Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.3
edited by Xiaoling
on 2022/07/09 11:10
Change comment: There is no comment for this version
To version 32.13
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,665 +1,753 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 += 1. Introduction =
15 15  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
16 16  
17 -= 1.  Introduction =
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
20 20  
21 21  (((
22 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
23 23  
24 24  (((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
31 31  )))
32 32  
33 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
34 34  )))
35 35  
39 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1657327959271-447.png]]
43 +[[image:1654503265560-120.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
44 44  
45 -
46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
47 47  * Ultra low power consumption
48 -* Distance Detection by Ultrasonic technology
49 -* Flat object range 280mm - 7500mm
50 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
51 -* Cable Length: 25cm
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 52  * AT Commands to change parameters
53 53  * Uplink on periodically
54 54  * Downlink to change configure
55 55  * IP66 Waterproof Enclosure
56 -* Micro SIM card slot for NB-IoT SIM
57 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
58 58  
61 +== 1.3 Specification ==
59 59  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -== 1.3  Specification ==
65 +[[image:image-20220606162220-5.png]]
62 62  
63 63  
64 -(% style="color:#037691" %)**Common DC Characteristics:**
65 65  
66 -* Supply Voltage: 2.1v ~~ 3.6v
67 -* Operating Temperature: -40 ~~ 85°C
69 +== ​1.4 Applications ==
68 68  
69 -(% style="color:#037691" %)**NB-IoT Spec:**
71 +* Smart Agriculture
70 70  
71 -* - B1 @H-FDD: 2100MHz
72 -* - B3 @H-FDD: 1800MHz
73 -* - B8 @H-FDD: 900MHz
74 -* - B5 @H-FDD: 850MHz
75 -* - B20 @H-FDD: 800MHz
76 -* - B28 @H-FDD: 700MHz
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
77 77  
78 -(% style="color:#037691" %)**Battery:**
76 +== 1.5 Firmware Change log ==
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 85  
86 -(% style="color:#037691" %)**Power Consumption**
79 +**LSE01 v1.0 :**  Release
87 87  
88 -* STOP Mode: 10uA @ 3.3v
89 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
90 90  
91 91  
83 += 2. Configure LSE01 to connect to LoRaWAN network =
92 92  
93 -== ​1. Applications ==
85 +== 2.1 How it works ==
94 94  
95 -* Smart Buildings & Home Automation
96 -* Logistics and Supply Chain Management
97 -* Smart Metering
98 -* Smart Agriculture
99 -* Smart Cities
100 -* Smart Factory
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
104 104  
105 105  
106 -== 1.5  Pin Definitions ==
107 107  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -[[image:1657328609906-564.png]]
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
111 111  
102 +[[image:1654503992078-669.png]]
112 112  
113 -= 2.  Use NDDS75 to communicate with IoT Server =
114 114  
115 -== 2.1  How it works ==
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 116  
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
117 117  (((
118 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
153 +Uplink payload includes in total 11 bytes.
119 119  )))
120 120  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
121 121  
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
170 +)))
171 +
172 +
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
122 122  (((
123 -The diagram below shows the working flow in default firmware of NDDS75:
199 +Check the battery voltage for LSE01.
124 124  )))
125 125  
126 126  (((
127 -
203 +Ex1: 0x0B45 = 2885mV
128 128  )))
129 129  
130 -[[image:1657328659945-416.png]]
131 -
132 132  (((
133 -
207 +Ex2: 0x0B49 = 2889mV
134 134  )))
135 135  
136 136  
137 -== 2.2 ​ Configure the NDDS75 ==
138 138  
212 +=== 2.3.4 Soil Moisture ===
139 139  
140 -=== 2.2.1 Test Requirement ===
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
141 141  
142 142  (((
143 -To use NDDS75 in your city, make sure meet below requirements:
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
144 144  )))
145 145  
146 -* Your local operator has already distributed a NB-IoT Network there.
147 -* The local NB-IoT network used the band that NSE01 supports.
