Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.6
edited by Xiaoling
on 2022/07/09 11:13
Change comment: There is no comment for this version
To version 42.1
edited by Xiaoling
on 2022/07/08 09:52
Change comment: Uploaded new attachment "1657245163077-232.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,645 +14,767 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
24 24  (((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
31 31  )))
32 32  
33 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 34  )))
35 35  
36 -[[image:1657327959271-447.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
37 37  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
38 38  
39 39  
40 -== 1.2 ​ Features ==
50 +[[image:1654503236291-817.png]]
41 41  
42 42  
43 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 +[[image:1654503265560-120.png]]
54 +
55 +
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
44 44  * Ultra low power consumption
45 -* Distance Detection by Ultrasonic technology
46 -* Flat object range 280mm - 7500mm
47 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
48 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
49 49  * AT Commands to change parameters
50 50  * Uplink on periodically
51 51  * Downlink to change configure
52 52  * IP66 Waterproof Enclosure
53 -* Micro SIM card slot for NB-IoT SIM
54 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
55 55  
71 +== 1.3 Specification ==
56 56  
73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
57 57  
58 -== 1.3  Specification ==
75 +[[image:image-20220606162220-5.png]]
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
62 62  
63 -* Supply Voltage: 2.1v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
79 +== ​1.4 Applications ==
65 65  
66 -(% style="color:#037691" %)**NB-IoT Spec:**
81 +* Smart Agriculture
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 +​
74 74  
75 -(% style="color:#037691" %)**Battery:**
86 +== 1.5 Firmware Change log ==
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
89 +**LSE01 v1.0 :**  Release
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
87 87  
88 88  
93 += 2. Configure LSE01 to connect to LoRaWAN network =
89 89  
90 -== ​1. Applications ==
95 +== 2.1 How it works ==
91 91  
92 -* Smart Buildings & Home Automation
93 -* Logistics and Supply Chain Management
94 -* Smart Metering
95 -* Smart Agriculture
96 -* Smart Cities
97 -* Smart Factory
97 +(((
98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
99 +)))
98 98  
99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 -​
101 +(((
102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
103 +)))
101 101  
102 102  
103 -== 1.5  Pin Definitions ==
104 104  
107 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105 105  
106 -[[image:1657328609906-564.png]]
109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
107 107  
108 108  
112 +[[image:1654503992078-669.png]]
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
111 111  
112 -== 2.1  How it works ==
115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
113 113  
117 +
118 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 +
120 +Each LSE01 is shipped with a sticker with the default device EUI as below:
121 +
122 +[[image:image-20220606163732-6.jpeg]]
123 +
124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 +
126 +**Add APP EUI in the application**
127 +
128 +
129 +[[image:1654504596150-405.png]]
130 +
131 +
132 +
133 +**Add APP KEY and DEV EUI**
134 +
135 +[[image:1654504683289-357.png]]
136 +
137 +
138 +
139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
140 +
141 +
142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 +
144 +[[image:image-20220606163915-7.png]]
145 +
146 +
147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 +
149 +[[image:1654504778294-788.png]]
150 +
151 +
152 +
153 +== 2.3 Uplink Payload ==
154 +
155 +
156 +=== 2.3.1 MOD~=0(Default Mode) ===
157 +
158 +LSE01 will uplink payload via LoRaWAN with below payload format: 
159 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
161 +Uplink payload includes in total 11 bytes.
116 116  )))
117 117  
164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 +|(((
166 +**Size**
118 118  
168 +**(bytes)**
169 +)))|**2**|**2**|**2**|**2**|**2**|**1**
170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 +Temperature
172 +
173 +(Reserve, Ignore now)
174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 +MOD & Digital Interrupt
176 +
177 +(Optional)
178 +)))
179 +
180 +=== 2.3.2 MOD~=1(Original value) ===
181 +
182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 +
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
187 +
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
198 +)))
199 +
200 +=== 2.3.3 Battery Info ===
201 +
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
203 +Check the battery voltage for LSE01.
