Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.4
edited by Xiaoling
on 2022/07/09 11:10
Change comment: There is no comment for this version
To version 54.1
edited by Xiaoling
on 2022/07/08 11:13
Change comment: Uploaded new attachment "1657249990869-686.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,60 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
33 33  
34 34  )))
35 35  
36 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
37 37  
38 38  
42 +[[image:1657245163077-232.png]]
39 39  
40 -== 1.2 ​ Features ==
41 41  
42 42  
46 +== 1.2 ​Features ==
47 +
48 +
43 43  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
44 -* Ultra low power consumption
45 -* Distance Detection by Ultrasonic technology
46 -* Flat object range 280mm - 7500mm
47 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
48 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
49 49  * AT Commands to change parameters
50 50  * Uplink on periodically
51 51  * Downlink to change configure
52 52  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
53 53  * Micro SIM card slot for NB-IoT SIM
54 54  * 8500mAh Battery for long term use
55 55  
56 -
57 -
58 58  == 1.3  Specification ==
59 59  
60 60  
... ... @@ -72,111 +72,90 @@
72 72  * - B20 @H-FDD: 800MHz
73 73  * - B28 @H-FDD: 700MHz
74 74  
75 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
87 87  
88 88  
89 -
90 90  == ​1.4  Applications ==
91 91  
92 -* Smart Buildings & Home Automation
93 -* Logistics and Supply Chain Management
94 -* Smart Metering
95 95  * Smart Agriculture
96 -* Smart Cities
97 -* Smart Factory
98 98  
99 99  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 100  ​
101 101  
102 -
103 103  == 1.5  Pin Definitions ==
104 104  
105 105  
106 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
107 107  
108 108  
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
111 111  
112 112  == 2.1  How it works ==
113 113  
105 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 116  )))
117 117  
118 118  
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
121 121  )))
122 122  
123 -(((
124 -
125 -)))
115 +[[image:image-20220708101605-2.png]]
126 126  
127 -[[image:1657328659945-416.png]]
128 -
129 129  (((
130 130  
131 131  )))
132 132  
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
123 +== 2.2 ​ Configure the NSE01 ==
136 136  
125 +
137 137  === 2.2.1 Test Requirement ===
138 138  
139 -(((
140 -To use NDDS75 in your city, make sure meet below requirements:
141 -)))
142 142  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
143 143  * Your local operator has already distributed a NB-IoT Network there.
144 144  * The local NB-IoT network used the band that NSE01 supports.
145 145  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 149  )))
150 150  
151 151  
152 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
153 153  
154 154  
155 155  
156 156  === 2.2.2 Insert SIM card ===
157 157  
158 -(((
159 159  Insert the NB-IoT Card get from your provider.
160 -)))
161 161  
162 -(((
163 163  User need to take out the NB-IoT module and insert the SIM card like below:
164 -)))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
168 168  
169 169  
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
172 172  
173 173  (((
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 176  )))
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
180 180  
181 181  **Connection:**
182 182  
... ... @@ -189,27 +189,25 @@
189 189  
190 190  In the PC, use below serial tool settings:
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
193 193  * Data bits:** (% style="color:green" %)8(%%)**
194 194  * Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
196 196  * Flow Control: (% style="color:green" %)**None**
197 197  
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
203 203  
204 -(((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
206 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
207 207  
208 208  
209 209  
210 210  === 2.2.4 Use CoAP protocol to uplink data ===
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
213 213  
214 214  
215 215  **Use below commands:**
... ... @@ -218,65 +218,73 @@
218 218  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 219  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
220 220  
202 +
203 +
221 221  For parameter description, please refer to AT command set
222 222  
223 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
224 224  
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657330472797-498.png]]
211 +[[image:1657249831934-534.png]]
229 229  
230 230  
231 231  
232 232  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
233 233  
217 +This feature is supported since firmware version v1.0.1
234 234  
219 +
235 235  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 236  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 237  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
238 238  
239 -[[image:1657330501006-241.png]]
240 240  
241 241  
242 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
243 243  
244 244  
245 245  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
246 246  === 2.2.6 Use MQTT protocol to uplink data ===
247 247  
236 +This feature is supported since firmware version v110
248 248  
249 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
256 256  
257 -[[image:1657249978444-674.png]]
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 258  
247 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
259 259  
260 -[[image:1657330723006-866.png]]
249 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
261 261  
262 262  
263 -(((
264 264  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 -)))
266 266  
267 267  
268 -
269 269  === 2.2.7 Use TCP protocol to uplink data ===
270 270  
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
258 +This feature is supported since firmware version v110
259 +
260 +
261 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 273  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
274 274  
275 -[[image:image-20220709093918-1.png]]
264 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
276 276  
277 277  
278 -[[image:image-20220709093918-2.png]]
279 279  
268 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
280 280  
281 281  
282 282  === 2.2.8 Change Update Interval ===
... ... @@ -283,166 +283,135 @@
283 283  
284 284  User can use below command to change the (% style="color:green" %)**uplink interval**.
