Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 50 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,665 +1,753 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 += 1. Introduction = 15 15 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 16 16 17 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 18 18 19 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 20 20 21 21 ((( 22 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 23 23 24 24 ((( 25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 31 31 ))) 32 32 33 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 34 34 ))) 35 35 39 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 40 40 41 41 42 42 43 -== 1.2 47 +== 1.2 Features == 44 44 45 - 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 47 47 * Ultra low power consumption 48 -* Distance Detectionby Ultrasonictechnology49 -* Flat objectrange280mm - 7500mm50 -* Accuracy:±(1cm+S*0.3%) (S: Distance)51 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 52 52 * AT Commands to change parameters 53 53 * Uplink on periodically 54 54 * Downlink to change configure 55 55 * IP66 Waterproof Enclosure 56 -* Micro SIM card slot for NB-IoT SIM 57 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 58 58 61 +== 1.3 Specification == 59 59 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 62 62 63 63 64 -(% style="color:#037691" %)**Common DC Characteristics:** 65 65 66 -* Supply Voltage: 2.1v ~~ 3.6v 67 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 68 68 69 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 70 70 71 -* - B1 @H-FDD: 2100MHz 72 -* - B3 @H-FDD: 1800MHz 73 -* - B8 @H-FDD: 900MHz 74 -* - B5 @H-FDD: 850MHz 75 -* - B20 @H-FDD: 800MHz 76 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 77 77 78 - (% style="color:#037691"%)**Battery:**76 +== 1.5 Firmware Change log == 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 85 85 86 - (% style="color:#037691"%)**PowerConsumption**79 +**LSE01 v1.0 :** Release 87 87 88 -* STOP Mode: 10uA @ 3.3v 89 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 90 90 91 91 83 += 2. Configure LSE01 to connect to LoRaWAN network = 92 92 93 -== 1.4Applications ==85 +== 2.1 How it works == 94 94 95 -* Smart Buildings & Home Automation 96 -* Logistics and Supply Chain Management 97 -* Smart Metering 98 -* Smart Agriculture 99 -* Smart Cities 100 -* Smart Factory 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 104 104 105 105 106 -== 1.5 Pin Definitions == 107 107 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 109 - [[image:1657328609906-564.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 110 110 111 111 102 +[[image:1654503992078-669.png]] 112 112 113 -= 2. Use NDDS75 to communicate with IoT Server = 114 114 115 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 116 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 117 117 ((( 118 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.153 +Uplink payload includes in total 11 bytes. 119 119 ))) 120 120 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 121 121 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 122 122 ((( 123 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:199 +Check the battery voltage for LSE01. 124 124 ))) 125 125 126 126 ((( 127 - 203 +Ex1: 0x0B45 = 2885mV 128 128 ))) 129 129 130 -[[image:1657328659945-416.png]] 131 - 132 132 ((( 133 - 207 +Ex2: 0x0B49 = 2889mV 134 134 ))) 135 135 136 136 137 -== 2.2 Configure the NDDS75 == 138 138 212 +=== 2.3.4 Soil Moisture === 139 139 140 -=== 2.2.1 Test Requirement === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 141 141 142 142 ((( 143 - TouseNDDS75inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 144 144 ))) 145 145 146 - * Your local operator has already distributed a NB-IoT Network there.147 - *The local NB-IoT network used the band that NSE01 supports.148 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 149 149 150 150 ((( 151 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 152 152 ))) 153 153 154 154 155 -[[image:1657328756309-230.png]] 156 156 232 +=== 2.3.5 Soil Temperature === 157 157 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 158 158 159 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 160 160 161 161 ((( 162 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 163 163 ))) 164 164 165 165 ((( 166 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 167 167 ))) 168 168 169 169 170 -[[image:1657328884227-504.png]] 171 171 252 +=== 2.3.6 Soil Conductivity (EC) === 172 172 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 173 173 174 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 175 