Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 50 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,662 +1,753 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 += 1. Introduction = 15 15 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 16 16 17 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 18 18 19 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 20 20 21 21 ((( 22 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 23 23 24 24 ((( 25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 31 31 ))) 32 32 33 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 34 34 ))) 35 35 36 -[[image:1657327959271-447.png]] 37 37 40 +[[image:1654503236291-817.png]] 38 38 39 39 40 - == 1.2 Features ==43 +[[image:1654503265560-120.png]] 41 41 42 42 43 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 46 + 47 +== 1.2 Features == 48 + 49 +* LoRaWAN 1.0.3 Class A 44 44 * Ultra low power consumption 45 -* Distance Detectionby Ultrasonictechnology46 -* Flat objectrange280mm - 7500mm47 -* Accuracy:±(1cm+S*0.3%) (S: Distance)48 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 49 49 * AT Commands to change parameters 50 50 * Uplink on periodically 51 51 * Downlink to change configure 52 52 * IP66 Waterproof Enclosure 53 -* Micro SIM card slot for NB-IoT SIM 54 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 55 55 61 +== 1.3 Specification == 56 56 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 57 57 58 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 59 59 60 60 61 -(% style="color:#037691" %)**Common DC Characteristics:** 62 62 63 -* Supply Voltage: 2.1v ~~ 3.6v 64 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 65 65 66 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 67 67 68 -* - B1 @H-FDD: 2100MHz 69 -* - B3 @H-FDD: 1800MHz 70 -* - B8 @H-FDD: 900MHz 71 -* - B5 @H-FDD: 850MHz 72 -* - B20 @H-FDD: 800MHz 73 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 74 74 75 - (% style="color:#037691"%)**Battery:**76 +== 1.5 Firmware Change log == 76 76 77 -* Li/SOCI2 un-chargeable battery 78 -* Capacity: 8500mAh 79 -* Self Discharge: <1% / Year @ 25°C 80 -* Max continuously current: 130mA 81 -* Max boost current: 2A, 1 second 82 82 83 - (% style="color:#037691"%)**PowerConsumption**79 +**LSE01 v1.0 :** Release 84 84 85 -* STOP Mode: 10uA @ 3.3v 86 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 87 87 88 88 83 += 2. Configure LSE01 to connect to LoRaWAN network = 89 89 90 -== 1.4Applications ==85 +== 2.1 How it works == 91 91 92 -* Smart Buildings & Home Automation 93 -* Logistics and Supply Chain Management 94 -* Smart Metering 95 -* Smart Agriculture 96 -* Smart Cities 97 -* Smart Factory 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 101 101 102 102 103 -== 1.5 Pin Definitions == 104 104 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 105 105 106 - [[image:1657328609906-564.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 102 +[[image:1654503992078-669.png]] 109 109 110 -= 2. Use NDDS75 to communicate with IoT Server = 111 111 112 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 114 114 ((( 115 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.153 +Uplink payload includes in total 11 bytes. 116 116 ))) 117 117 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 118 118 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 119 119 ((( 120 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:199 +Check the battery voltage for LSE01. 121 121 ))) 122 122 123 123 ((( 124 - 203 +Ex1: 0x0B45 = 2885mV 125 125 ))) 126 126 127 -[[image:1657328659945-416.png]] 128 - 129 129 ((( 130 - 207 +Ex2: 0x0B49 = 2889mV 131 131 ))) 132 132 133 133 134 -== 2.2 Configure the NDDS75 == 135 135 212 +=== 2.3.4 Soil Moisture === 136 136 137 -=== 2.2.1 Test Requirement === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 138 138 139 139 ((( 140 - TouseNDDS75inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 141 141 ))) 142 142 143 - * Your local operator has already distributed a NB-IoT Network there.144 - *The local NB-IoT network used the band that NSE01 supports.145 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 146 146 147 147 ((( 148 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 149 149 ))) 150 150 151 151 152 -[[image:1657328756309-230.png]] 153 153 232 +=== 2.3.5 Soil Temperature === 154 154 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 155 155 156 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 157 157 158 158 ((( 159 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 160 160 ))) 161 161 162 162 ((( 163 