148 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
149 149  
150 150  (((
151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
152 152  )))
153 153  
154 154  
155 -[[image:1657328756309-230.png]]
156 156  
232 +=== 2.3.5 Soil Temperature ===
157 157  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
158 158  
159 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
160 160  
161 161  (((
162 -Insert the NB-IoT Card get from your provider.
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
163 163  )))
164 164  
165 165  (((
166 -User need to take out the NB-IoT module and insert the SIM card like below:
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
167 167  )))
168 168  
169 169  
170 -[[image:1657328884227-504.png]]
171 171  
252 +=== 2.3.6 Soil Conductivity (EC) ===
172 172  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
173 173  
174 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
175 175  
176 176  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
177 177  (((
178 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
267 +
179 179  )))
269 +
270 +(((
271 +
180 180  )))
181 181  
182 -[[image:image-20220709092052-2.png]]
274 +=== 2.3.7 MOD ===
183 183  
184 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
185 185  
186 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
187 187  
188 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
189 189  
190 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
191 191  
283 +**Downlink Command:**
192 192  
193 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
194 194  
195 -* Baud:  (% style="color:green" %)**9600**
196 -* Data bits:** (% style="color:green" %)8(%%)**
197 -* Stop bits: (% style="color:green" %)**1**
198 -* Parity:  (% style="color:green" %)**None**
199 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
200 200  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
201 201  (((
202 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
299 +The payload decoder function for TTN is here:
203 203  )))
204 204  
205 -[[image:1657329814315-101.png]]
206 -
207 207  (((
208 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
209 209  )))
210 210  
211 211  
212 212  
213 -=== 2.2.4 Use CoAP protocol to uplink data ===
308 +== 2.4 Uplink Interval ==
214 214  
215 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
216 216  
217 217  
218 -**Use below commands:**
219 219  
220 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
222 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
314 +== 2.5 Downlink Payload ==
223 223  
224 -For parameter description, please refer to AT command set
316 +By default, LSE50 prints the downlink payload to console port.
225 225  
226 -[[image:1657330452568-615.png]]
318 +[[image:image-20220606165544-8.png]]
227 227  
228 228  
229 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
321 +**Examples:**
230 230  
231 -[[image:1657330472797-498.png]]
232 232  
324 +* **Set TDC**
233 233  
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
234 234  
235 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
328 +Payload:    01 00 00 1E    TDC=30S
236 236  
330 +Payload:    01 00 00 3C    TDC=60S
237 237  
238 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
240 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
241 241  
242 -[[image:1657330501006-241.png]]
333 +* **Reset**
243 243  
335 +If payload = 0x04FF, it will reset the LSE01
244 244  
245 -[[image:1657330533775-472.png]]
246 246  
338 +* **CFM**
247 247  
340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
248 248  
249 -=== 2.2.6 Use MQTT protocol to uplink data ===
250 250  
251 251  
252 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
258 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
344 +== 2.6 ​Show Data in DataCake IoT Server ==
259 259  
260 -[[image:1657249978444-674.png]]
346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
261 261  
262 262  
263 -[[image:1657330723006-866.png]]
349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
264 264  
351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
265 265  
266 -(((
267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
268 -)))
269 269  
354 +[[image:1654505857935-743.png]]
270 270  
271 271  
272 -=== 2.2.7 Use TCP protocol to uplink data ===
357 +[[image:1654505874829-548.png]]
273 273  
359 +Step 3: Create an account or log in Datacake.
274 274  
275 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
361 +Step 4: Search the LSE01 and add DevEUI.
277 277  
278 -[[image:image-20220709093918-1.png]]
279 279  
364 +[[image:1654505905236-553.png]]
280 280  
281 -[[image:image-20220709093918-2.png]]
282 282  
367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
283 283  
369 +[[image:1654505925508-181.png]]
284 284  
285 -=== 2.2.8 Change Update Interval ===
286 286  
287 -User can use below command to change the (% style="color:green" %)**uplink interval**.