175 176 176 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 177 177 ((( 178 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.267 + 179 179 ))) 269 + 270 +((( 271 + 180 180 ))) 181 181 182 - [[image:image-20220709092052-2.png]]274 +=== 2.3.7 MOD === 183 183 184 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 185 185 186 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 187 187 188 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 189 189 190 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 191 191 283 +**Downlink Command:** 192 192 193 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 194 194 195 -* Baud: (% style="color:green" %)**9600** 196 -* Data bits:** (% style="color:green" %)8(%%)** 197 -* Stop bits: (% style="color:green" %)**1** 198 -* Parity: (% style="color:green" %)**None** 199 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 200 200 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 201 201 ((( 202 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNDDS75. NDDS75 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 203 203 ))) 204 204 205 -[[image:1657329814315-101.png]] 206 - 207 207 ((( 208 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 209 209 ))) 210 210 211 211 212 212 213 -== =2.2.4se CoAPprotocolto uplinkdata ===308 +== 2.4 Uplink Interval == 214 214 215 - (%style="color:red"%)Note: ifyoudon'thaveCoAPserver,you canreferthis linktosetup one:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 216 216 217 217 218 -**Use below commands:** 219 219 220 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 222 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 +== 2.5 Downlink Payload == 223 223 224 - Forparameterdescription,pleaserefertoATcommandset316 +By default, LSE50 prints the downlink payload to console port. 225 225 226 -[[image: 1657330452568-615.png]]318 +[[image:image-20220606165544-8.png]] 227 227 228 228 229 - After configure the server address and (% style="color:green" %)**reset the device**(%%) (viaAT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.321 +**Examples:** 230 230 231 -[[image:1657330472797-498.png]] 232 232 324 +* **Set TDC** 233 233 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 234 234 235 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===328 +Payload: 01 00 00 1E TDC=30S 236 236 330 +Payload: 01 00 00 3C TDC=60S 237 237 238 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 240 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 241 241 242 - [[image:1657330501006-241.png]]333 +* **Reset** 243 243 335 +If payload = 0x04FF, it will reset the LSE01 244 244 245 -[[image:1657330533775-472.png]] 246 246 338 +* **CFM** 247 247 340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 248 248 249 -=== 2.2.6 Use MQTT protocol to uplink data === 250 250 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 344 +== 2.6 Show Data in DataCake IoT Server == 259 259 260 -[[ima ge:1657249978444-674.png]]346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 261 261 262 262 263 - [[image:1657330723006-866.png]]349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 264 264 351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 265 265 266 -((( 267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 268 -))) 269 269 354 +[[image:1654505857935-743.png]] 270 270 271 271 272 - ===2.2.7 Use TCPprotocol to uplink data ===357 +[[image:1654505874829-548.png]] 273 273 359 +Step 3: Create an account or log in Datacake. 274 274 275 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 361 +Step 4: Search the LSE01 and add DevEUI. 277 277 278 -[[image:image-20220709093918-1.png]] 279 279 364 +[[image:1654505905236-553.png]] 280 280 281 -[[image:image-20220709093918-2.png]] 282 282 367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 283 283 369 +[[image:1654505925508-181.png]] 284 284 285 -=== 2.2.8 Change Update Interval === 286 286 287 -User can use below command to change the (% style="color:green" %)**uplink interval**. 