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 164 164 ))) 165 165 166 166 167 -[[image:1657328884227-504.png]] 168 168 252 +=== 2.3.6 Soil Conductivity (EC) === 169 169 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 170 170 171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 172 172 173 173 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 174 174 ((( 175 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.267 + 176 176 ))) 269 + 270 +((( 271 + 177 177 ))) 178 178 179 - [[image:image-20220709092052-2.png]]274 +=== 2.3.7 MOD === 180 180 181 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 182 182 183 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 188 188 283 +**Downlink Command:** 189 189 190 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 197 197 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 198 198 ((( 199 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNDDS75. NDDS75 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 200 200 ))) 201 201 202 -[[image:1657329814315-101.png]] 203 - 204 204 ((( 205 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 206 206 ))) 207 207 208 208 209 209 210 -== =2.2.4se CoAPprotocolto uplinkdata ===308 +== 2.4 Uplink Interval == 211 211 212 - (%style="color:red"%)Note: ifyoudon'thaveCoAPserver,you canreferthis linktosetup one:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 213 213 214 214 215 -**Use below commands:** 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 +== 2.5 Downlink Payload == 220 220 221 - Forparameterdescription,pleaserefertoATcommandset316 +By default, LSE50 prints the downlink payload to console port. 222 222 223 -[[image: 1657330452568-615.png]]318 +[[image:image-20220606165544-8.png]] 224 224 225 225 226 - After configure the server address and (% style="color:green" %)**reset the device**(%%) (viaAT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.321 +**Examples:** 227 227 228 -[[image:1657330472797-498.png]] 229 229 324 +* **Set TDC** 230 230 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 231 231 232 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===328 +Payload: 01 00 00 1E TDC=30S 233 233 330 +Payload: 01 00 00 3C TDC=60S 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 238 238 239 - [[image:1657330501006-241.png]]333 +* **Reset** 240 240 335 +If payload = 0x04FF, it will reset the LSE01 241 241 242 -[[image:1657330533775-472.png]] 243 243 338 +* **CFM** 244 244 340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 247 247 248 248 249 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 344 +== 2.6 Show Data in DataCake IoT Server == 256 256 257 -[[ima ge:1657249978444-674.png]]346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 258 258 259 259 260 - [[image:1657330723006-866.png]]349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 261 261 351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 262 262 263 -((( 264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 -))) 266 266 354 +[[image:1654505857935-743.png]] 267 267 268 268 269 - ===2.2.7 Use TCPprotocol to uplink data ===357 +[[image:1654505874829-548.png]] 270 270 359 +Step 3: Create an account or log in Datacake. 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 361 +Step 4: Search the LSE01 and add DevEUI. 274 274 275 -[[image:image-20220709093918-1.png]] 276 276 364 +[[image:1654505905236-553.png]] 277 277 278 -[[image:image-20220709093918-2.png]] 279 279 367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 280 280 369 +[[image:1654505925508-181.png]] 281 281 282 -=== 2.2.8 Change Update Interval === 283 283 284 -User can use below command to change the (% style="color:green" %)**uplink interval**. 285 285 286 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/ Set UpdateIntervalto 600s373 +== 2.7 Frequency Plans == 287 287 288 -((( 289 -(% style="color:red" %)**NOTE:** 290 -))) 375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 291 291 292 -((( 293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 294 -))) 295 295 378 +=== 2.7.1 EU863-870 (EU868) === 296 296 380 +(% style="color:#037691" %)** Uplink:** 297 297 298 - == 2.3UplinkPayload==382 +868.1 - SF7BW125 to SF12BW125 299 299 300 - Inthismode,uplinkpayload includesin total 14 bytes384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 301 301 386 +868.5 - SF7BW125 to SF12BW125 302 302 303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 -|=(% style="width: 80px;" %)((( 305 -**Size(bytes)** 306 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 388 +867.1 - SF7BW125 to SF12BW125 308 308 309 -((( 310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 -))) 390 +867.3 - SF7BW125 to SF12BW125 312 312 392 +867.5 - SF7BW125 to SF12BW125 313 313 314 - [[image:1657331036973-987.png]]394 +867.7 - SF7BW125 to SF12BW125 315 315 316 -((( 317 -The payload is ASCII string, representative same HEX: 318 -))) 396 +867.9 - SF7BW125 to SF12BW125 319 319 320 -((( 321 -0x72403155615900640c6c19029200 where: 322 -))) 398 +868.8 - FSK 323 323 324 -* ((( 325 -Device ID: 0x724031556159 = 724031556159 326 -))) 327 -* ((( 328 -Version: 0x0064=100=1.0.0 329 -))) 330 330 331 -* ((( 332 -BAT: 0x0c6c = 3180 mV = 3.180V 333 -))) 334 -* ((( 335 -Signal: 0x19 = 25 336 -))) 337 -* ((( 338 -Distance: 0x0292= 658 mm 339 -))) 340 -* ((( 341 -Interrupt: 0x00 = 0 401 +(% style="color:#037691" %)** Downlink:** 342 342 403 +Uplink channels 1-9 (RX1) 343 343 405 +869.525 - SF9BW125 (RX2 downlink only) 344 344 345 - 346 -))) 347 347 348 -== 2.4 Payload Explanation and Sensor Interface == 349 349 409 +=== 2.7.2 US902-928(US915) === 350 350 351 - ===2.4.1 DeviceID ===411 +Used in USA, Canada and South America. Default use CHE=2 352 352 353 -((( 354 -By default, the Device ID equal to the last 6 bytes of IMEI. 355 -))) 413 +(% style="color:#037691" %)**Uplink:** 356 356 357 -((( 358 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 359 -))) 415 +903.9 - SF7BW125 to SF10BW125 360 360 361 -((( 362 -**Example:** 363 -))) 417 +904.1 - SF7BW125 to SF10BW125 364 364 365 -((( 366 -AT+DEUI=A84041F15612 367 -))) 419 +904.3 - SF7BW125 to SF10BW125 368 368 369 -((( 370 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 371 -))) 421 +904.5 - SF7BW125 to SF10BW125 372 372 423 +904.7 - SF7BW125 to SF10BW125 373 373 425 +904.9 - SF7BW125 to SF10BW125 374 374 375 - ===2.4.2VersionInfo ===427 +905.1 - SF7BW125 to SF10BW125 376 376 377 -((( 378 -Specify the software version: 0x64=100, means firmware version 1.00. 379 -))) 429 +905.3 - SF7BW125 to SF10BW125 380 380 381 -((( 382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 383 -))) 384 384 432 +(% style="color:#037691" %)**Downlink:** 385 385 434 +923.3 - SF7BW500 to SF12BW500 386 386 387 - ===2.4.3atteryInfo===436 +923.9 - SF7BW500 to SF12BW500 388 388 389 -((( 390 -Check the battery voltage for LSE01. 391 -))) 438 +924.5 - SF7BW500 to SF12BW500 392 392 393 -((( 394 -Ex1: 0x0B45 = 2885mV 395 -))) 440 +925.1 - SF7BW500 to SF12BW500 396 396 397 -((( 398 -Ex2: 0x0B49 = 2889mV 399 -))) 442 +925.7 - SF7BW500 to SF12BW500 400 400 444 +926.3 - SF7BW500 to SF12BW500 401 401 446 +926.9 - SF7BW500 to SF12BW500 402 402 403 - ===2.4.4SignalStrength===448 +927.5 - SF7BW500 to SF12BW500 404 404 405 -((( 406 -NB-IoT Network signal Strength. 407 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 408 408 409 -((( 410 -**Ex1: 0x1d = 29** 411 -))) 412 412 413 -((( 414 -(% style="color:blue" %)**0**(%%) -113dBm or less 415 -))) 416 416 417 -((( 418 -(% style="color:blue" %)**1**(%%) -111dBm 419 -))) 454 +=== 2.7.3 CN470-510 (CN470) === 420 420 421 -((( 422 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 423 -))) 456 +Used in China, Default use CHE=1 424 424 425 -((( 426 -(% style="color:blue" %)**31** (%%) -51dBm or greater 427 -))) 458 +(% style="color:#037691" %)**Uplink:** 428 428 429 -((( 430 -(% style="color:blue" %)**99** (%%) Not known or not detectable 431 -))) 460 +486.3 - SF7BW125 to SF12BW125 432 432 462 +486.5 - SF7BW125 to SF12BW125 433 433 464 +486.7 - SF7BW125 to SF12BW125 434 434 435 - === 2.4.5Distance===466 +486.9 - SF7BW125 to SF12BW125 436 436 437 - Get the distance. Flatobjectrange280mm - 7500mm.468 +487.1 - SF7BW125 to SF12BW125 438 438 439 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is470 +487.3 - SF7BW125 to SF12BW125 440 440 441 -((( 442 -((( 443 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 444 -))) 445 -))) 472 +487.5 - SF7BW125 to SF12BW125 446 446 447 -((( 448 - 449 -))) 474 +487.7 - SF7BW125 to SF12BW125 450 450 451 -((( 452 - 453 -))) 454 454 455 - ===2.4.6 DigitalInterrupt===477 +(% style="color:#037691" %)**Downlink:** 456 456 457 -((( 458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 459 -))) 479 +506.7 - SF7BW125 to SF12BW125 460 460 461 -((( 462 -The command is: 463 -))) 481 +506.9 - SF7BW125 to SF12BW125 464 464 465 -((( 466 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 467 -))) 483 +507.1 - SF7BW125 to SF12BW125 468 468 485 +507.3 - SF7BW125 to SF12BW125 469 469 470 -((( 471 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 472 -))) 487 +507.5 - SF7BW125 to SF12BW125 473 473 489 +507.7 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -Example: 477 -))) 491 +507.9 - SF7BW125 to SF12BW125 478 478 479 -((( 480 -0x(00): Normal uplink packet. 