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
275 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
287 287  
288 -(((
277 +
289 289  (% style="color:red" %)**NOTE:**
290 -)))
291 291  
292 -(((
293 293  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 -)))
295 295  
296 296  
297 297  
298 -== 2.3  Uplink Payload ==
299 299  
300 -In this mode, uplink payload includes in total 14 bytes
301 301  
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 -|=(% style="width: 80px;" %)(((
305 -**Size(bytes)**
306 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
308 308  
309 -(((
310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 -)))
288 +== 2.3 Uplink Payload ==
312 312  
313 313  
314 -[[image:1657331036973-987.png]]
291 +=== 2.3.1 MOD~=0(Default Mode) ===
315 315  
316 -(((
317 -The payload is ASCII string, representative same HEX:
318 -)))
293 +LSE01 will uplink payload via LoRaWAN with below payload format: 
319 319  
320 320  (((
321 -0x72403155615900640c6c19029200 where:
296 +Uplink payload includes in total 11 bytes.
322 322  )))
323 323  
324 -* (((
325 -Device ID: 0x724031556159 = 724031556159
326 -)))
327 -* (((
328 -Version: 0x0064=100=1.0.0
329 -)))
299 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
300 +|(((
301 +**Size**
330 330  
331 -* (((
332 -BAT: 0x0c6c = 3180 mV = 3.180V
333 -)))
334 -* (((
335 -Signal: 0x19 = 25
336 -)))
337 -* (((
338 -Distance: 0x0292= 658 mm
339 -)))
340 -* (((
341 -Interrupt: 0x00 = 0
303 +**(bytes)**
304 +)))|**2**|**2**|**2**|**2**|**2**|**1**
305 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
306 +Temperature
342 342  
308 +(Reserve, Ignore now)
309 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
310 +MOD & Digital Interrupt
343 343  
344 -
345 -
312 +(Optional)
346 346  )))
347 347  
348 -== 2. Payload Explanation and Sensor Interface ==
315 +=== 2.3.2 MOD~=1(Original value) ===
349 349  
317 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
350 350  
351 -=== 2.4.1  Device ID ===
319 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
320 +|(((
321 +**Size**
352 352  
353 -(((
354 -By default, the Device ID equal to the last 6 bytes of IMEI.
355 -)))
323 +**(bytes)**
324 +)))|**2**|**2**|**2**|**2**|**2**|**1**
325 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
326 +Temperature
356 356  
357 -(((
358 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
328 +(Reserve, Ignore now)
329 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
330 +MOD & Digital Interrupt
331 +
332 +(Optional)
359 359  )))
360 360  
335 +=== 2.3.3 Battery Info ===
336 +
361 361  (((
362 -**Example:**
338 +Check the battery voltage for LSE01.
363 363  )))
364 364  
365 365  (((
366 -AT+DEUI=A84041F15612
342 +Ex1: 0x0B45 = 2885mV
367 367  )))
368 368  
369 369  (((
370 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
346 +Ex2: 0x0B49 = 2889mV
371 371  )))
372 372  
373 373  
374 374  
375 -=== 2.4. Version Info ===
351 +=== 2.3.4 Soil Moisture ===
376 376  
377 377  (((
378 -Specify the software version: 0x64=100, means firmware version 1.00.
354 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 379  )))
380 380  
381 381  (((
382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
358 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
383 383  )))
384 384  
385 -
386 -
387 -=== 2.4.3  Battery Info ===
388 -
389 389  (((
390 -Check the battery voltage for LSE01.