288 288  
289 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
373 +== 2.7 Frequency Plans ==
290 290  
291 -(((
292 -(% style="color:red" %)**NOTE:**
293 -)))
375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
294 294  
295 -(((
296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
297 -)))
298 298  
378 +=== 2.7.1 EU863-870 (EU868) ===
299 299  
380 +(% style="color:#037691" %)** Uplink:**
300 300  
301 -== 2. Uplink Payload ==
382 +868.1 - SF7BW125 to SF12BW125
302 302  
303 -In this mode, uplink payload includes in total 14 bytes
384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 304  
386 +868.5 - SF7BW125 to SF12BW125
305 305  
306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 -|=(% style="width: 80px;" %)(((
308 -**Size(bytes)**
309 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
388 +867.1 - SF7BW125 to SF12BW125
311 311  
312 -(((
313 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
314 -)))
390 +867.3 - SF7BW125 to SF12BW125
315 315  
392 +867.5 - SF7BW125 to SF12BW125
316 316  
317 -[[image:1657331036973-987.png]]
394 +867.7 - SF7BW125 to SF12BW125
318 318  
319 -(((
320 -The payload is ASCII string, representative same HEX:
321 -)))
396 +867.9 - SF7BW125 to SF12BW125
322 322  
323 -(((
324 -0x72403155615900640c6c19029200 where:
325 -)))
398 +868.8 - FSK
326 326  
327 -* (((
328 -Device ID: 0x724031556159 = 724031556159
329 -)))
330 -* (((
331 -Version: 0x0064=100=1.0.0
332 -)))
333 333  
334 -* (((
335 -BAT: 0x0c6c = 3180 mV = 3.180V
336 -)))
337 -* (((
338 -Signal: 0x19 = 25
339 -)))
340 -* (((
341 -Distance: 0x0292= 658 mm
342 -)))
343 -* (((
344 -Interrupt: 0x00 = 0
401 +(% style="color:#037691" %)** Downlink:**
345 345  
403 +Uplink channels 1-9 (RX1)
346 346  
405 +869.525 - SF9BW125 (RX2 downlink only)
347 347  
348 -
349 -)))
350 350  
351 -== 2.4  Payload Explanation and Sensor Interface ==
352 352  
409 +=== 2.7.2 US902-928(US915) ===
353 353  
354 -=== 2.4.1  Device ID ===
411 +Used in USA, Canada and South America. Default use CHE=2
355 355  
356 -(((
357 -By default, the Device ID equal to the last 6 bytes of IMEI.
358 -)))
413 +(% style="color:#037691" %)**Uplink:**
359 359  
360 -(((
361 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
362 -)))
415 +903.9 - SF7BW125 to SF10BW125
363 363  
364 -(((
365 -**Example:**
366 -)))
417 +904.1 - SF7BW125 to SF10BW125
367 367  
368 -(((
369 -AT+DEUI=A84041F15612
370 -)))
419 +904.3 - SF7BW125 to SF10BW125
371 371  
372 -(((
373 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
374 -)))
421 +904.5 - SF7BW125 to SF10BW125
375 375  
423 +904.7 - SF7BW125 to SF10BW125
376 376  
425 +904.9 - SF7BW125 to SF10BW125
377 377  
378 -=== 2.4.2  Version Info ===
427 +905.1 - SF7BW125 to SF10BW125
379 379  
380 -(((
381 -Specify the software version: 0x64=100, means firmware version 1.00.
382 -)))
429 +905.3 - SF7BW125 to SF10BW125
383 383  
384 -(((
385 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
386 -)))
387 387  
432 +(% style="color:#037691" %)**Downlink:**
388 388  
434 +923.3 - SF7BW500 to SF12BW500
389 389  
390 -=== 2.4.3  Battery Info ===
436 +923.9 - SF7BW500 to SF12BW500
391 391  
392 -(((
393 -Check the battery voltage for LSE01.
394 -)))
438 +924.5 - SF7BW500 to SF12BW500
395 395  
396 -(((
397 -Ex1: 0x0B45 = 2885mV
398 -)))
440 +925.1 - SF7BW500 to SF12BW500
399 399  
400 -(((
401 -Ex2: 0x0B49 = 2889mV
402 -)))
442 +925.7 - SF7BW500 to SF12BW500
403 403  
444 +926.3 - SF7BW500 to SF12BW500
404 404  
446 +926.9 - SF7BW500 to SF12BW500
405 405  
406 -=== 2.4.4  Signal Strength ===
448 +927.5 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -NB-IoT Network signal Strength.