481 -))) 493 +508.1 - SF7BW125 to SF12BW125 482 482 483 -((( 484 -0x(01): Interrupt Uplink Packet. 485 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 486 486 487 487 488 488 489 -=== 2. 4.7+5VOutput===499 +=== 2.7.4 AU915-928(AU915) === 490 490 491 -((( 492 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 493 -))) 501 +Default use CHE=2 494 494 503 +(% style="color:#037691" %)**Uplink:** 495 495 496 -((( 497 -The 5V output time can be controlled by AT Command. 498 -))) 505 +916.8 - SF7BW125 to SF12BW125 499 499 500 -((( 501 -(% style="color:blue" %)**AT+5VT=1000** 502 -))) 507 +917.0 - SF7BW125 to SF12BW125 503 503 504 -((( 505 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 506 -))) 509 +917.2 - SF7BW125 to SF12BW125 507 507 511 +917.4 - SF7BW125 to SF12BW125 508 508 513 +917.6 - SF7BW125 to SF12BW125 509 509 510 - ==2.5DownlinkPayload ==515 +917.8 - SF7BW125 to SF12BW125 511 511 512 - Bydefault,NDDS75prints the downlinkpayload to console port.517 +918.0 - SF7BW125 to SF12BW125 513 513 514 - [[image:image-20220709100028-1.png]]519 +918.2 - SF7BW125 to SF12BW125 515 515 516 516 517 -((( 518 -(% style="color:blue" %)**Examples:** 519 -))) 522 +(% style="color:#037691" %)**Downlink:** 520 520 521 -((( 522 - 523 -))) 524 +923.3 - SF7BW500 to SF12BW500 524 524 525 -* ((( 526 -(% style="color:blue" %)**Set TDC** 527 -))) 526 +923.9 - SF7BW500 to SF12BW500 528 528 529 -((( 530 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 531 -))) 528 +924.5 - SF7BW500 to SF12BW500 532 532 533 -((( 534 -Payload: 01 00 00 1E TDC=30S 535 -))) 530 +925.1 - SF7BW500 to SF12BW500 536 536 537 -((( 538 -Payload: 01 00 00 3C TDC=60S 539 -))) 532 +925.7 - SF7BW500 to SF12BW500 540 540 541 -((( 542 - 543 -))) 534 +926.3 - SF7BW500 to SF12BW500 544 544 545 -* ((( 546 -(% style="color:blue" %)**Reset** 547 -))) 536 +926.9 - SF7BW500 to SF12BW500 548 548 549 -((( 550 -If payload = 0x04FF, it will reset the NDDS75 551 -))) 538 +927.5 - SF7BW500 to SF12BW500 552 552 540 +923.3 - SF12BW500(RX2 downlink only) 553 553 554 -* (% style="color:blue" %)**INTMOD** 555 555 556 -((( 557 -Downlink Payload: 06000003, Set AT+INTMOD=3 558 -))) 559 559 544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 560 560 546 +(% style="color:#037691" %)**Default Uplink channel:** 561 561 562 - ==2.6LEDIndicator==548 +923.2 - SF7BW125 to SF10BW125 563 563 550 +923.4 - SF7BW125 to SF10BW125 564 564 565 -The NDDS75 has an internal LED which is to show the status of different state. 566 566 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 567 567 568 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 569 -* Then the LED will be on for 1 second means device is boot normally. 570 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 571 -* For each uplink probe, LED will be on for 500ms. 555 +(OTAA mode, channel added by JoinAccept message) 572 572 573 -((( 574 - 575 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 576 576 559 +922.2 - SF7BW125 to SF10BW125 577 577 561 +922.4 - SF7BW125 to SF10BW125 578 578 579 - ==2.7FirmwareChange Log==563 +922.6 - SF7BW125 to SF10BW125 580 580 565 +922.8 - SF7BW125 to SF10BW125 581 581 582 - DownloadURL&FirmwareChange log567 +923.0 - SF7BW125 to SF10BW125 583 583 584 -((( 585 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 586 -))) 569 +922.0 - SF7BW125 to SF10BW125 587 587 588 588 589 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 590 590 574 +923.6 - SF7BW125 to SF10BW125 591 591 576 +923.8 - SF7BW125 to SF10BW125 592 592 593 - ==2.8BatteryAnalysis ==578 +924.0 - SF7BW125 to SF10BW125 594 594 595 - ===2.8.1BatteryType ===580 +924.2 - SF7BW125 to SF10BW125 596 596 582 +924.4 - SF7BW125 to SF10BW125 597 597 584 +924.6 - SF7BW125 to SF10BW125 585 + 586 + 587 +(% style="color:#037691" %)** Downlink:** 588 + 589 +Uplink channels 1-8 (RX1) 590 + 591 +923.2 - SF10BW125 (RX2) 592 + 593 + 594 + 595 +=== 2.7.6 KR920-923 (KR920) === 596 + 597 +Default channel: 598 + 599 +922.1 - SF7BW125 to SF12BW125 600 + 601 +922.3 - SF7BW125 to SF12BW125 602 + 603 +922.5 - SF7BW125 to SF12BW125 604 + 605 + 606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 607 + 608 +922.1 - SF7BW125 to SF12BW125 609 + 610 +922.3 - SF7BW125 to SF12BW125 611 + 612 +922.5 - SF7BW125 to SF12BW125 613 + 614 +922.7 - SF7BW125 to SF12BW125 615 + 616 +922.9 - SF7BW125 to SF12BW125 617 + 618 +923.1 - SF7BW125 to SF12BW125 619 + 620 +923.3 - SF7BW125 to SF12BW125 621 + 622 + 623 +(% style="color:#037691" %)**Downlink:** 624 + 625 +Uplink channels 1-7(RX1) 626 + 