362 +
391 391  )))
392 392  
393 393  (((
394 -Ex1: 0x0B45 = 2885mV
366 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
395 395  )))
396 396  
397 -(((
398 -Ex2: 0x0B49 = 2889mV
399 -)))
400 400  
401 401  
371 +=== 2.3.5 Soil Temperature ===
402 402  
403 -=== 2.4.4  Signal Strength ===
404 -
405 405  (((
406 -NB-IoT Network signal Strength.
374 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
407 407  )))
408 408  
409 409  (((
410 -**Ex1: 0x1d = 29**
378 +**Example**:
411 411  )))
412 412  
413 413  (((
414 -(% style="color:blue" %)**0**(%%)  -113dBm or less
382 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 415  )))
416 416  
417 417  (((
418 -(% style="color:blue" %)**1**(%%)  -111dBm
386 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 419  )))
420 420  
421 -(((
422 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
423 -)))
424 424  
390 +
391 +=== 2.3.6 Soil Conductivity (EC) ===
392 +
425 425  (((
426 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
394 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 427  )))
428 428  
429 429  (((
430 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
398 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 431  )))
432 432  
433 -
434 -
435 -=== 2.4.5  Distance ===
436 -
437 -Get the distance. Flat object range 280mm - 7500mm.
438 -
439 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
440 -
441 441  (((
442 -(((
443 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
402 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 444  )))
445 -)))
446 446  
447 447  (((
448 448  
... ... @@ -452,68 +452,52 @@
452 452  
453 453  )))
454 454  
455 -=== 2.4. Digital Interrupt ===
413 +=== 2.3.7 MOD ===
456 456  
457 -(((
458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
459 -)))
415 +Firmware version at least v2.1 supports changing mode.
460 460  
461 -(((
462 -The command is:
463 -)))
417 +For example, bytes[10]=90
464 464  
465 -(((
466 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
467 -)))
419 +mod=(bytes[10]>>7)&0x01=1.
468 468  
469 469  
470 -(((
471 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
472 -)))
422 +**Downlink Command:**
473 473  
424 +If payload = 0x0A00, workmode=0
474 474  
475 -(((
476 -Example:
477 -)))
426 +If** **payload =** **0x0A01, workmode=1
478 478  
479 -(((
480 -0x(00): Normal uplink packet.
481 -)))
482 482  
483 -(((
484 -0x(01): Interrupt Uplink Packet.
485 -)))
486 486  
430 +=== 2.3.8 ​Decode payload in The Things Network ===
487 487  
432 +While using TTN network, you can add the payload format to decode the payload.
488 488  
489 -=== 2.4.7  ​+5V Output ===
490 490  
491 -(((
492 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
493 -)))
435 +[[image:1654505570700-128.png]]
494 494  
495 -
496 496  (((
497 -The 5V output time can be controlled by AT Command.
438 +The payload decoder function for TTN is here:
498 498  )))
499 499  
500 500  (((
501 -(% style="color:blue" %)**AT+5VT=1000**
442 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
502 502  )))
503 503  
504 -(((
505 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
506 -)))
507 507  
446 +== 2.4 Uplink Interval ==
508 508  
448 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
509 509  
510 -== 2.5  Downlink Payload ==
511 511  
512 -By default, NDDS75 prints the downlink payload to console port.
513 513  
514 -[[image:image-20220709100028-1.png]]
452 +== 2.5 Downlink Payload ==
515 515  
454 +By default, LSE50 prints the downlink payload to console port.
516 516  
456 +[[image:image-20220606165544-8.png]]
457 +
458 +
517 517  (((
518 518  (% style="color:blue" %)**Examples:**
519 519  )))
... ... @@ -527,7 +527,7 @@
527 527  )))
528 528  
529 529  (((
530 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
472 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
531 531  )))
532 532  
533 533  (((
... ... @@ -547,116 +547,432 @@
547 547  )))
548 548  
549 549  (((
550 -If payload = 0x04FF, it will reset the NDDS75
492 +If payload = 0x04FF, it will reset the LSE01
551 551  )))
552 552  
553 553  
554 -* (% style="color:blue" %)**INTMOD**
496 +* (% style="color:blue" %)**CFM**
555 555  
498 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
499 +
500 +
501 +
502 +== 2.6 ​Show Data in DataCake IoT Server ==
503 +
556 556  (((
557 -Downlink Payload: 06000003, Set AT+INTMOD=3
505 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
558 558  )))
559 559  
508 +(((
509 +
510 +)))
560 560  
512 +(((
513 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
514 +)))
561 561  
562 -== 2.6  ​LED Indicator ==
516 +(((
517 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518 +)))
563 563  
564 564  
565 -The NDDS75 has an internal LED which is to show the status of different state.