410 -)))
450 +923.3 - SF12BW500(RX2 downlink only)
411 411  
412 -(((
413 -**Ex1: 0x1d = 29**
414 -)))
415 415  
416 -(((
417 -(% style="color:blue" %)**0**(%%)  -113dBm or less
418 -)))
419 419  
420 -(((
421 -(% style="color:blue" %)**1**(%%)  -111dBm
422 -)))
454 +=== 2.7.3 CN470-510 (CN470) ===
423 423  
424 -(((
425 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
426 -)))
456 +Used in China, Default use CHE=1
427 427  
428 -(((
429 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
430 -)))
458 +(% style="color:#037691" %)**Uplink:**
431 431  
432 -(((
433 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
434 -)))
460 +486.3 - SF7BW125 to SF12BW125
435 435  
462 +486.5 - SF7BW125 to SF12BW125
436 436  
464 +486.7 - SF7BW125 to SF12BW125
437 437  
438 -=== 2.4.5  Distance ===
466 +486.9 - SF7BW125 to SF12BW125
439 439  
440 -Get the distance. Flat object range 280mm - 7500mm.
468 +487.1 - SF7BW125 to SF12BW125
441 441  
442 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
470 +487.3 - SF7BW125 to SF12BW125
443 443  
444 -(((
445 -(((
446 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
447 -)))
448 -)))
472 +487.5 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -
452 -)))
474 +487.7 - SF7BW125 to SF12BW125
453 453  
454 -(((
455 -
456 -)))
457 457  
458 -=== 2.4.6  Digital Interrupt ===
477 +(% style="color:#037691" %)**Downlink:**
459 459  
460 -(((
461 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
462 -)))
479 +506.7 - SF7BW125 to SF12BW125
463 463  
464 -(((
465 -The command is:
466 -)))
481 +506.9 - SF7BW125 to SF12BW125
467 467  
468 -(((
469 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
470 -)))
483 +507.1 - SF7BW125 to SF12BW125
471 471  
485 +507.3 - SF7BW125 to SF12BW125
472 472  
473 -(((
474 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
475 -)))
487 +507.5 - SF7BW125 to SF12BW125
476 476  
489 +507.7 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -Example:
480 -)))
491 +507.9 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -0x(00): Normal uplink packet.
484 -)))
493 +508.1 - SF7BW125 to SF12BW125
485 485  
486 -(((
487 -0x(01): Interrupt Uplink Packet.
488 -)))
495 +505.3 - SF12BW125 (RX2 downlink only)
489 489  
490 490  
491 491  
492 -=== 2.4.7  ​+5V Output ===
499 +=== 2.7.4 AU915-928(AU915) ===
493 493  
494 -(((
495 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
496 -)))
501 +Default use CHE=2
497 497  
503 +(% style="color:#037691" %)**Uplink:**
498 498  
499 -(((
500 -The 5V output time can be controlled by AT Command.
501 -)))
505 +916.8 - SF7BW125 to SF12BW125
502 502  
503 -(((
504 -(% style="color:blue" %)**AT+5VT=1000**
505 -)))
507 +917.0 - SF7BW125 to SF12BW125
506 506  
507 -(((
508 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
509 -)))
509 +917.2 - SF7BW125 to SF12BW125
510 510  
511 +917.4 - SF7BW125 to SF12BW125
511 511  
513 +917.6 - SF7BW125 to SF12BW125
512 512  
513 -== 2.5  Downlink Payload ==
515 +917.8 - SF7BW125 to SF12BW125
514 514  
515 -By default, NDDS75 prints the downlink payload to console port.