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 + 629 + 630 + 631 +=== 2.7.7 IN865-867 (IN865) === 632 + 633 +(% style="color:#037691" %)** Uplink:** 634 + 635 +865.0625 - SF7BW125 to SF12BW125 636 + 637 +865.4025 - SF7BW125 to SF12BW125 638 + 639 +865.9850 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %) **Downlink:** 643 + 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 598 598 ((( 599 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 600 600 ))) 672 +))) 601 601 674 + 675 +[[image:1654506665940-119.png]] 676 + 602 602 ((( 603 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.678 +Dig a hole with diameter > 20CM. 604 604 ))) 605 605 606 606 ((( 607 - The batteryrelateddocumentsasbelow:682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 608 608 ))) 609 609 610 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 611 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 612 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 613 613 686 +== 2.10 Firmware Change Log == 687 + 614 614 ((( 615 - [[image:image-20220709101450-2.png]]689 +**Firmware download link:** 616 616 ))) 617 617 692 +((( 693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 +))) 618 618 696 +((( 697 + 698 +))) 619 619 620 -=== 2.8.2 Power consumption Analyze === 700 +((( 701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 +))) 621 621 622 622 ((( 623 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.705 + 624 624 ))) 625 625 708 +((( 709 +**V1.0.** 710 +))) 626 626 627 627 ((( 628 - Instruction to usebelow:713 +Release 629 629 ))) 630 630 716 + 717 +== 2.11 Battery Analysis == 718 + 719 +=== 2.11.1 Battery Type === 720 + 631 631 ((( 632 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 633 633 ))) 634 634 725 +((( 726 +The battery is designed to last for more than 5 years for the LSN50. 727 +))) 635 635 636 636 ((( 637 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 730 +((( 731 +The battery-related documents are as below: 638 638 ))) 733 +))) 639 639 640 640 * ((( 641 - ProductModel736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 642 642 ))) 643 643 * ((( 644 - UplinkInterval739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 645 645 ))) 646 646 * ((( 647 - WorkingMode742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 648 648 ))) 649 649 650 -((( 651 -And the Life expectation in difference case will be shown on the right. 652 -))) 745 + [[image:image-20220606171726-9.png]] 653 653 654 -[[image:image-20220709110451-3.png]] 655 655 656 656 749 +=== 2.11.2 Battery Note === 657 657 658 -=== 2.8.3 Battery Note === 659 - 660 660 ((( 661 661 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 662 662 ))) ... ... @@ -663,169 +663,303 @@ 663 663 664 664 665 665 666 -=== 2. 8.4Replace the battery ===757 +=== 2.11.3 Replace the battery === 667 667 668 668 ((( 669 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 670 670 ))) 671 671 672 - 673 - 674 -= 3. Access NB-IoT Module = 675 - 676 676 ((( 677 - Userscan directly accesstheATcommand set of theNB-IoTmodule.764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 678 678 ))) 679 679 680 680 ((( 681 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 682 682 ))) 683 683 684 -[[image:1657333200519-600.png]] 685 685 686 686 773 += 3. Using the AT Commands = 687 687 688 -= 4.UsingtheAT Commands =775 +== 3.1 Access AT Commands == 689 689 690 -== 4.1 Access AT Commands == 691 691 692 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 693 693 780 +[[image:1654501986557-872.png||height="391" width="800"]] 694 694 695 -AT+<CMD>? : Help on <CMD> 696 696 697 - AT+<CMD>: Run<CMD>783 +Or if you have below board, use below connection: 698 698 699 -AT+<CMD>=<value> : Set the value 700 700 701 - AT+<CMD>=?:Get the value786 +[[image:1654502005655-729.png||height="503" width="801"]] 702 702 703 703 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 704 704 (% style="color:#037691" %)**General Commands**(%%) 705 705 706 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 707 707 708 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 709 709 710 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 711 711 712 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 713 713 714 -AT+CFG : Print all configurations 715 715 716 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 717 717 718 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 719 719 720 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 721 721 722 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 723 723 724 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 725 725 726 