Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.22
edited by Xiaoling
on 2022/07/11 14:08
Change comment: There is no comment for this version
To version 56.2
edited by Xiaoling
on 2022/07/08 11:17
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,71 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
... ... @@ -86,109 +86,90 @@
86 86  * - B20 @H-FDD: 800MHz
87 87  * - B28 @H-FDD: 700MHz
88 88  
89 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
98 98  
99 -* STOP Mode: 10uA @ 3.3v
100 -* Max transmit power: 350mA@3.3v
101 101  
86 +
102 102  == ​1.4  Applications ==
103 103  
104 -* Smart Buildings & Home Automation
105 -* Logistics and Supply Chain Management
106 -* Smart Metering
107 107  * Smart Agriculture
108 -* Smart Cities
109 -* Smart Factory
110 110  
111 111  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
112 112  ​
113 113  
114 -
115 115  == 1.5  Pin Definitions ==
116 116  
117 117  
118 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
119 119  
120 120  
121 121  
122 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
123 123  
124 124  == 2.1  How it works ==
125 125  
105 +
126 126  (((
127 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
128 128  )))
129 129  
130 130  
131 131  (((
132 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
133 133  )))
134 134  
135 -(((
136 -
137 -)))
115 +[[image:image-20220708101605-2.png]]
138 138  
139 -[[image:1657328659945-416.png]]
140 -
141 141  (((
142 142  
143 143  )))
144 144  
145 145  
146 -== 2.2 ​ Configure the NDDS75 ==
147 147  
123 +== 2.2 ​ Configure the NSE01 ==
148 148  
125 +
149 149  === 2.2.1 Test Requirement ===
150 150  
151 -(((
152 -To use NDDS75 in your city, make sure meet below requirements:
153 -)))
154 154  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
155 155  * Your local operator has already distributed a NB-IoT Network there.
156 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
157 157  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
158 158  
159 159  (((
160 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
161 161  )))
162 162  
163 163  
164 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
165 165  
166 166  
167 167  
168 168  === 2.2.2 Insert SIM card ===
169 169  
170 -(((
171 171  Insert the NB-IoT Card get from your provider.
172 -)))
173 173  
174 -(((
175 175  User need to take out the NB-IoT module and insert the SIM card like below:
176 -)))
177 177  
178 178  
179 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
180 180  
181 181  
182 182  
183 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
184 184  
185 185  (((
186 186  (((
187 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
188 188  )))
189 189  )))
190 190  
191 -[[image:image-20220709092052-2.png]]
192 192  
193 193  **Connection:**
194 194  
... ... @@ -201,21 +201,19 @@
201 201  
202 202  In the PC, use below serial tool settings:
203 203  
204 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
205 205  * Data bits:** (% style="color:green" %)8(%%)**
206 206  * Stop bits: (% style="color:green" %)**1**
207 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
208 208  * Flow Control: (% style="color:green" %)**None**
209 209  
210 210  (((
211 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
212 212  )))
213 213  
214 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
215 215  
216 -(((
217 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
218 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
219 219  
220 220  
221 221  
... ... @@ -224,66 +224,66 @@
224 224  (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
225 225  
226 226  
227 -(((
228 228  **Use below commands:**
229 -)))
230 230  
231 -* (((
232 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
233 -)))
234 -* (((
235 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
236 -)))
237 -* (((
238 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
239 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
240 240  
241 -(((
202 +
203 +
242 242  For parameter description, please refer to AT command set
243 -)))
244 244  
245 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
246 246  
247 247  
248 -(((
249 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
250 -)))
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
251 251  
252 -[[image:1657330472797-498.png]]
211 +[[image:1657249831934-534.png]]
253 253  
254 254  
255 255  
256 256  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
257 257  
217 +This feature is supported since firmware version v1.0.1
258 258  
259 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
260 260  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
261 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
262 262  
263 -[[image:1657330501006-241.png]]
264 264  
265 265  
266 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
267 267  
268 268  
269 269  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
270 270  === 2.2.6 Use MQTT protocol to uplink data ===
271 271  
236 +This feature is supported since firmware version v110
272 272  
273 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
274 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
275 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
276 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
277 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
278 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
279 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
280 280  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
281 281  [[image:1657249978444-674.png]]
282 282  
283 283  
284 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
285 285  
286 286  
255 +
287 287  (((
288 288  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
289 289  )))
... ... @@ -292,179 +292,151 @@
292 292  
293 293  === 2.2.7 Use TCP protocol to uplink data ===
294 294  
264 +This feature is supported since firmware version v110
295 295  
266 +
296 296  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
297 297  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
298 298  
299 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
300 300  
301 301  
302 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
303 303  
304 304  
305 -
306 306  === 2.2.8 Change Update Interval ===
307 307  
308 308  User can use below command to change the (% style="color:green" %)**uplink interval**.