121 121  )))
122 122  
123 123  (((
124 -
207 +Ex1: 0x0B45 = 2885mV
125 125  )))
126 126  
127 -[[image:1657328659945-416.png]]
210 +(((
211 +Ex2: 0x0B49 = 2889mV
212 +)))
128 128  
214 +
215 +
216 +=== 2.3.4 Soil Moisture ===
217 +
129 129  (((
219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 +)))
221 +
222 +(((
223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 +)))
225 +
226 +(((
130 130  
131 131  )))
132 132  
230 +(((
231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 +)))
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
136 136  
137 -=== 2.2.1 Test Requirement ===
236 +=== 2.3.5 Soil Temperature ===
138 138  
139 139  (((
140 -To use NDDS75 in your city, make sure meet below requirements:
239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
141 141  )))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
242 +(((
243 +**Example**:
244 +)))
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
149 149  )))
150 150  
250 +(((
251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 +)))
151 151  
152 -[[image:1657328756309-230.png]]
153 153  
154 154  
256 +=== 2.3.6 Soil Conductivity (EC) ===
155 155  
156 -=== 2.2.2 Insert SIM card ===
258 +(((
259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 +)))
157 157  
158 158  (((
159 -Insert the NB-IoT Card get from your provider.
263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
160 160  )))
161 161  
162 162  (((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
267 +Generally, the EC value of irrigation water is less than 800uS / cm.
164 164  )))
165 165  
270 +(((
271 +
272 +)))
166 166  
167 -[[image:1657328884227-504.png]]
274 +(((
275 +
276 +)))
168 168  
278 +=== 2.3.7 MOD ===
169 169  
280 +Firmware version at least v2.1 supports changing mode.
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
282 +For example, bytes[10]=90
172 172  
284 +mod=(bytes[10]>>7)&0x01=1.
285 +
286 +
287 +**Downlink Command:**
288 +
289 +If payload = 0x0A00, workmode=0
290 +
291 +If** **payload =** **0x0A01, workmode=1
292 +
293 +
294 +
295 +=== 2.3.8 ​Decode payload in The Things Network ===
296 +
297 +While using TTN network, you can add the payload format to decode the payload.
298 +
299 +
300 +[[image:1654505570700-128.png]]
301 +
173 173  (((
303 +The payload decoder function for TTN is here:
304 +)))
305 +
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
176 176  )))
309 +
310 +
311 +== 2.4 Uplink Interval ==
312 +
313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314 +
315 +
316 +
317 +== 2.5 Downlink Payload ==
318 +
319 +By default, LSE50 prints the downlink payload to console port.
320 +
321 +[[image:image-20220606165544-8.png]]
322 +
323 +
324 +(((
325 +(% style="color:blue" %)**Examples:**
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
328 +(((
329 +
330 +)))
180 180  
181 -**Connection:**
332 +* (((
333 +(% style="color:blue" %)**Set TDC**
334 +)))
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
336 +(((
337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
338 +)))
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
340 +(((
341 +Payload:    01 00 00 1E    TDC=30S
342 +)))
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
344 +(((
345 +Payload:    01 00 00 3C    TDC=60S
346 +)))
188 188  
348 +(((
349 +
350 +)))
189 189  
190 -In the PC, use below serial tool settings:
352 +* (((
353 +(% style="color:blue" %)**Reset**
354 +)))
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
356 +(((
357 +If payload = 0x04FF, it will reset the LSE01
358 +)))
197 197  
360 +
361 +* (% style="color:blue" %)**CFM**
362 +
363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
364 +
365 +
366 +
367 +== 2.6 ​Show Data in DataCake IoT Server ==
368 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
373 +(((
374 +
375 +)))
203 203  
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
378 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
206 206  )))
207 207  
381 +(((
382 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
383 +)))
208 208  
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
386 +[[image:1654505857935-743.png]]
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
213 213  
389 +[[image:1654505874829-548.png]]
214 214  
215 -**Use below commands:**
216 216  
217 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
392 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