288 288 289 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/ Set UpdateIntervalto 600s373 +== 2.7 Frequency Plans == 290 290 291 -((( 292 -(% style="color:red" %)**NOTE:** 293 -))) 375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 294 294 295 -((( 296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 -))) 298 298 378 +=== 2.7.1 EU863-870 (EU868) === 299 299 380 +(% style="color:#037691" %)** Uplink:** 300 300 301 - == 2.3UplinkPayload==382 +868.1 - SF7BW125 to SF12BW125 302 302 303 - Inthismode,uplinkpayload includesin total 14 bytes384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 304 304 386 +868.5 - SF7BW125 to SF12BW125 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 80px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 388 +867.1 - SF7BW125 to SF12BW125 311 311 312 -((( 313 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 314 -))) 390 +867.3 - SF7BW125 to SF12BW125 315 315 392 +867.5 - SF7BW125 to SF12BW125 316 316 317 - [[image:1657331036973-987.png]]394 +867.7 - SF7BW125 to SF12BW125 318 318 319 -((( 320 -The payload is ASCII string, representative same HEX: 321 -))) 396 +867.9 - SF7BW125 to SF12BW125 322 322 323 -((( 324 -0x72403155615900640c6c19029200 where: 325 -))) 398 +868.8 - FSK 326 326 327 -* ((( 328 -Device ID: 0x724031556159 = 724031556159 329 -))) 330 -* ((( 331 -Version: 0x0064=100=1.0.0 332 -))) 333 333 334 -* ((( 335 -BAT: 0x0c6c = 3180 mV = 3.180V 336 -))) 337 -* ((( 338 -Signal: 0x19 = 25 339 -))) 340 -* ((( 341 -Distance: 0x0292= 658 mm 342 -))) 343 -* ((( 344 -Interrupt: 0x00 = 0 401 +(% style="color:#037691" %)** Downlink:** 345 345 403 +Uplink channels 1-9 (RX1) 346 346 405 +869.525 - SF9BW125 (RX2 downlink only) 347 347 348 - 349 -))) 350 350 351 -== 2.4 Payload Explanation and Sensor Interface == 352 352 409 +=== 2.7.2 US902-928(US915) === 353 353 354 - ===2.4.1 DeviceID ===411 +Used in USA, Canada and South America. Default use CHE=2 355 355 356 -((( 357 -By default, the Device ID equal to the last 6 bytes of IMEI. 358 -))) 413 +(% style="color:#037691" %)**Uplink:** 359 359 360 -((( 361 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 362 -))) 415 +903.9 - SF7BW125 to SF10BW125 363 363 364 -((( 365 -**Example:** 366 -))) 417 +904.1 - SF7BW125 to SF10BW125 367 367 368 -((( 369 -AT+DEUI=A84041F15612 370 -))) 419 +904.3 - SF7BW125 to SF10BW125 371 371 372 -((( 373 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 374 -))) 421 +904.5 - SF7BW125 to SF10BW125 375 375 423 +904.7 - SF7BW125 to SF10BW125 376 376 425 +904.9 - SF7BW125 to SF10BW125 377 377 378 - ===2.4.2VersionInfo ===427 +905.1 - SF7BW125 to SF10BW125 379 379 380 -((( 381 -Specify the software version: 0x64=100, means firmware version 1.00. 382 -))) 429 +905.3 - SF7BW125 to SF10BW125 383 383 384 -((( 385 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 386 -))) 387 387 432 +(% style="color:#037691" %)**Downlink:** 388 388 434 +923.3 - SF7BW500 to SF12BW500 389 389 390 - ===2.4.3atteryInfo===436 +923.9 - SF7BW500 to SF12BW500 391 391 392 -((( 393 -Check the battery voltage for LSE01. 394 -))) 438 +924.5 - SF7BW500 to SF12BW500 395 395 396 -((( 397 -Ex1: 0x0B45 = 2885mV 398 -))) 440 +925.1 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -Ex2: 0x0B49 = 2889mV 402 -))) 442 +925.7 - SF7BW500 to SF12BW500 403 403 444 +926.3 - SF7BW500 to SF12BW500 404 404 446 +926.9 - SF7BW500 to SF12BW500 405 405 406 - ===2.4.4SignalStrength===448 +927.5 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -NB-IoT Network signal Strength. 410 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 411 411 412 -((( 413 -**Ex1: 0x1d = 29** 414 -))) 415 415 416 -((( 417 -(% style="color:blue" %)**0**(%%) -113dBm or less 418 -))) 419 419 420 -((( 421 -(% style="color:blue" %)**1**(%%) -111dBm 422 -))) 454 +=== 2.7.3 CN470-510 (CN470) === 423 423 424 -((( 425 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 426 -))) 456 +Used in China, Default use CHE=1 427 427 428 -((( 429 -(% style="color:blue" %)**31** (%%) -51dBm or greater 430 -))) 458 +(% style="color:#037691" %)**Uplink:** 431 431 432 -((( 433 -(% style="color:blue" %)**99** (%%) Not known or not detectable 434 -))) 460 +486.3 - SF7BW125 to SF12BW125 435 435 462 +486.5 - SF7BW125 to SF12BW125 436 436 464 +486.7 - SF7BW125 to SF12BW125 437 437 438 - === 2.4.5Distance===466 +486.9 - SF7BW125 to SF12BW125 439 439 440 - Get the distance. Flatobjectrange280mm - 7500mm.468 +487.1 - SF7BW125 to SF12BW125 441 441 442 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is470 +487.3 - SF7BW125 to SF12BW125 443 443 444 -((( 445 -((( 446 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 447 -))) 448 -))) 472 +487.5 - SF7BW125 to SF12BW125 449 449 450 -((( 451 - 452 -))) 474 +487.7 - SF7BW125 to SF12BW125 453 453 454 -((( 455 - 456 -))) 457 457 458 - ===2.4.6 DigitalInterrupt===477 +(% style="color:#037691" %)**Downlink:** 459 459 460 -((( 461 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 462 -))) 479 +506.7 - SF7BW125 to SF12BW125 463 463 464 -((( 465 -The command is: 466 -))) 481 +506.9 - SF7BW125 to SF12BW125 467 467 468 -((( 469 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 470 -))) 483 +507.1 - SF7BW125 to SF12BW125 471 471 485 +507.3 - SF7BW125 to SF12BW125 472 472 473 -((( 474 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 475 -))) 487 +507.5 - SF7BW125 to SF12BW125 476 476 489 +507.7 - SF7BW125 to SF12BW125 477 477 478 -((( 479 -Example: 480 -))) 491 +507.9 - SF7BW125 to SF12BW125 481 481 482 -((( 483 -0x(00): Normal uplink packet. 