521 +[[image:1654505857935-743.png]]
566 566  
567 567  
568 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
569 -* Then the LED will be on for 1 second means device is boot normally.
570 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
571 -* For each uplink probe, LED will be on for 500ms.
524 +[[image:1654505874829-548.png]]
572 572  
573 -(((
574 -
575 -)))
576 576  
527 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
577 577  
529 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
578 578  
579 -== 2.7  ​Firmware Change Log ==
580 580  
532 +[[image:1654505905236-553.png]]
581 581  
582 -Download URL & Firmware Change log
583 583  
584 -(((
585 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
586 -)))
535 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
587 587  
537 +[[image:1654505925508-181.png]]
588 588  
589 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
590 590  
591 591  
541 +== 2.7 Frequency Plans ==
592 592  
593 -== 2. ​Battery Analysis ==
543 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
594 594  
595 -=== 2.8.1  ​Battery Type ===
596 596  
546 +=== 2.7.1 EU863-870 (EU868) ===
597 597  
548 +(% style="color:#037691" %)** Uplink:**
549 +
550 +868.1 - SF7BW125 to SF12BW125
551 +
552 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
553 +
554 +868.5 - SF7BW125 to SF12BW125
555 +
556 +867.1 - SF7BW125 to SF12BW125
557 +
558 +867.3 - SF7BW125 to SF12BW125
559 +
560 +867.5 - SF7BW125 to SF12BW125
561 +
562 +867.7 - SF7BW125 to SF12BW125
563 +
564 +867.9 - SF7BW125 to SF12BW125
565 +
566 +868.8 - FSK
567 +
568 +
569 +(% style="color:#037691" %)** Downlink:**
570 +
571 +Uplink channels 1-9 (RX1)
572 +
573 +869.525 - SF9BW125 (RX2 downlink only)
574 +
575 +
576 +
577 +=== 2.7.2 US902-928(US915) ===
578 +
579 +Used in USA, Canada and South America. Default use CHE=2
580 +
581 +(% style="color:#037691" %)**Uplink:**
582 +
583 +903.9 - SF7BW125 to SF10BW125
584 +
585 +904.1 - SF7BW125 to SF10BW125
586 +
587 +904.3 - SF7BW125 to SF10BW125
588 +
589 +904.5 - SF7BW125 to SF10BW125
590 +
591 +904.7 - SF7BW125 to SF10BW125
592 +
593 +904.9 - SF7BW125 to SF10BW125
594 +
595 +905.1 - SF7BW125 to SF10BW125
596 +
597 +905.3 - SF7BW125 to SF10BW125
598 +
599 +
600 +(% style="color:#037691" %)**Downlink:**
601 +
602 +923.3 - SF7BW500 to SF12BW500
603 +
604 +923.9 - SF7BW500 to SF12BW500
605 +
606 +924.5 - SF7BW500 to SF12BW500
607 +
608 +925.1 - SF7BW500 to SF12BW500
609 +
610 +925.7 - SF7BW500 to SF12BW500
611 +
612 +926.3 - SF7BW500 to SF12BW500
613 +
614 +926.9 - SF7BW500 to SF12BW500
615 +
616 +927.5 - SF7BW500 to SF12BW500
617 +
618 +923.3 - SF12BW500(RX2 downlink only)
619 +
620 +
621 +
622 +=== 2.7.3 CN470-510 (CN470) ===
623 +
624 +Used in China, Default use CHE=1
625 +
626 +(% style="color:#037691" %)**Uplink:**
627 +
628 +486.3 - SF7BW125 to SF12BW125
629 +
630 +486.5 - SF7BW125 to SF12BW125
631 +
632 +486.7 - SF7BW125 to SF12BW125
633 +
634 +486.9 - SF7BW125 to SF12BW125
635 +
636 +487.1 - SF7BW125 to SF12BW125
637 +
638 +487.3 - SF7BW125 to SF12BW125
639 +
640 +487.5 - SF7BW125 to SF12BW125
641 +
642 +487.7 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +506.7 - SF7BW125 to SF12BW125
648 +
649 +506.9 - SF7BW125 to SF12BW125
650 +
651 +507.1 - SF7BW125 to SF12BW125
652 +
653 +507.3 - SF7BW125 to SF12BW125
654 +
655 +507.5 - SF7BW125 to SF12BW125
656 +
657 +507.7 - SF7BW125 to SF12BW125