220 220  
221 -For parameter description, please refer to AT command set
394 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
222 222  
223 -[[image:1657330452568-615.png]]
224 224  
397 +[[image:1654505905236-553.png]]
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657330472797-498.png]]
400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
229 229  
402 +[[image:1654505925508-181.png]]
230 230  
231 231  
232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
233 233  
406 +== 2.7 Frequency Plans ==
234 234  
235 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
238 238  
239 -[[image:1657330501006-241.png]]
240 240  
411 +=== 2.7.1 EU863-870 (EU868) ===
241 241  
242 -[[image:1657330533775-472.png]]
413 +(% style="color:#037691" %)** Uplink:**
243 243  
415 +868.1 - SF7BW125 to SF12BW125
244 244  
417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
245 245  
246 -=== 2.2.6 Use MQTT protocol to uplink data ===
419 +868.5 - SF7BW125 to SF12BW125
247 247  
421 +867.1 - SF7BW125 to SF12BW125
248 248  
249 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
423 +867.3 - SF7BW125 to SF12BW125
256 256  
257 -[[image:1657249978444-674.png]]
425 +867.5 - SF7BW125 to SF12BW125
258 258  
427 +867.7 - SF7BW125 to SF12BW125
259 259  
260 -[[image:1657330723006-866.png]]
429 +867.9 - SF7BW125 to SF12BW125
261 261  
431 +868.8 - FSK
262 262  
263 -(((
264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 -)))
266 266  
434 +(% style="color:#037691" %)** Downlink:**
267 267  
436 +Uplink channels 1-9 (RX1)
268 268  
269 -=== 2.2.7 Use TCP protocol to uplink data ===
438 +869.525 - SF9BW125 (RX2 downlink only)
270 270  
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
274 274  
275 -[[image:image-20220709093918-1.png]]
442 +=== 2.7.2 US902-928(US915) ===
276 276  
444 +Used in USA, Canada and South America. Default use CHE=2
277 277  
278 -[[image:image-20220709093918-2.png]]
446 +(% style="color:#037691" %)**Uplink:**
279 279  
448 +903.9 - SF7BW125 to SF10BW125
280 280  
450 +904.1 - SF7BW125 to SF10BW125
281 281  
282 -=== 2.2.8 Change Update Interval ===
452 +904.3 - SF7BW125 to SF10BW125
283 283  
284 -User can use below command to change the (% style="color:green" %)**uplink interval**.
454 +904.5 - SF7BW125 to SF10BW125
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
456 +904.7 - SF7BW125 to SF10BW125
287 287  
288 -(((
289 -(% style="color:red" %)**NOTE:**
290 -)))
458 +904.9 - SF7BW125 to SF10BW125
291 291  
292 -(((
293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 -)))
460 +905.1 - SF7BW125 to SF10BW125
295 295  
462 +905.3 - SF7BW125 to SF10BW125
296 296  
297 297  
298 -== 2.3  Uplink Payload ==
465 +(% style="color:#037691" %)**Downlink:**
299 299  
300 -In this mode, uplink payload includes in total 14 bytes
467 +923.3 - SF7BW500 to SF12BW500
301 301  
469 +923.9 - SF7BW500 to SF12BW500
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 -|=(% style="width: 80px;" %)(((
305 -**Size(bytes)**
306 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
471 +924.5 - SF7BW500 to SF12BW500
308 308  
309 -(((
310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 -)))
473 +925.1 - SF7BW500 to SF12BW500
312 312  
475 +925.7 - SF7BW500 to SF12BW500
313 313  
314 -[[image:1657331036973-987.png]]
477 +926.3 - SF7BW500 to SF12BW500
315 315  
316 -(((
317 -The payload is ASCII string, representative same HEX:
318 -)))
479 +926.9 - SF7BW500 to SF12BW500
319 319  
320 -(((
321 -0x72403155615900640c6c19029200 where:
322 -)))
481 +927.5 - SF7BW500 to SF12BW500
323 323  
324 -* (((
325 -Device ID: 0x724031556159 = 724031556159
326 -)))
327 -* (((
328 -Version: 0x0064=100=1.0.0
329 -)))
483 +923.3 - SF12BW500(RX2 downlink only)
330 330  
331 -* (((
332 -BAT: 0x0c6c = 3180 mV = 3.180V
333 -)))
334 -* (((
335 -Signal: 0x19 = 25
336 -)))
337 -* (((
338 -Distance: 0x0292= 658 mm
339 -)))
340 -* (((
341 -Interrupt: 0x00 = 0
342 342  
343 343  
487 +=== 2.7.3 CN470-510 (CN470) ===
344 344  
345 -
346 -)))
489 +Used in China, Default use CHE=1
347 347  
348 -== 2.4  Payload Explanation and Sensor Interface ==
491 +(% style="color:#037691" %)**Uplink:**
349 349  
493 +486.3 - SF7BW125 to SF12BW125
350 350  
351 -=== 2.4.1  Device ID ===
495 +486.5 - SF7BW125 to SF12BW125
352 352  
353 -(((
354 -By default, the Device ID equal to the last 6 bytes of IMEI.