517 +918.0 - SF7BW125 to SF12BW125
516 516  
517 -[[image:image-20220709100028-1.png]]
519 +918.2 - SF7BW125 to SF12BW125
518 518  
519 519  
520 -(((
521 -(% style="color:blue" %)**Examples:**
522 -)))
522 +(% style="color:#037691" %)**Downlink:**
523 523  
524 -(((
525 -
526 -)))
524 +923.3 - SF7BW500 to SF12BW500
527 527  
528 -* (((
529 -(% style="color:blue" %)**Set TDC**
530 -)))
526 +923.9 - SF7BW500 to SF12BW500
531 531  
532 -(((
533 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
534 -)))
528 +924.5 - SF7BW500 to SF12BW500
535 535  
536 -(((
537 -Payload:    01 00 00 1E    TDC=30S
538 -)))
530 +925.1 - SF7BW500 to SF12BW500
539 539  
540 -(((
541 -Payload:    01 00 00 3C    TDC=60S
542 -)))
532 +925.7 - SF7BW500 to SF12BW500
543 543  
544 -(((
545 -
546 -)))
534 +926.3 - SF7BW500 to SF12BW500
547 547  
548 -* (((
549 -(% style="color:blue" %)**Reset**
550 -)))
536 +926.9 - SF7BW500 to SF12BW500
551 551  
552 -(((
553 -If payload = 0x04FF, it will reset the NDDS75
554 -)))
538 +927.5 - SF7BW500 to SF12BW500
555 555  
540 +923.3 - SF12BW500(RX2 downlink only)
556 556  
557 -* (% style="color:blue" %)**INTMOD**
558 558  
559 -(((
560 -Downlink Payload: 06000003, Set AT+INTMOD=3
561 -)))
562 562  
544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
563 563  
546 +(% style="color:#037691" %)**Default Uplink channel:**
564 564  
565 -== 2. ​LED Indicator ==
548 +923.2 - SF7BW125 to SF10BW125
566 566  
550 +923.4 - SF7BW125 to SF10BW125
567 567  
568 -The NDDS75 has an internal LED which is to show the status of different state.
569 569  
553 +(% style="color:#037691" %)**Additional Uplink Channel**:
570 570  
571 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
572 -* Then the LED will be on for 1 second means device is boot normally.
573 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
574 -* For each uplink probe, LED will be on for 500ms.
555 +(OTAA mode, channel added by JoinAccept message)
575 575  
576 -(((
577 -
578 -)))
557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
579 579  
559 +922.2 - SF7BW125 to SF10BW125
580 580  
561 +922.4 - SF7BW125 to SF10BW125
581 581  
582 -== 2. Firmware Change Log ==
563 +922.6 - SF7BW125 to SF10BW125
583 583  
565 +922.8 - SF7BW125 to SF10BW125
584 584  
585 -Download URL & Firmware Change log
567 +923.0 - SF7BW125 to SF10BW125
586 586  
587 -(((
588 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
589 -)))
569 +922.0 - SF7BW125 to SF10BW125
590 590  
591 591  
592 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
593 593  
574 +923.6 - SF7BW125 to SF10BW125
594 594  
576 +923.8 - SF7BW125 to SF10BW125
595 595  
596 -== 2. Battery Analysis ==
578 +924.0 - SF7BW125 to SF10BW125
597 597  
598 -=== 2.8.1  Battery Type ===
580 +924.2 - SF7BW125 to SF10BW125
599 599  
582 +924.4 - SF7BW125 to SF10BW125
600 600  
584 +924.6 - SF7BW125 to SF10BW125
585 +
586 +
587 +(% style="color:#037691" %)** Downlink:**
588 +
589 +Uplink channels 1-8 (RX1)
590 +
591 +923.2 - SF10BW125 (RX2)
592 +
593 +
594 +
595 +=== 2.7.6 KR920-923 (KR920) ===
596 +
597 +Default channel:
598 +
599 +922.1 - SF7BW125 to SF12BW125
600 +
601 +922.3 - SF7BW125 to SF12BW125
602 +
603 +922.5 - SF7BW125 to SF12BW125
604 +
605 +
606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
607 +
608 +922.1 - SF7BW125 to SF12BW125
609 +
610 +922.3 - SF7BW125 to SF12BW125
611 +
612 +922.5 - SF7BW125 to SF12BW125
613 +
614 +922.7 - SF7BW125 to SF12BW125
615 +
616 +922.9 - SF7BW125 to SF12BW125
617 +
618 +923.1 - SF7BW125 to SF12BW125
619 +
620 +923.3 - SF7BW125 to SF12BW125
621 +
622 +
623 +(% style="color:#037691" %)**Downlink:**
624 +
625 +Uplink channels 1-7(RX1)
626 +
627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
628 +
629 +
630 +
