-IoT Network signal Strength.
413 -)))
488 +486.9 - SF7BW125 to SF12BW125
414 414  
415 -(((
416 -**Ex1: 0x1d = 29**
417 -)))
490 +487.1 - SF7BW125 to SF12BW125
418 418  
419 -(((
420 -(% style="color:blue" %)**0**(%%)  -113dBm or less
421 -)))
492 +487.3 - SF7BW125 to SF12BW125
422 422  
423 -(((
424 -(% style="color:blue" %)**1**(%%)  -111dBm
425 -)))
494 +487.5 - SF7BW125 to SF12BW125
426 426  
427 -(((
428 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
429 -)))
496 +487.7 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
433 -)))
434 434  
435 -(((
436 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
437 -)))
499 +(% style="color:#037691" %)**Downlink:**
438 438  
501 +506.7 - SF7BW125 to SF12BW125
439 439  
503 +506.9 - SF7BW125 to SF12BW125
440 440  
441 -=== 2.4.5  Distance ===
505 +507.1 - SF7BW125 to SF12BW125
442 442  
443 -Get the distance. Flat object range 280mm - 7500mm.
507 +507.3 - SF7BW125 to SF12BW125
444 444  
445 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
509 +507.5 - SF7BW125 to SF12BW125
446 446  
447 -(((
448 -(((
449 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
450 -)))
451 -)))
511 +507.7 - SF7BW125 to SF12BW125
452 452  
453 -(((
454 -
455 -)))
513 +507.9 - SF7BW125 to SF12BW125
456 456  
457 -(((
458 -
459 -)))
515 +508.1 - SF7BW125 to SF12BW125
460 460  
461 -=== 2.4.6  Digital Interrupt ===
517 +505.3 - SF12BW125 (RX2 downlink only)
462 462  
463 -(((
464 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
465 -)))
466 466  
467 -(((
468 -The command is:
469 -)))
470 470  
471 -(((
472 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
473 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
474 474  
523 +Default use CHE=2
475 475  
476 -(((
477 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
478 -)))
525 +(% style="color:#037691" %)**Uplink:**
479 479  
527 +916.8 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -Example:
483 -)))
529 +917.0 - SF7BW125 to SF12BW125
484 484  
485 -(((
486 -0x(00): Normal uplink packet.
487 -)))
531 +917.2 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -0x(01): Interrupt Uplink Packet.
491 -)))
533 +917.4 - SF7BW125 to SF12BW125
492 492  
535 +917.6 - SF7BW125 to SF12BW125
493 493  
537 +917.8 - SF7BW125 to SF12BW125
494 494  
495 -=== 2.4.7  ​+5V Output ===
539 +918.0 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
499 -)))
541 +918.2 - SF7BW125 to SF12BW125
500 500  
501 501  
502 -(((
503 -The 5V output time can be controlled by AT Command.
504 -)))
544 +(% style="color:#037691" %)**Downlink:**
505 505  
506 -(((
507 -(% style="color:blue" %)**AT+5VT=1000**
508 -)))
546 +923.3 - SF7BW500 to SF12BW500
509 509  
510 -(((
511 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
512 -)))
548 +923.9 - SF7BW500 to SF12BW500
513 513  
550 +924.5 - SF7BW500 to SF12BW500
514 514  
552 +925.1 - SF7BW500 to SF12BW500
515 515  
516 -== 2.5  Downlink Payload ==
554 +925.7 - SF7BW500 to SF12BW500
517 517  
518 -By default, NDDS75 prints the downlink payload to console port.