484 -))) 493 +508.1 - SF7BW125 to SF12BW125 485 485 486 -((( 487 -0x(01): Interrupt Uplink Packet. 488 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 489 489 490 490 491 491 492 -=== 2. 4.7+5VOutput===499 +=== 2.7.4 AU915-928(AU915) === 493 493 494 -((( 495 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 496 -))) 501 +Default use CHE=2 497 497 503 +(% style="color:#037691" %)**Uplink:** 498 498 499 -((( 500 -The 5V output time can be controlled by AT Command. 501 -))) 505 +916.8 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -(% style="color:blue" %)**AT+5VT=1000** 505 -))) 507 +917.0 - SF7BW125 to SF12BW125 506 506 507 -((( 508 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 509 -))) 509 +917.2 - SF7BW125 to SF12BW125 510 510 511 +917.4 - SF7BW125 to SF12BW125 511 511 513 +917.6 - SF7BW125 to SF12BW125 512 512 513 - ==2.5DownlinkPayload ==515 +917.8 - SF7BW125 to SF12BW125 514 514 515 - Bydefault,NDDS75prints the downlinkpayload to console port.517 +918.0 - SF7BW125 to SF12BW125 516 516 517 - [[image:image-20220709100028-1.png]]519 +918.2 - SF7BW125 to SF12BW125 518 518 519 519 520 -((( 521 -(% style="color:blue" %)**Examples:** 522 -))) 522 +(% style="color:#037691" %)**Downlink:** 523 523 524 -((( 525 - 526 -))) 524 +923.3 - SF7BW500 to SF12BW500 527 527 528 -* ((( 529 -(% style="color:blue" %)**Set TDC** 530 -))) 526 +923.9 - SF7BW500 to SF12BW500 531 531 532 -((( 533 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 534 -))) 528 +924.5 - SF7BW500 to SF12BW500 535 535 536 -((( 537 -Payload: 01 00 00 1E TDC=30S 538 -))) 530 +925.1 - SF7BW500 to SF12BW500 539 539 540 -((( 541 -Payload: 01 00 00 3C TDC=60S 542 -))) 532 +925.7 - SF7BW500 to SF12BW500 543 543 544 -((( 545 - 546 -))) 534 +926.3 - SF7BW500 to SF12BW500 547 547 548 -* ((( 549 -(% style="color:blue" %)**Reset** 550 -))) 536 +926.9 - SF7BW500 to SF12BW500 551 551 552 -((( 553 -If payload = 0x04FF, it will reset the NDDS75 554 -))) 538 +927.5 - SF7BW500 to SF12BW500 555 555 540 +923.3 - SF12BW500(RX2 downlink only) 556 556 557 -* (% style="color:blue" %)**INTMOD** 558 558 559 -((( 560 -Downlink Payload: 06000003, Set AT+INTMOD=3 561 -))) 562 562 544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 563 563 546 +(% style="color:#037691" %)**Default Uplink channel:** 564 564 565 - ==2.6LEDIndicator==548 +923.2 - SF7BW125 to SF10BW125 566 566 550 +923.4 - SF7BW125 to SF10BW125 567 567 568 -The NDDS75 has an internal LED which is to show the status of different state. 569 569 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 570 570 571 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 572 -* Then the LED will be on for 1 second means device is boot normally. 573 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 574 -* For each uplink probe, LED will be on for 500ms. 555 +(OTAA mode, channel added by JoinAccept message) 575 575 576 -((( 577 - 578 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 579 579 559 +922.2 - SF7BW125 to SF10BW125 580 580 561 +922.4 - SF7BW125 to SF10BW125 581 581 582 - ==2.7FirmwareChange Log==563 +922.6 - SF7BW125 to SF10BW125 583 583 565 +922.8 - SF7BW125 to SF10BW125 584 584 585 - DownloadURL&FirmwareChange log567 +923.0 - SF7BW125 to SF10BW125 586 586 587 -((( 588 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 589 -))) 569 +922.0 - SF7BW125 to SF10BW125 590 590 591 591 592 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 593 593 574 +923.6 - SF7BW125 to SF10BW125 594 594 576 +923.8 - SF7BW125 to SF10BW125 595 595 596 - ==2.8BatteryAnalysis ==578 +924.0 - SF7BW125 to SF10BW125 597 597 598 - ===2.8.1BatteryType ===580 +924.2 - SF7BW125 to SF10BW125 599 599 582 +924.4 - SF7BW125 to SF10BW125 600 600 584 +924.6 - SF7BW125 to SF10BW125 585 + 586 + 587 +(% style="color:#037691" %)** Downlink:** 588 + 589 +Uplink channels 1-8 (RX1) 590 + 591 +923.2 - SF10BW125 (RX2) 592 + 593 + 594 + 595 +=== 2.7.6 KR920-923 (KR920) === 596 + 597 +Default channel: 598 + 599 +922.1 - SF7BW125 to SF12BW125 600 + 601 +922.3 - SF7BW125 to SF12BW125 602 + 603 +922.5 - SF7BW125 to SF12BW125 604 + 605 + 606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 607 + 608 +922.1 - SF7BW125 to SF12BW125 609 + 610 +922.3 - SF7BW125 to SF12BW125 611 + 612 +922.5 - SF7BW125 to SF12BW125 613 + 614 +922.7 - SF7BW125 to SF12BW125 615 + 616 +922.9 - SF7BW125 to SF12BW125 617 + 618 +923.1 - SF7BW125 to SF12BW125 619 + 620 +923.3 - SF7BW125 to SF12BW125 621 + 622 + 