631 +=== 2.7.7 IN865-867 (IN865) ===
632 +
633 +(% style="color:#037691" %)** Uplink:**
634 +
635 +865.0625 - SF7BW125 to SF12BW125
636 +
637 +865.4025 - SF7BW125 to SF12BW125
638 +
639 +865.9850 - SF7BW125 to SF12BW125
640 +
641 +
642 +(% style="color:#037691" %) **Downlink:**
643 +
644 +Uplink channels 1-3 (RX1)
645 +
646 +866.550 - SF10BW125 (RX2)
647 +
648 +
649 +
650 +
651 +== 2.8 LED Indicator ==
652 +
653 +The LSE01 has an internal LED which is to show the status of different state.
654 +
655 +* Blink once when device power on.
656 +* Solid ON for 5 seconds once device successful Join the network.
657 +* Blink once when device transmit a packet.
658 +
659 +
660 +
661 +== 2.9 Installation in Soil ==
662 +
663 +**Measurement the soil surface**
664 +
665 +
666 +[[image:1654506634463-199.png]] ​
667 +
601 601  (((
602 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
669 +(((
670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
603 603  )))
672 +)))
604 604  
674 +
675 +[[image:1654506665940-119.png]]
676 +
605 605  (((
606 -The battery is designed to last for several years depends on the actually use environment and update interval. 
678 +Dig a hole with diameter > 20CM.
607 607  )))
608 608  
609 609  (((
610 -The battery related documents as below:
682 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
611 611  )))
612 612  
613 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
614 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
615 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
616 616  
686 +== 2.10 ​Firmware Change Log ==
687 +
617 617  (((
618 -[[image:image-20220709101450-2.png]]
689 +**Firmware download link:**
619 619  )))
620 620  
692 +(((
693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
694 +)))
621 621  
696 +(((
697 +
698 +)))
622 622  
623 -=== 2.8.2  Power consumption Analyze ===
700 +(((
701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
702 +)))
624 624  
625 625  (((
626 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
705 +
627 627  )))
628 628  
708 +(((
709 +**V1.0.**
710 +)))
629 629  
630 630  (((
631 -Instruction to use as below:
713 +Release
632 632  )))
633 633  
716 +
717 +== 2.11 ​Battery Analysis ==
718 +
719 +=== 2.11.1 ​Battery Type ===
720 +
634 634  (((
635 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
636 636  )))
637 637  
725 +(((
726 +The battery is designed to last for more than 5 years for the LSN50.
727 +)))
638 638  
639 639  (((
640 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
730 +(((
731 +The battery-related documents are as below:
641 641  )))
733 +)))
642 642  
643 643  * (((
644 -Product Model
736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
645 645  )))
646 646  * (((
647 -Uplink Interval
739 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
648 648  )))
649 649  * (((
650 -Working Mode
742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
651 651  )))
652 652  
653 -(((
654 -And the Life expectation in difference case will be shown on the right.
655 -)))
745 + [[image:image-20220606171726-9.png]]
656 656  
657 -[[image:image-20220709110451-3.png]]
658 658  
659 659  
749 +=== 2.11.2 ​Battery Note ===
660 660  
661 -=== 2.8.3  ​Battery Note ===
662 -
663 663  (((
664 664  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
665 665  )))
... ... @@ -666,169 +666,303 @@
666 666  
667 667  
668 668  
669 -=== 2.8. Replace the battery ===
757 +=== 2.11.3 Replace the battery ===
670 670  
671 671  (((
672 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
760 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
673 673  )))
674 674  
675 -
676 -
677 -= 3. ​ Access NB-IoT Module =
678 -
679 679  (((
680 -Users can directly access the AT command set of the NB-IoT module.