355 -)))
497 +486.7 - SF7BW125 to SF12BW125
356 356  
357 -(((
358 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
359 -)))
499 +486.9 - SF7BW125 to SF12BW125
360 360  
361 -(((
362 -**Example:**
363 -)))
501 +487.1 - SF7BW125 to SF12BW125
364 364  
365 -(((
366 -AT+DEUI=A84041F15612
367 -)))
503 +487.3 - SF7BW125 to SF12BW125
368 368  
369 -(((
370 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
371 -)))
505 +487.5 - SF7BW125 to SF12BW125
372 372  
507 +487.7 - SF7BW125 to SF12BW125
373 373  
374 374  
375 -=== 2.4.2  Version Info ===
510 +(% style="color:#037691" %)**Downlink:**
376 376  
377 -(((
378 -Specify the software version: 0x64=100, means firmware version 1.00.
379 -)))
512 +506.7 - SF7BW125 to SF12BW125
380 380  
381 -(((
382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
383 -)))
514 +506.9 - SF7BW125 to SF12BW125
384 384  
516 +507.1 - SF7BW125 to SF12BW125
385 385  
518 +507.3 - SF7BW125 to SF12BW125
386 386  
387 -=== 2.4.3  Battery Info ===
520 +507.5 - SF7BW125 to SF12BW125
388 388  
389 -(((
390 -Ex1: 0x0B45 = 2885mV
391 -)))
522 +507.7 - SF7BW125 to SF12BW125
392 392  
393 -(((
394 -Ex2: 0x0B49 = 2889mV
395 -)))
524 +507.9 - SF7BW125 to SF12BW125
396 396  
526 +508.1 - SF7BW125 to SF12BW125
397 397  
528 +505.3 - SF12BW125 (RX2 downlink only)
398 398  
399 -=== 2.4.4  Signal Strength ===
400 400  
401 -(((
402 -NB-IoT Network signal Strength.
403 -)))
404 404  
405 -(((
406 -**Ex1: 0x1d = 29**
407 -)))
532 +=== 2.7.4 AU915-928(AU915) ===
408 408  
409 -(((
410 -(% style="color:blue" %)**0**(%%)  -113dBm or less
411 -)))
534 +Default use CHE=2
412 412  
413 -(((
414 -(% style="color:blue" %)**1**(%%)  -111dBm
415 -)))
536 +(% style="color:#037691" %)**Uplink:**
416 416  
417 -(((
418 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
419 -)))
538 +916.8 - SF7BW125 to SF12BW125
420 420  
421 -(((
422 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
423 -)))
540 +917.0 - SF7BW125 to SF12BW125
424 424  
425 -(((
426 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
427 -)))
542 +917.2 - SF7BW125 to SF12BW125
428 428  
544 +917.4 - SF7BW125 to SF12BW125
429 429  
546 +917.6 - SF7BW125 to SF12BW125
430 430  
431 -=== 2.4.5  Distance ===
548 +917.8 - SF7BW125 to SF12BW125
432 432  
433 -Get the distance. Flat object range 280mm - 7500mm.