556 +926.3 - SF7BW500 to SF12BW500
519 519  
520 -[[image:image-20220709100028-1.png]]
558 +926.9 - SF7BW500 to SF12BW500
521 521  
560 +927.5 - SF7BW500 to SF12BW500
522 522  
523 -(((
524 -(% style="color:blue" %)**Examples:**
525 -)))
562 +923.3 - SF12BW500(RX2 downlink only)
526 526  
527 -(((
528 -
529 -)))
530 530  
531 -* (((
532 -(% style="color:blue" %)**Set TDC**
533 -)))
534 534  
535 -(((
536 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
537 -)))
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
538 538  
539 -(((
540 -Payload:    01 00 00 1E    TDC=30S
541 -)))
568 +(% style="color:#037691" %)**Default Uplink channel:**
542 542  
543 -(((
544 -Payload:    01 00 00 3C    TDC=60S
545 -)))
570 +923.2 - SF7BW125 to SF10BW125
546 546  
547 -(((
548 -
549 -)))
572 +923.4 - SF7BW125 to SF10BW125
550 550  
551 -* (((
552 -(% style="color:blue" %)**Reset**
553 -)))
554 554  
555 -(((
556 -If payload = 0x04FF, it will reset the NDDS75
557 -)))
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
558 558  
577 +(OTAA mode, channel added by JoinAccept message)
559 559  
560 -* (% style="color:blue" %)**INTMOD**
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
561 561  
562 -(((
563 -Downlink Payload: 06000003, Set AT+INTMOD=3
564 -)))
581 +922.2 - SF7BW125 to SF10BW125
565 565  
583 +922.4 - SF7BW125 to SF10BW125
566 566  
585 +922.6 - SF7BW125 to SF10BW125
567 567  
568 -== 2. ​LED Indicator ==
587 +922.8 - SF7BW125 to SF10BW125
569 569  
589 +923.0 - SF7BW125 to SF10BW125
570 570  
571 -The NDDS75 has an internal LED which is to show the status of different state.
591 +922.0 - SF7BW125 to SF10BW125
572 572  
573 573  
574 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
575 -* Then the LED will be on for 1 second means device is boot normally.
576 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
577 -* For each uplink probe, LED will be on for 500ms.
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
578 578  
579 -(((
580 -
581 -)))
596 +923.6 - SF7BW125 to SF10BW125
582 582  
598 +923.8 - SF7BW125 to SF10BW125
583 583  
600 +924.0 - SF7BW125 to SF10BW125
584 584  
585 -== 2. Firmware Change Log ==
602 +924.2 - SF7BW125 to SF10BW125
586 586  
604 +924.4 - SF7BW125 to SF10BW125
587 587  
588 -Download URL & Firmware Change log
606 +924.6 - SF7BW125 to SF10BW125
589 589  
590 -(((
591 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
592 -)))
593 593  
609 +(% style="color:#037691" %)** Downlink:**
594 594  
595 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
611 +Uplink channels 1-8 (RX1)
596 596  
613 +923.2 - SF10BW125 (RX2)
597 597  
598 598  
599 -== 2.8  ​Battery Analysis ==
600 600  
601 -=== 2.8. ​Battery Type ===
617 +=== 2.7.6 KR920-923 (KR920) ===
602 602  
619 +Default channel:
603 603  
621 +922.1 - SF7BW125 to SF12BW125
622 +
623 +922.3 - SF7BW125 to SF12BW125
624 +
625 +922.5 - SF7BW125 to SF12BW125
626 +
627 +
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +922.7 - SF7BW125 to SF12BW125
637 +
638 +922.9 - SF7BW125 to SF12BW125
639 +
640 +923.1 - SF7BW125 to SF12BW125
641 +
642 +923.3 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +Uplink channels 1-7(RX1)
648 +
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 +
651 +
652 +
653 +=== 2.7.7 IN865-867 (IN865) ===
654 +
655 +(% style="color:#037691" %)** Uplink:**
656 +
657 +865.0625 - SF7BW125 to SF12BW125
658 +
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
604 604  (((
605 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
606 606  )))
692 +)))
607 607  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
608 608  (((
609 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
610 610  )))
611 611  
612 612  (((
613 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
614 614  )))
615 615  
616 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
617 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
618 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
619 619  
707 +== 2.10 ​Firmware Change Log ==
708 +
620 620  (((
621 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
622 622  )))
623 623  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
624 624  
717 +(((
718 +
719 +)))
625 625  
626 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
627 627  
628 628  (((
629 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +
630 630  )))
631 631  
729 +(((
730 +**V1.0.**
731 +)))
632 632  
633 633  (((
634 -Instruction to use as below:
734 +Release
635 635  )))
636 636  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
637 637  (((
638 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
639 639  )))
640 640  
746 +(((
747 +The battery is designed to last for more than 5 years for the LSN50.
748 +)))
641 641  
642 642  (((
643 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
644 644  )))
754 +)))
645 645  
646 646  * (((
647 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
648 648  )))
649 649  * (((
650 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
651 651  )))
652 652  * (((
653 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
654 654  )))
655 655  
656 -(((
657 -And the Life expectation in difference case will be shown on the right.