658 +
659 +507.9 - SF7BW125 to SF12BW125
660 +
661 +508.1 - SF7BW125 to SF12BW125
662 +
663 +505.3 - SF12BW125 (RX2 downlink only)
664 +
665 +
666 +
667 +=== 2.7.4 AU915-928(AU915) ===
668 +
669 +Default use CHE=2
670 +
671 +(% style="color:#037691" %)**Uplink:**
672 +
673 +916.8 - SF7BW125 to SF12BW125
674 +
675 +917.0 - SF7BW125 to SF12BW125
676 +
677 +917.2 - SF7BW125 to SF12BW125
678 +
679 +917.4 - SF7BW125 to SF12BW125
680 +
681 +917.6 - SF7BW125 to SF12BW125
682 +
683 +917.8 - SF7BW125 to SF12BW125
684 +
685 +918.0 - SF7BW125 to SF12BW125
686 +
687 +918.2 - SF7BW125 to SF12BW125
688 +
689 +
690 +(% style="color:#037691" %)**Downlink:**
691 +
692 +923.3 - SF7BW500 to SF12BW500
693 +
694 +923.9 - SF7BW500 to SF12BW500
695 +
696 +924.5 - SF7BW500 to SF12BW500
697 +
698 +925.1 - SF7BW500 to SF12BW500
699 +
700 +925.7 - SF7BW500 to SF12BW500
701 +
702 +926.3 - SF7BW500 to SF12BW500
703 +
704 +926.9 - SF7BW500 to SF12BW500
705 +
706 +927.5 - SF7BW500 to SF12BW500
707 +
708 +923.3 - SF12BW500(RX2 downlink only)
709 +
710 +
711 +
712 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
713 +
714 +(% style="color:#037691" %)**Default Uplink channel:**
715 +
716 +923.2 - SF7BW125 to SF10BW125
717 +
718 +923.4 - SF7BW125 to SF10BW125
719 +
720 +
721 +(% style="color:#037691" %)**Additional Uplink Channel**:
722 +
723 +(OTAA mode, channel added by JoinAccept message)
724 +
725 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
726 +
727 +922.2 - SF7BW125 to SF10BW125
728 +
729 +922.4 - SF7BW125 to SF10BW125
730 +
731 +922.6 - SF7BW125 to SF10BW125
732 +
733 +922.8 - SF7BW125 to SF10BW125
734 +
735 +923.0 - SF7BW125 to SF10BW125
736 +
737 +922.0 - SF7BW125 to SF10BW125
738 +
739 +
740 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
741 +
742 +923.6 - SF7BW125 to SF10BW125
743 +
744 +923.8 - SF7BW125 to SF10BW125
745 +
746 +924.0 - SF7BW125 to SF10BW125
747 +
748 +924.2 - SF7BW125 to SF10BW125
749 +
750 +924.4 - SF7BW125 to SF10BW125
751 +
752 +924.6 - SF7BW125 to SF10BW125
753 +
754 +
755 +(% style="color:#037691" %)** Downlink:**
756 +
757 +Uplink channels 1-8 (RX1)
758 +
759 +923.2 - SF10BW125 (RX2)
760 +
761 +
762 +
763 +=== 2.7.6 KR920-923 (KR920) ===
764 +
765 +Default channel:
766 +
767 +922.1 - SF7BW125 to SF12BW125
768 +
769 +922.3 - SF7BW125 to SF12BW125
770 +
771 +922.5 - SF7BW125 to SF12BW125
772 +
773 +
774 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
775 +
776 +922.1 - SF7BW125 to SF12BW125
777 +
778 +922.3 - SF7BW125 to SF12BW125
779 +
780 +922.5 - SF7BW125 to SF12BW125
781 +
782 +922.7 - SF7BW125 to SF12BW125
783 +
784 +922.9 - SF7BW125 to SF12BW125
785 +
786 +923.1 - SF7BW125 to SF12BW125
787 +
788 +923.3 - SF7BW125 to SF12BW125
789 +
790 +
791 +(% style="color:#037691" %)**Downlink:**
792 +
793 +Uplink channels 1-7(RX1)
794 +
795 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
796 +
797 +
798 +
799 +=== 2.7.7 IN865-867 (IN865) ===
800 +
801 +(% style="color:#037691" %)** Uplink:**
802 +
803 +865.0625 - SF7BW125 to SF12BW125
804 +
805 +865.4025 - SF7BW125 to SF12BW125
806 +
807 +865.9850 - SF7BW125 to SF12BW125
808 +
809 +
810 +(% style="color:#037691" %) **Downlink:**
811 +
812 +Uplink channels 1-3 (RX1)
813 +
814 +866.550 - SF10BW125 (RX2)
815 +
816 +
817 +
818 +
819 +== 2.8 LED Indicator ==
820 +
821 +The LSE01 has an internal LED which is to show the status of different state.