550 +918.0 - SF7BW125 to SF12BW125
434 434  
435 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
552 +918.2 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -(((
439 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
440 -)))
441 -)))
442 442  
443 -(((
444 -
445 -)))
555 +(% style="color:#037691" %)**Downlink:**
446 446  
447 -(((
448 -
449 -)))
557 +923.3 - SF7BW500 to SF12BW500
450 450  
451 -=== 2.4.6  Digital Interrupt ===
559 +923.9 - SF7BW500 to SF12BW500
452 452  
453 -(((
454 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
455 -)))
561 +924.5 - SF7BW500 to SF12BW500
456 456  
457 -(((
458 -The command is:
459 -)))
563 +925.1 - SF7BW500 to SF12BW500
460 460  
461 -(((
462 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
463 -)))
565 +925.7 - SF7BW500 to SF12BW500
464 464  
567 +926.3 - SF7BW500 to SF12BW500
465 465  
466 -(((
467 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
468 -)))
569 +926.9 - SF7BW500 to SF12BW500
469 469  
571 +927.5 - SF7BW500 to SF12BW500
470 470  
471 -(((
472 -Example:
473 -)))
573 +923.3 - SF12BW500(RX2 downlink only)
474 474  
475 -(((
476 -0x(00): Normal uplink packet.
477 -)))
478 478  
479 -(((
480 -0x(01): Interrupt Uplink Packet.
481 -)))
482 482  
577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
483 483  
579 +(% style="color:#037691" %)**Default Uplink channel:**
484 484  
485 -=== 2.4.7  ​+5V Output ===
581 +923.2 - SF7BW125 to SF10BW125
486 486  
487 -(((
488 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
489 -)))
583 +923.4 - SF7BW125 to SF10BW125
490 490  
491 491  
492 -(((
493 -The 5V output time can be controlled by AT Command.
494 -)))
586 +(% style="color:#037691" %)**Additional Uplink Channel**:
495 495  
496 -(((
497 -(% style="color:blue" %)**AT+5VT=1000**
498 -)))
588 +(OTAA mode, channel added by JoinAccept message)
499 499  
500 -(((
501 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
502 -)))
590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
503 503  
592 +922.2 - SF7BW125 to SF10BW125
504 504  
594 +922.4 - SF7BW125 to SF10BW125
505 505  
506 -== 2.5  Downlink Payload ==
596 +922.6 - SF7BW125 to SF10BW125
507 507  
508 -By default, NDDS75 prints the downlink payload to console port.
598 +922.8 - SF7BW125 to SF10BW125
509 509  
510 -[[image:image-20220709100028-1.png]]
600 +923.0 - SF7BW125 to SF10BW125
511 511  
602 +922.0 - SF7BW125 to SF10BW125
512 512  
513 -(((
514 -(% style="color:blue" %)**Examples:**
515 -)))
516 516  
517 -(((
518 -
519 -)))
605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
520 520  
521 -* (((
522 -(% style="color:blue" %)**Set TDC**
523 -)))
607 +923.6 - SF7BW125 to SF10BW125
524 524  
525 -(((
526 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
527 -)))
609 +923.8 - SF7BW125 to SF10BW125
528 528  
529 -(((
530 -Payload:    01 00 00 1E    TDC=30S
531 -)))
611 +924.0 - SF7BW125 to SF10BW125
532 532  
533 -(((
534 -Payload:    01 00 00 3C    TDC=60S
535 -)))
613 +924.2 - SF7BW125 to SF10BW125
536 536  
537 -(((
538 -
539 -)))
615 +924.4 - SF7BW125 to SF10BW125
540 540  
541 -* (((
542 -(% style="color:blue" %)**Reset**
543 -)))
617 +924.6 - SF7BW125 to SF10BW125
544 544  
545 -(((
546 -If payload = 0x04FF, it will reset the NDDS75
547 -)))
548 548  
620 +(% style="color:#037691" %)** Downlink:**
549 549  
550 -* (% style="color:blue" %)**INTMOD**
622 +Uplink channels 1-8 (RX1)
551 551  
552 -(((
553 -Downlink Payload: 06000003, Set AT+INTMOD=3
554 -)))
624 +923.2 - SF10BW125 (RX2)
555 555  
556 556  
557 557  
558 -== 2.6  ​LED Indicator ==
628 +=== 2.7.6 KR920-923 (KR920) ===
559 559  
630 +Default channel:
560 560  
561 -The NDDS75 has an internal LED which is to show the status of different state.
632 +922.1 - SF7BW125 to SF12BW125
562 562  
634 +922.3 - SF7BW125 to SF12BW125
563 563  
564 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
565 -* Then the LED will be on for 1 second means device is boot normally.