764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
681 681  )))
682 682  
683 683  (((
684 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
685 685  )))
686 686  
687 -[[image:1657333200519-600.png]]
688 688  
689 689  
773 += 3. ​Using the AT Commands =
690 690  
691 -= 4.  Using the AT Commands =
775 +== 3.1 Access AT Commands ==
692 692  
693 -== 4.1  Access AT Commands ==
694 694  
695 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
696 696  
780 +[[image:1654501986557-872.png||height="391" width="800"]]
697 697  
698 -AT+<CMD>?  : Help on <CMD>
699 699  
700 -AT+<CMD>         : Run <CMD>
783 +Or if you have below board, use below connection:
701 701  
702 -AT+<CMD>=<value> : Set the value
703 703  
704 -AT+<CMD>=?  : Get the value
786 +[[image:1654502005655-729.png||height="503" width="801"]]
705 705  
706 706  
789 +
790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +
792 +
793 + [[image:1654502050864-459.png||height="564" width="806"]]
794 +
795 +
796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 +
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +
803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +
805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +
807 +
707 707  (% style="color:#037691" %)**General Commands**(%%)      
708 708  
709 -AT  : Attention       
810 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
710 710  
711 -AT?  : Short Help     
812 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
712 712  
713 -ATZ  : MCU Reset    
814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
714 714  
715 -AT+TDC  : Application Data Transmission Interval
816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
716 716  
717 -AT+CFG  : Print all configurations
718 718  
719 -AT+CFGMOD           : Working mode selection
819 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
720 720  
721 -AT+INTMOD            : Set the trigger interrupt mode
821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
722 722  
723 -AT+5VT  : Set extend the time of 5V power  
823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
724 724  
725 -AT+PRO  : Choose agreement
825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
726 726  
727 -AT+WEIGRE  : Get weight or set weight to 0
827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
728 728  
729 -AT+WEIGAP  : Get or Set the GapValue of weight
829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
730 730  
731 -AT+RXDL  : Extend the sending and receiving time
831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
732 732  
733 -AT+CNTFAC  : Get or set counting parameters
833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
734 734  
735 -AT+SERVADDR  : Server Address
835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
736 736  
837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
737 737  
738 -(% style="color:#037691" %)**COAP Management**      
839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
739 739  
740 -AT+URI            : Resource parameters
841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
741 741  
843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
742 742  
743 -(% style="color:#037691" %)**UDP Management**
845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
744 744  
745 -AT+CFM          : Upload confirmation mode (only valid for UDP)
847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
746 746  
849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
747 747  
748 -(% style="color:#037691" %)**MQTT Management**
851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
749 749  
750 -AT+CLIENT               : Get or Set MQTT client
751 751  
752 -AT+UNAME  : Get or Set MQTT Username
854 +(% style="color:#037691" %)**LoRa Network Management**
753 753  
754 -AT+PWD                  : Get or Set MQTT password
856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
755 755  
756 -AT+PUBTOPI : Get or Set MQTT publish topic
858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
757 757  
758 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
759 759  
862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
760 760  
761 -(% style="color:#037691" %)**Information**          
864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
762 762  
763 -AT+FDR  : Factory Data Reset
866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
764 764  
765 -AT+PWOR : Serial Access Password
868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
766 766  
870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
767 767  
872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
768 768  
769 -= ​5.  FAQ =
874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
770 770  
771 -== 5.1 How to Upgrade Firmware ==
876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
772 772  
878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