658 -)))
766 + [[image:image-20220610172436-1.png]]
659 659  
660 -[[image:image-20220709110451-3.png]]
661 661  
662 662  
770 +=== 2.11.2 ​Battery Note ===
663 663  
664 -=== 2.8.3  ​Battery Note ===
665 -
666 666  (((
667 667  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
668 668  )))
... ... @@ -669,169 +669,302 @@
669 669  
670 670  
671 671  
672 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
673 673  
674 674  (((
675 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
676 676  )))
677 677  
678 -
679 -
680 -= 3. ​ Access NB-IoT Module =
681 -
682 682  (((
683 -Users can directly access the AT command set of the NB-IoT module.
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
684 684  )))
685 685  
686 686  (((
687 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
688 688  )))
689 689  
690 -[[image:1657333200519-600.png]]
691 691  
692 692  
794 += 3. ​Using the AT Commands =
693 693  
694 -= 4.  Using the AT Commands =
796 +== 3.1 Access AT Commands ==
695 695  
696 -== 4.1  Access AT Commands ==
697 697  
698 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
699 699  
801 +[[image:1654501986557-872.png||height="391" width="800"]]
700 700  
701 -AT+<CMD>?  : Help on <CMD>
702 702  
703 -AT+<CMD>         : Run <CMD>
804 +Or if you have below board, use below connection:
704 704  
705 -AT+<CMD>=<value> : Set the value
706 706  
707 -AT+<CMD>=?  : Get the value
807 +[[image:1654502005655-729.png||height="503" width="801"]]
708 708  
709 709  
810 +
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 +
813 +
814 + [[image:1654502050864-459.png||height="564" width="806"]]
815 +
816 +
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 +
819 +
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 +
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
710 710  (% style="color:#037691" %)**General Commands**(%%)      
711 711  
712 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
713 713  
714 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
715 715  
716 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
717 717  
718 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
719 719  
720 -AT+CFG  : Print all configurations
721 721  
722 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
723 723  
724 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
725 725  
726 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
727 727  
728 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
729 729  
730 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
731 731  
732 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
733 733  
734 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
735 735  
736 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
737 737  
738 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
739 739  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
740 740  
741 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
742 742  
743 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
744 744  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
745 745  
746 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
747 747  
748 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
749 749  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
750 750  
751 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
752 752  
753 -AT+CLIENT               : Get or Set MQTT client
754 754  
755 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
756 756  
757 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
758 758  
759 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
760 760  
761 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
762 762  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
763 763  
764 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
765 765  
766 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
767 767  
768 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
769 769  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
770 770  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
771 771  
772 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
773 773  
774 -== 5.1 How to Upgrade Firmware ==
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
775 775  
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
776 776  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 +
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
777 777  (((
778 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
779 779  )))
780 780  
781 781  (((
782 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
783 783  )))
784 784  
785 785  (((
786 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
787 787  )))
788 788  
942 +(((
943 +
944 +)))
789 789  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
790 790  
791 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
792 792  
793 -== 6.1  ​Connection problem when uploading firmware ==
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
794 794  
958 +[[image:image-20220606154726-3.png]]
795 795  
960 +
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
796 796  (((
797 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
798 798  )))
799 799  
800 -(% class="wikigeneratedid" %)
801 801  (((
802 802  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
803 803  )))
804 804  
986 +(((
987 +
988 +)))
805 805  
806 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
807 807  
994 +[[image:image-20220606154825-4.png]]
995 +
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
808 808  (((
809 809  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
810 810  
811 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
812 812  )))
813 813  
814 814  
815 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
816 816  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
817 817  
818 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
819 819  
820 820  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
821 821  (% class="wikigeneratedid" %)
822 822  (((
823 823  
824 824  )))
825 825  
826 -= 8.  Packing Info =
1064 += 7. Packing Info =
827 827  
828 828  (((
829 829  
830 830  
831 831  (% style="color:#037691" %)**Package Includes**:
1070 +)))
832 832  
833 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
834 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
835 835  )))
836 836  
837 837  (((
... ... @@ -838,22 +838,24 @@
838 838  
839 839  
840 840  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
841 841  
842 -
843 -* Device Size: 13.0 x 5 x 4.5 cm
844 -* Device Weight: 150g
845 -* Package Size / pcs : 15 x 12x 5.5 cm
846 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
847 847  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
848 848  
849 -(((
850 850  
851 -
852 -
853 -
854 854  )))
855 855  
856 -= 9.  Support =
1097 += 8. Support =
857 857  
858 858  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
859 859  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content