566 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
567 -* For each uplink probe, LED will be on for 500ms.
636 +922.5 - SF7BW125 to SF12BW125
568 568  
569 -(((
570 -
571 -)))
572 572  
639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
573 573  
641 +922.1 - SF7BW125 to SF12BW125
574 574  
575 -== 2. Firmware Change Log ==
643 +922.3 - SF7BW125 to SF12BW125
576 576  
645 +922.5 - SF7BW125 to SF12BW125
577 577  
578 -Download URL & Firmware Change log
647 +922.7 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
582 -)))
649 +922.9 - SF7BW125 to SF12BW125
583 583  
651 +923.1 - SF7BW125 to SF12BW125
584 584  
585 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
653 +923.3 - SF7BW125 to SF12BW125
586 586  
587 587  
656 +(% style="color:#037691" %)**Downlink:**
588 588  
589 -== 2.8  ​Battery Analysis ==
658 +Uplink channels 1-7(RX1)
590 590  
591 -=== 2.8.1  Battery Type ===
660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
592 592  
593 593  
663 +
664 +=== 2.7.7 IN865-867 (IN865) ===
665 +
666 +(% style="color:#037691" %)** Uplink:**
667 +
668 +865.0625 - SF7BW125 to SF12BW125
669 +
670 +865.4025 - SF7BW125 to SF12BW125
671 +
672 +865.9850 - SF7BW125 to SF12BW125
673 +
674 +
675 +(% style="color:#037691" %) **Downlink:**
676 +
677 +Uplink channels 1-3 (RX1)
678 +
679 +866.550 - SF10BW125 (RX2)
680 +
681 +
682 +
683 +
684 +== 2.8 LED Indicator ==
685 +
686 +The LSE01 has an internal LED which is to show the status of different state.
687 +
688 +* Blink once when device power on.
689 +* Solid ON for 5 seconds once device successful Join the network.
690 +* Blink once when device transmit a packet.
691 +
692 +
693 +== 2.9 Installation in Soil ==
694 +
695 +**Measurement the soil surface**
696 +
697 +
698 +[[image:1654506634463-199.png]] ​
699 +
594 594  (((
595 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +(((
702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
596 596  )))
704 +)))
597 597  
706 +
707 +
708 +[[image:1654506665940-119.png]]
709 +
598 598  (((
599 -The battery is designed to last for several years depends on the actually use environment and update interval. 
711 +Dig a hole with diameter > 20CM.
600 600  )))
601 601  
602 602  (((
603 -The battery related documents as below:
715 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
604 604  )))
605 605  
606 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 609  
719 +== 2.10 ​Firmware Change Log ==
720 +
610 610  (((
611 -[[image:image-20220709101450-2.png]]
722 +**Firmware download link:**
612 612  )))
613 613  
725 +(((
726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
727 +)))
614 614  
729 +(((
730 +
731 +)))
615 615  
616 -=== 2.8.2  Power consumption Analyze ===
733 +(((
734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
735 +)))
617 617  
618 618  (((
619 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
738 +
620 620  )))
621 621  
741 +(((
742 +**V1.0.**
743 +)))
622 622  
623 623  (((
624 -Instruction to use as below:
746 +Release
625 625  )))
626 626  
749 +
750 +== 2.11 ​Battery Analysis ==
751 +
752 +=== 2.11.1 ​Battery Type ===
753 +
627 627  (((
628 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
629 629  )))
630 630  
758 +(((
759 +The battery is designed to last for more than 5 years for the LSN50.
760 +)))
631 631  
632 632  (((
633 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
763 +(((
764 +The battery-related documents are as below:
634 634  )))
766 +)))
635 635  
636 636  * (((
637 -Product Model
769 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
638 638  )))
639 639  * (((
640 -Uplink Interval
772 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
641 641  )))
642 642  * (((
643 -Working Mode
775 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
644 644  )))
645 645  
646 -(((
647 -And the Life expectation in difference case will be shown on the right.