822 +
823 +* Blink once when device power on.
824 +* Solid ON for 5 seconds once device successful Join the network.
825 +* Blink once when device transmit a packet.
826 +
827 +== 2.9 Installation in Soil ==
828 +
829 +**Measurement the soil surface**
830 +
831 +
832 +[[image:1654506634463-199.png]] ​
833 +
598 598  (((
599 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
835 +(((
836 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
600 600  )))
838 +)))
601 601  
840 +
841 +
842 +[[image:1654506665940-119.png]]
843 +
602 602  (((
603 -The battery is designed to last for several years depends on the actually use environment and update interval. 
845 +Dig a hole with diameter > 20CM.
604 604  )))
605 605  
606 606  (((
607 -The battery related documents as below:
849 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
608 608  )))
609 609  
610 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
611 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
613 613  
853 +== 2.10 ​Firmware Change Log ==
854 +
614 614  (((
615 -[[image:image-20220709101450-2.png]]
856 +**Firmware download link:**
616 616  )))
617 617  
859 +(((
860 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
861 +)))
618 618  
863 +(((
864 +
865 +)))
619 619  
620 -=== 2.8.2  Power consumption Analyze ===
867 +(((
868 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
869 +)))
621 621  
622 622  (((
623 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
872 +
624 624  )))
625 625  
875 +(((
876 +**V1.0.**
877 +)))
626 626  
627 627  (((
628 -Instruction to use as below:
880 +Release
629 629  )))
630 630  
883 +
884 +== 2.11 ​Battery Analysis ==
885 +
886 +=== 2.11.1 ​Battery Type ===
887 +
631 631  (((
632 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
889 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
633 633  )))
634 634  
892 +(((
893 +The battery is designed to last for more than 5 years for the LSN50.
894 +)))
635 635  
636 636  (((
637 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
897 +(((
898 +The battery-related documents are as below:
638 638  )))
900 +)))
639 639  
640 640  * (((
641 -Product Model
903 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
642 642  )))
643 643  * (((
644 -Uplink Interval
906 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
645 645  )))
646 646  * (((
647 -Working Mode
909 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
648 648  )))
649 649  
650 -(((
651 -And the Life expectation in difference case will be shown on the right.
652 -)))
912 + [[image:image-20220610172436-1.png]]
653 653  
654 -[[image:image-20220709110451-3.png]]
655 655  
656 656  
916 +=== 2.11.2 ​Battery Note ===
657 657  
658 -=== 2.8.3  ​Battery Note ===
659 -
660 660  (((
661 661  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
662 662  )))
... ... @@ -663,169 +663,302 @@
663 663  
664 664  
665 665  
666 -=== 2.8. Replace the battery ===
924 +=== 2.11.3 Replace the battery ===
667 667  
668 668  (((
669 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
927 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
670 670  )))
671 671  
672 -
673 -
674 -= 3. ​ Access NB-IoT Module =
675 -
676 676  (((
677 -Users can directly access the AT command set of the NB-IoT module.