623 +(% style="color:#037691" %)**Downlink:** 624 + 625 +Uplink channels 1-7(RX1) 626 + 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 + 629 + 630 + 631 +=== 2.7.7 IN865-867 (IN865) === 632 + 633 +(% style="color:#037691" %)** Uplink:** 634 + 635 +865.0625 - SF7BW125 to SF12BW125 636 + 637 +865.4025 - SF7BW125 to SF12BW125 638 + 639 +865.9850 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %) **Downlink:** 643 + 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 601 601 ((( 602 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 603 603 ))) 672 +))) 604 604 674 + 675 +[[image:1654506665940-119.png]] 676 + 605 605 ((( 606 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.678 +Dig a hole with diameter > 20CM. 607 607 ))) 608 608 609 609 ((( 610 - The batteryrelateddocumentsasbelow:682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 611 611 ))) 612 612 613 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 614 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 615 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 616 616 686 +== 2.10 Firmware Change Log == 687 + 617 617 ((( 618 - [[image:image-20220709101450-2.png]]689 +**Firmware download link:** 619 619 ))) 620 620 692 +((( 693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 +))) 621 621 696 +((( 697 + 698 +))) 622 622 623 -=== 2.8.2 Power consumption Analyze === 700 +((( 701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 +))) 624 624 625 625 ((( 626 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.705 + 627 627 ))) 628 628 708 +((( 709 +**V1.0.** 710 +))) 629 629 630 630 ((( 631 - Instruction to usebelow:713 +Release 632 632 ))) 633 633 716 + 717 +== 2.11 Battery Analysis == 718 + 719 +=== 2.11.1 Battery Type === 720 + 634 634 ((( 635 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 636 636 ))) 637 637 725 +((( 726 +The battery is designed to last for more than 5 years for the LSN50. 727 +))) 638 638 639 639 ((( 640 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 730 +((( 731 +The battery-related documents are as below: 641 641 ))) 733 +))) 642 642 643 643 * ((( 644 - ProductModel736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 645 645 ))) 646 646 * ((( 647 - UplinkInterval739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 648 648 ))) 649 649 * ((( 650 - WorkingMode742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 651 651 ))) 652 652 653 -((( 654 -And the Life expectation in difference case will be shown on the right. 655 -))) 745 + [[image:image-20220606171726-9.png]] 656 656 657 -[[image:image-20220709110451-3.png]] 658 658 659 659 749 +=== 2.11.2 Battery Note === 660 660 661 -=== 2.8.3 Battery Note === 662 - 663 663 ((( 664 664 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 665 665 ))) ... ... @@ -666,169 +666,303 @@ 666 666 667 667 668 668 669 -=== 2. 8.4Replace the battery ===757 +=== 2.11.3 Replace the battery === 670 670 671 671 ((( 672 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 673 673 ))) 674 674 675 - 676 - 677 -= 3. Access NB-IoT Module = 678 - 679 679 ((( 680 - Userscan directly accesstheATcommand set of theNB-IoTmodule.764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 681 681 ))) 682 682 683 683 ((( 684 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 685 685 ))) 686 686 687 -[[image:1657333200519-600.png]] 688 688 689 689 773 += 3. Using the AT Commands = 690 690 691 -= 4.UsingtheAT Commands =775 +== 3.1 Access AT Commands == 692 692 693 -== 4.1 Access AT Commands == 694 694 695 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 696 696 780 +[[image:1654501986557-872.png||height="391" width="800"]] 697 697 698 -AT+<CMD>? : Help on <CMD> 699 699 700 - AT+<CMD>: Run<CMD>783 +Or if you have below board, use below connection: 701 701 702 -AT+<CMD>=<value> : Set the value 703 703 704 - AT+<CMD>=?:Get the value786 +[[image:1654502005655-729.png||height="503" width="801"]] 705 705 706 706 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 707 707 (% style="color:#037691" %)**General Commands**(%%) 708 708 709 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 710 710 711 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 712 712 713 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 714 714 715 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 716 716 717 -AT+CFG : Print all configurations 718 718 719 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 720 720 721 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 722 722 723 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 724 724 725 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 726 726 727 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 