648 -)))
778 + [[image:image-20220610172436-1.png]]
649 649  
650 -[[image:image-20220709110451-3.png]]
651 651  
652 652  
782 +=== 2.11.2 ​Battery Note ===
653 653  
654 -=== 2.8.3  ​Battery Note ===
655 -
656 656  (((
657 657  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
658 658  )))
... ... @@ -659,169 +659,302 @@
659 659  
660 660  
661 661  
662 -=== 2.8. Replace the battery ===
790 +=== 2.11.3 Replace the battery ===
663 663  
664 664  (((
665 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
666 666  )))
667 667  
668 -
669 -
670 -= 3. ​ Access NB-IoT Module =
671 -
672 672  (((
673 -Users can directly access the AT command set of the NB-IoT module.
797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
674 674  )))
675 675  
676 676  (((
677 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
678 678  )))
679 679  
680 -[[image:1657333200519-600.png]]
681 681  
682 682  
806 += 3. ​Using the AT Commands =
683 683  
684 -= 4.  Using the AT Commands =
808 +== 3.1 Access AT Commands ==
685 685  
686 -== 4.1  Access AT Commands ==
687 687  
688 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
689 689  
813 +[[image:1654501986557-872.png||height="391" width="800"]]
690 690  
691 -AT+<CMD>?  : Help on <CMD>
692 692  
693 -AT+<CMD>         : Run <CMD>
816 +Or if you have below board, use below connection:
694 694  
695 -AT+<CMD>=<value> : Set the value
696 696  
697 -AT+<CMD>=?  : Get the value
819 +[[image:1654502005655-729.png||height="503" width="801"]]
698 698  
699 699  
822 +
823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 +
825 +
826 + [[image:1654502050864-459.png||height="564" width="806"]]
827 +
828 +
829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 +
831 +
832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 +
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 +
840 +
700 700  (% style="color:#037691" %)**General Commands**(%%)      
701 701  
702 -AT  : Attention       
843 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 703  
704 -AT?  : Short Help     
845 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 705  
706 -ATZ  : MCU Reset    
847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 707  
708 -AT+TDC  : Application Data Transmission Interval
849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 709  
710 -AT+CFG  : Print all configurations
711 711  
712 -AT+CFGMOD           : Working mode selection
852 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 713  
714 -AT+INTMOD            : Set the trigger interrupt mode
854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 715  
716 -AT+5VT  : Set extend the time of 5V power  
856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 717  
718 -AT+PRO  : Choose agreement
858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 719  
720 -AT+WEIGRE  : Get weight or set weight to 0
860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 721  
722 -AT+WEIGAP  : Get or Set the GapValue of weight
862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 723  
724 -AT+RXDL  : Extend the sending and receiving time
864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
725 725  
726 -AT+CNTFAC  : Get or set counting parameters
866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 727  
728 -AT+SERVADDR  : Server Address
868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 729  
870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
730 730  
731 -(% style="color:#037691" %)**COAP Management**      
872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 732  
733 -AT+URI            : Resource parameters
874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 734  
876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
735 735  
736 -(% style="color:#037691" %)**UDP Management**
878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 737  
738 -AT+CFM          : Upload confirmation mode (only valid for UDP)
880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 739  
882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
740 740  
741 -(% style="color:#037691" %)**MQTT Management**
884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 742  
743 -AT+CLIENT               : Get or Set MQTT client
744 744  
745 -AT+UNAME  : Get or Set MQTT Username
887 +(% style="color:#037691" %)**LoRa Network Management**
746 746  
747 -AT+PWD                  : Get or Set MQTT password
889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 748  
749 -AT+PUBTOPI : Get or Set MQTT publish topic
891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 750  
751 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 752  
895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
753 753  
754 -(% style="color:#037691" %)**Information**          
897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 755  
756 -AT+FDR  : Factory Data Reset
899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 757  
758 -AT+PWOR : Serial Access Password
901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 759  