931 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 678  )))
679 679  
680 680  (((
681 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
935 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
682 682  )))
683 683  
684 -[[image:1657333200519-600.png]]
685 685  
686 686  
940 += 3. ​Using the AT Commands =
687 687  
688 -= 4.  Using the AT Commands =
942 +== 3.1 Access AT Commands ==
689 689  
690 -== 4.1  Access AT Commands ==
691 691  
692 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
945 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
693 693  
947 +[[image:1654501986557-872.png||height="391" width="800"]]
694 694  
695 -AT+<CMD>?  : Help on <CMD>
696 696  
697 -AT+<CMD>         : Run <CMD>
950 +Or if you have below board, use below connection:
698 698  
699 -AT+<CMD>=<value> : Set the value
700 700  
701 -AT+<CMD>=?  : Get the value
953 +[[image:1654502005655-729.png||height="503" width="801"]]
702 702  
703 703  
956 +
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
958 +
959 +
960 + [[image:1654502050864-459.png||height="564" width="806"]]
961 +
962 +
963 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
964 +
965 +
966 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
967 +
968 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
969 +
970 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
971 +
972 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
973 +
974 +
704 704  (% style="color:#037691" %)**General Commands**(%%)      
705 705  
706 -AT  : Attention       
977 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
707 707  
708 -AT?  : Short Help     
979 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
709 709  
710 -ATZ  : MCU Reset    
981 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
711 711  
712 -AT+TDC  : Application Data Transmission Interval
983 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
713 713  
714 -AT+CFG  : Print all configurations
715 715  
716 -AT+CFGMOD           : Working mode selection
986 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
717 717  
718 -AT+INTMOD            : Set the trigger interrupt mode
988 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
719 719  
720 -AT+5VT  : Set extend the time of 5V power  
990 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
721 721  
722 -AT+PRO  : Choose agreement
992 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
723 723  
724 -AT+WEIGRE  : Get weight or set weight to 0
994 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
725 725  
726 -AT+WEIGAP  : Get or Set the GapValue of weight
996 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
727 727  
728 -AT+RXDL  : Extend the sending and receiving time
998 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
729 729  
730 -AT+CNTFAC  : Get or set counting parameters
1000 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
731 731  
732 -AT+SERVADDR  : Server Address
1002 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
733 733  
1004 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
734 734  
735 -(% style="color:#037691" %)**COAP Management**      
1006 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
736 736  
737 -AT+URI            : Resource parameters
1008 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
738 738  
1010 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
739 739  
740 -(% style="color:#037691" %)**UDP Management**
1012 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
741 741  
742 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1014 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
743 743  
1016 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
744 744  
745 -(% style="color:#037691" %)**MQTT Management**
1018 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
746 746  
747 -AT+CLIENT               : Get or Set MQTT client
748 748  
749 -AT+UNAME  : Get or Set MQTT Username
1021 +(% style="color:#037691" %)**LoRa Network Management**
750 750  
751 -AT+PWD                  : Get or Set MQTT password
1023 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
752 752  
753 -AT+PUBTOPI : Get or Set MQTT publish topic
1025 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
754 754  
755 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1027 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
756 756  
1029 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
757 757  
758 -(% style="color:#037691" %)**Information**          
1031 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
759 759  
760 -AT+FDR  : Factory Data Reset
1033 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
761 761  
762 -AT+PWOR : Serial Access Password
1035 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
763 763  
1037 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
764 764  
1039 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
765 765  
766 -= ​5.  FAQ =
1041 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
767 767  
768 -== 5.1 How to Upgrade Firmware ==
1043 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
769 769  
1045 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
770 770  
1047 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1048 +
1049 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1050 +
1051 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1052 +
1053 +
1054 +(% style="color:#037691" %)**Information** 
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1057 +