728 728 729 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 730 730 731 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 732 732 733 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 734 734 735 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 736 736 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 737 737 738 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 739 739 740 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 741 741 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 742 742 743 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 744 744 745 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 746 746 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 747 747 748 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 749 749 750 -AT+CLIENT : Get or Set MQTT client 751 751 752 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 753 753 754 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 755 755 756 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 757 757 758 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 759 759 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 760 760 761 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 762 762 763 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 764 764 765 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 766 766 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 767 767 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 768 768 769 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 770 770 771 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 772 772 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 773 773 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 774 774 ((( 775 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 776 776 ))) 777 777 778 778 ((( 779 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 780 780 ))) 781 781 782 782 ((( 783 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 784 784 ))) 785 785 921 +((( 922 + 923 +))) 786 786 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 787 787 788 -= 6. Trouble Shooting = 929 +((( 930 + 931 +))) 789 789 790 -== 6.1 Connection problem when uploading firmware == 933 +((( 934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 935 +))) 791 791 937 +[[image:image-20220606154726-3.png]] 792 792 939 + 940 +When you use the TTN network, the US915 frequency bands use are: 941 + 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 951 + 793 793 ((( 794 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 795 795 ))) 796 796 797 -(% class=" wikigeneratedid" %)956 +(% class="box infomessage" %) 798 798 ((( 958 +**AT+CHE=2** 959 +))) 960 + 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 965 + 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 969 + 970 +((( 799 799 800 800 ))) 801 801 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 802 802 803 - == 6.2 AT Commandinput doesn't work ==978 +[[image:image-20220606154825-4.png]] 804 804 980 + 981 + 982 += 5. Trouble Shooting = 983 + 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 + 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 805 805 ((( 806 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 807 807 808 - 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 809 809 ))) 810 810 811 811 812 - =7. OrderInfo=1010 +(% style="color:#4f81bd" %)**Solution: ** 813 813 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 814 814 815 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1014 +[[image:1654500929571-736.png||height="458" width="832"]] 816 816 817 817 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 818 818 (% class="wikigeneratedid" %) 819 819 ((( 820 820 821 821 ))) 822 822 823 -= 8.1044 += 7. Packing Info = 824 824 825 825 ((( 826 826 827 827 828 828 (% style="color:#037691" %)**Package Includes**: 1050 +))) 829 829 830 -* NSE01 NB-IoT Distance Detect Sensor Node x 1831 - *Externalantennax 11052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 832 832 ))) 833 833 834 834 ((( ... ... @@ -835,22 +835,30 @@ 835 835 836 836 837 837 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 838 838 839 - 840 -* Device Size: 13.0 x 5 x 4.5 cm 841 -* Device Weight: 150g 842 -* Package Size / pcs : 15 x 12x 5.5 cm 843 -* Weight / pcs : 220g 1062 +* ((( 1063 +Device Size: cm 844 844 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 845 845 846 -((( 847 - 848 848 849 - 850 850 851 851 ))) 852 852 853 -= 9.1078 += 8. Support = 854 854 855 855 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 856 856 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content