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 727 727 728 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 729 729 730 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 731 731 732 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 733 733 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 734 734 735 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 736 736 737 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 738 738 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 739 739 740 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 741 741 742 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 743 743 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 744 744 745 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 746 746 747 -AT+CLIENT : Get or Set MQTT client 748 748 749 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 750 750 751 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 752 752 753 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 754 754 755 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 756 756 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 757 757 758 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 759 759 760 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 761 761 762 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 763 763 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 764 764 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 765 765 766 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 767 767 768 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 769 769 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 770 770 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 771 771 ((( 772 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 773 773 ))) 774 774 775 775 ((( 776 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 777 777 ))) 778 778 779 779 ((( 780 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 781 ))) 782 782 921 +((( 922 + 923 +))) 783 783 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 784 784 785 -= 6. Trouble Shooting = 929 +((( 930 + 931 +))) 786 786 787 -== 6.1 Connection problem when uploading firmware == 933 +((( 934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 935 +))) 788 788 937 +[[image:image-20220606154726-3.png]] 789 789 939 + 940 +When you use the TTN network, the US915 frequency bands use are: 941 + 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 951 + 790 790 ((( 791 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 792 792 ))) 793 793 794 -(% class=" wikigeneratedid" %)956 +(% class="box infomessage" %) 795 795 ((( 958 +**AT+CHE=2** 959 +))) 960 + 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 965 + 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 969 + 970 +((( 796 796 797 797 ))) 798 798 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 799 799 800 - == 6.2 AT Commandinput doesn't work ==978 +[[image:image-20220606154825-4.png]] 801 801 980 + 981 + 982 += 5. Trouble Shooting = 983 + 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 + 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 802 802 ((( 803 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 804 804 805 - 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 806 806 ))) 807 807 808 808 809 - =7. OrderInfo=1010 +(% style="color:#4f81bd" %)**Solution: ** 810 810 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 811 811 812 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1014 +[[image:1654500929571-736.png||height="458" width="832"]] 813 813 814 814 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 815 815 (% class="wikigeneratedid" %) 816 816 ((( 817 817 818 818 ))) 819 819 820 -= 8.1044 += 7. Packing Info = 821 821 822 822 ((( 823 823 824 824 825 825 (% style="color:#037691" %)**Package Includes**: 1050 +))) 826 826 827 -* NSE01 NB-IoT Distance Detect Sensor Node x 1828 - *Externalantennax 11052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 829 829 ))) 830 830 831 831 ((( ... ... @@ -832,22 +832,30 @@ 832 832 833 833 834 834 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 835 835 836 - 837 -* Device Size: 13.0 x 5 x 4.5 cm 838 -* Device Weight: 150g 839 -* Package Size / pcs : 15 x 12x 5.5 cm 840 -* Weight / pcs : 220g 1062 +* ((( 1063 +Device Size: cm 841 841 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 842 842 843 -((( 844 - 845 845 846 - 847 847 848 848 ))) 849 849 850 -= 9.1078 += 8. Support = 851 851 852 852 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 853 853 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content