1058 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1059 +
1060 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1061 +
1062 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1063 +
1064 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1065 +
1066 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1067 +
1068 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1069 +
1070 +
1071 += ​4. FAQ =
1072 +
1073 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1074 +
771 771  (((
772 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1076 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1077 +When downloading the images, choose the required image file for download. ​
773 773  )))
774 774  
775 775  (((
776 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1081 +
777 777  )))
778 778  
779 779  (((
780 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
1085 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 781  )))
782 782  
1088 +(((
1089 +
1090 +)))
783 783  
1092 +(((
1093 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1094 +)))
784 784  
785 -= 6.  Trouble Shooting =
1096 +(((
1097 +
1098 +)))
786 786  
787 -== 6.1  ​Connection problem when uploading firmware ==
1100 +(((
1101 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1102 +)))
788 788  
1104 +[[image:image-20220606154726-3.png]]
789 789  
1106 +
1107 +When you use the TTN network, the US915 frequency bands use are:
1108 +
1109 +* 903.9 - SF7BW125 to SF10BW125
1110 +* 904.1 - SF7BW125 to SF10BW125
1111 +* 904.3 - SF7BW125 to SF10BW125
1112 +* 904.5 - SF7BW125 to SF10BW125
1113 +* 904.7 - SF7BW125 to SF10BW125
1114 +* 904.9 - SF7BW125 to SF10BW125
1115 +* 905.1 - SF7BW125 to SF10BW125
1116 +* 905.3 - SF7BW125 to SF10BW125
1117 +* 904.6 - SF8BW500
1118 +
790 790  (((
791 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1120 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1121 +
1122 +* (% style="color:#037691" %)**AT+CHE=2**
1123 +* (% style="color:#037691" %)**ATZ**
792 792  )))
793 793  
794 -(% class="wikigeneratedid" %)
795 795  (((
796 796  
1128 +
1129 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
797 797  )))
798 798  
1132 +(((
1133 +
1134 +)))
799 799  
800 -== 6.2  AT Command input doesn't work ==
1136 +(((
1137 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1138 +)))
801 801  
1140 +[[image:image-20220606154825-4.png]]
1141 +
1142 +
1143 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1144 +
1145 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1146 +
1147 +
1148 += 5. Trouble Shooting =
1149 +
1150 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1151 +
1152 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1153 +
1154 +
1155 +== 5.2 AT Command input doesn't work ==
1156 +
802 802  (((
803 803  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1159 +)))
804 804  
805 -
1161 +
1162 +== 5.3 Device rejoin in at the second uplink packet ==
1163 +
1164 +(% style="color:#4f81bd" %)**Issue describe as below:**
1165 +
1166 +[[image:1654500909990-784.png]]
1167 +
1168 +
1169 +(% style="color:#4f81bd" %)**Cause for this issue:**
1170 +
1171 +(((
1172 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
806 806  )))
807 807  
808 808  
809 -= 7. ​ Order Info =
1176 +(% style="color:#4f81bd" %)**Solution: **
810 810  
1178 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
811 811  
812 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1180 +[[image:1654500929571-736.png||height="458" width="832"]]
813 813  
814 814  
1183 += 6. ​Order Info =
1184 +
1185 +
1186 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1187 +
1188 +
1189 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1190 +
1191 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1192 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1193 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1194 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1195 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1196 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1197 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1198 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1199 +
1200 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1201 +
1202 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1203 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1204 +
815 815  (% class="wikigeneratedid" %)
816 816  (((
817 817  
818 818  )))
819 819  
820 -= 8.  Packing Info =
1210 += 7. Packing Info =
821 821  
822 822  (((
823 823  
824 824  
825 825  (% style="color:#037691" %)**Package Includes**:
1216 +)))
826 826  
827 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
828 -* External antenna x 1
1218 +* (((
1219 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
829 829  )))
830 830  
831 831  (((
... ... @@ -832,22 +832,24 @@
832 832  
833 833  
834 834  (% style="color:#037691" %)**Dimension and weight**:
1226 +)))
835 835  
836 -
837 -* Device Size: 13.0 x 5 x 4.5 cm
838 -* Device Weight: 150g
839 -* Package Size / pcs : 15 x 12x 5.5 cm
840 -* Weight / pcs : 220g
1228 +* (((
1229 +Device Size: cm
841 841  )))
1231 +* (((
1232 +Device Weight: g
1233 +)))
1234 +* (((
1235 +Package Size / pcs : cm
1236 +)))
1237 +* (((
1238 +Weight / pcs : g
842 842  
843 -(((
844 844  
845 -
846 -
847 -
848 848  )))
849 849  
850 -= 9.  Support =
1243 += 8. Support =
851 851  
852 852  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
853 853  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content