773 773  
880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +
882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +
884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +
886 +
887 +(% style="color:#037691" %)**Information** 
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +
897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +
899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +
901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 +
903 +
904 += ​4. FAQ =
905 +
906 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
907 +
774 774  (((
775 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
910 +When downloading the images, choose the required image file for download. ​
776 776  )))
777 777  
778 778  (((
779 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 +
780 780  )))
781 781  
782 782  (((
783 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
784 784  )))
785 785  
921 +(((
922 +
923 +)))
786 786  
925 +(((
926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
927 +)))
787 787  
788 -= 6.  Trouble Shooting =
929 +(((
930 +
931 +)))
789 789  
790 -== 6.1  ​Connection problem when uploading firmware ==
933 +(((
934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
935 +)))
791 791  
937 +[[image:image-20220606154726-3.png]]
792 792  
939 +
940 +When you use the TTN network, the US915 frequency bands use are:
941 +
942 +* 903.9 - SF7BW125 to SF10BW125
943 +* 904.1 - SF7BW125 to SF10BW125
944 +* 904.3 - SF7BW125 to SF10BW125
945 +* 904.5 - SF7BW125 to SF10BW125
946 +* 904.7 - SF7BW125 to SF10BW125
947 +* 904.9 - SF7BW125 to SF10BW125
948 +* 905.1 - SF7BW125 to SF10BW125
949 +* 905.3 - SF7BW125 to SF10BW125
950 +* 904.6 - SF8BW500
951 +
793 793  (((
794 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
795 795  )))
796 796  
797 -(% class="wikigeneratedid" %)
956 +(% class="box infomessage" %)
798 798  (((
958 +**AT+CHE=2**
959 +)))
960 +
961 +(% class="box infomessage" %)
962 +(((
963 +**ATZ**
964 +)))
965 +
966 +(((
967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
968 +)))
969 +
970 +(((
799 799  
800 800  )))
801 801  
974 +(((
975 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
976 +)))
802 802  
803 -== 6.2  AT Command input doesn't work ==
978 +[[image:image-20220606154825-4.png]]
804 804  
980 +
981 +
982 += 5. Trouble Shooting =
983 +
984 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
985 +
986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
987 +
988 +
989 +== 5.2 AT Command input doesn’t work ==
990 +
805 805  (((
806 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
993 +)))
807 807  
808 -
995 +
996 +== 5.3 Device rejoin in at the second uplink packet ==
997 +
998 +(% style="color:#4f81bd" %)**Issue describe as below:**
999 +
1000 +[[image:1654500909990-784.png]]
1001 +
1002 +
1003 +(% style="color:#4f81bd" %)**Cause for this issue:**
1004 +
1005 +(((
1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
809 809  )))
810 810  
811 811  
812 -= 7. ​ Order Info =
1010 +(% style="color:#4f81bd" %)**Solution: **
813 813  
1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
814 814  
815 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1014 +[[image:1654500929571-736.png||height="458" width="832"]]
816 816  
817 817  
1017 += 6. ​Order Info =
1018 +
1019 +
1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 +
1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1031 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1033 +
1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1035 +
1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1038 +
818 818  (% class="wikigeneratedid" %)
819 819  (((
820 820  
821 821  )))
822 822  
823 -= 8.  Packing Info =
1044 += 7. Packing Info =
824 824  
825 825  (((
826 826  
827 827  
828 828  (% style="color:#037691" %)**Package Includes**:
1050 +)))
829 829  
830 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
831 -* External antenna x 1
1052 +* (((
1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
832 832  )))
833 833  
834 834  (((
... ... @@ -835,22 +835,30 @@
835 835  
836 836  
837 837  (% style="color:#037691" %)**Dimension and weight**:
1060 +)))
838 838  
839 -
840 -* Device Size: 13.0 x 5 x 4.5 cm
841 -* Device Weight: 150g
842 -* Package Size / pcs : 15 x 12x 5.5 cm
843 -* Weight / pcs : 220g
1062 +* (((
1063 +Device Size: cm
844 844  )))
1065 +* (((
1066 +Device Weight: g
1067 +)))
1068 +* (((
1069 +Package Size / pcs : cm
1070 +)))
1071 +* (((
1072 +Weight / pcs : g
845 845  
846 -(((
847 -
848 848  
849 -
850 850  
851 851  )))
852 852  
853 -= 9.  Support =
1078 += 8. Support =
854 854  
855 855  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
856 856  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 +
1083 +
1084 +~)~)~)
1085 +~)~)~)
1086 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content