903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
760 760  
905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
761 761  
762 -= ​5.  FAQ =
907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 763  
764 -== 5.1 How to Upgrade Firmware ==
909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 765  
911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
766 766  
913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 +
915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 +
919 +
920 +(% style="color:#037691" %)**Information** 
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 +
934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 +
936 +
937 += ​4. FAQ =
938 +
939 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 +
767 767  (((
768 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 +When downloading the images, choose the required image file for download. ​
769 769  )))
770 770  
771 771  (((
772 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 +
773 773  )))
774 774  
775 775  (((
776 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
777 777  )))
778 778  
954 +(((
955 +
956 +)))
779 779  
958 +(((
959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 +)))
780 780  
781 -= 6.  Trouble Shooting =
962 +(((
963 +
964 +)))
782 782  
783 -== 6.1  ​Connection problem when uploading firmware ==
966 +(((
967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
968 +)))
784 784  
970 +[[image:image-20220606154726-3.png]]
785 785  
972 +
973 +When you use the TTN network, the US915 frequency bands use are:
974 +
975 +* 903.9 - SF7BW125 to SF10BW125
976 +* 904.1 - SF7BW125 to SF10BW125
977 +* 904.3 - SF7BW125 to SF10BW125
978 +* 904.5 - SF7BW125 to SF10BW125
979 +* 904.7 - SF7BW125 to SF10BW125
980 +* 904.9 - SF7BW125 to SF10BW125
981 +* 905.1 - SF7BW125 to SF10BW125
982 +* 905.3 - SF7BW125 to SF10BW125
983 +* 904.6 - SF8BW500
984 +
786 786  (((
787 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 +
988 +* (% style="color:#037691" %)**AT+CHE=2**
989 +* (% style="color:#037691" %)**ATZ**
788 788  )))
789 789  
790 -(% class="wikigeneratedid" %)
791 791  (((
792 792  
994 +
995 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
793 793  )))
794 794  
998 +(((
999 +
1000 +)))
795 795  
796 -== 6.2  AT Command input doesn't work ==
1002 +(((
1003 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 +)))
797 797  
1006 +[[image:image-20220606154825-4.png]]
1007 +
1008 +
1009 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 +
1011 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 +
1013 +
1014 += 5. Trouble Shooting =
1015 +
1016 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 +
1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1019 +
1020 +
1021 +== 5.2 AT Command input doesn't work ==
1022 +
798 798  (((
799 799  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 +)))
800 800  
801 -
1027 +
1028 +== 5.3 Device rejoin in at the second uplink packet ==
1029 +
1030 +(% style="color:#4f81bd" %)**Issue describe as below:**
1031 +
1032 +[[image:1654500909990-784.png]]
1033 +
1034 +
1035 +(% style="color:#4f81bd" %)**Cause for this issue:**
1036 +
1037 +(((
1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
802 802  )))
803 803  
804 804  
805 -= 7. ​ Order Info =
1042 +(% style="color:#4f81bd" %)**Solution: **
806 806  
1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
807 807  
808 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1046 +[[image:1654500929571-736.png||height="458" width="832"]]
809 809  
810 810  
1049 += 6. ​Order Info =
1050 +
1051 +
1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 +
1054 +
1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 +
1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 +
1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 +
1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 +
811 811  (% class="wikigeneratedid" %)
812 812  (((
813 813  
814 814  )))
815 815  
816 -= 8.  Packing Info =
1076 += 7. Packing Info =
817 817  
818 818  (((
819 819  
820 820  
821 821  (% style="color:#037691" %)**Package Includes**:
1082 +)))
822 822  
823 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
824 -* External antenna x 1
1084 +* (((
1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
825 825  )))
826 826  
827 827  (((
... ... @@ -828,22 +828,24 @@
828 828  
829 829  
830 830  (% style="color:#037691" %)**Dimension and weight**:
1092 +)))
831 831  
832 -
833 -* Device Size: 13.0 x 5 x 4.5 cm
834 -* Device Weight: 150g
835 -* Package Size / pcs : 15 x 12x 5.5 cm
836 -* Weight / pcs : 220g
1094 +* (((
1095 +Device Size: cm
837 837  )))
1097 +* (((
1098 +Device Weight: g
1099 +)))
1100 +* (((
1101 +Package Size / pcs : cm
1102 +)))
1103 +* (((
1104 +Weight / pcs : g
838 838  
839 -(((
840 840  
841 -
842 -
843 -
844 844  )))
845 845  
846 -= 9.  Support =
1109 += 8. Support =
847 847  
848 848  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
849 849  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content