309 309  
310 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
280 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
311 311  
312 -(((
282 +
313 313  (% style="color:red" %)**NOTE:**
314 -)))
315 315  
316 -(((
317 317  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
318 -)))
319 319  
320 320  
321 321  
322 -== 2.3  Uplink Payload ==
323 323  
324 -In this mode, uplink payload includes in total 14 bytes
325 325  
326 326  
327 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
328 -|=(% style="width: 60px;" %)(((
329 -**Size(bytes)**
330 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
331 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
332 332  
333 -(((
334 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
335 -)))
293 +== 2.3 Uplink Payload ==
336 336  
337 337  
338 -[[image:1657331036973-987.png]]
296 +=== 2.3.1 MOD~=0(Default Mode) ===
339 339  
340 -(((
341 -The payload is ASCII string, representative same HEX:
342 -)))
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
343 343  
344 344  (((
345 -0x72403155615900640c6c19029200 where:
301 +Uplink payload includes in total 11 bytes.
346 346  )))
347 347  
348 -* (((
349 -Device ID: 0x724031556159 = 724031556159
350 -)))
351 -* (((
352 -Version: 0x0064=100=1.0.0
353 -)))
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
354 354  
355 -* (((
356 -BAT: 0x0c6c = 3180 mV = 3.180V
357 -)))
358 -* (((
359 -Signal: 0x19 = 25
360 -)))
361 -* (((
362 -Distance: 0x0292= 658 mm
363 -)))
364 -* (((
365 -Interrupt: 0x00 = 0
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
366 366  
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
367 367  
368 -
369 -
317 +(Optional)
370 370  )))
371 371  
372 -== 2. Payload Explanation and Sensor Interface ==
320 +=== 2.3.2 MOD~=1(Original value) ===
373 373  
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
374 374  
375 -=== 2.4.1  Device ID ===
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
376 376  
377 -(((
378 -By default, the Device ID equal to the last 6 bytes of IMEI.
379 -)))
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
380 380  
381 -(((
382 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
336 +
337 +(Optional)
383 383  )))
384 384  
340 +=== 2.3.3 Battery Info ===
341 +
385 385  (((
386 -**Example:**
343 +Check the battery voltage for LSE01.
387 387  )))
388 388  
389 389  (((
390 -AT+DEUI=A84041F15612
347 +Ex1: 0x0B45 = 2885mV
391 391  )))
392 392  
393 393  (((
394 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
351 +Ex2: 0x0B49 = 2889mV
395 395  )))
396 396  
397 397  
398 398  
399 -=== 2.4. Version Info ===
356 +=== 2.3.4 Soil Moisture ===
400 400  
401 401  (((
402 -Specify the software version: 0x64=100, means firmware version 1.00.
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
403 403  )))
404 404  
405 405  (((
406 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
407 407  )))
408 408  
409 -
410 -
411 -=== 2.4.3  Battery Info ===
412 -
413 413  (((
414 -Ex1: 0x0B45 = 2885mV
367 +
415 415  )))
416 416  
417 417  (((
418 -Ex2: 0x0B49 = 2889mV
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
419 419  )))
420 420  
421 421  
422 422  
423 -=== 2.4. Signal Strength ===
376 +=== 2.3.5 Soil Temperature ===
424 424  
425 425  (((
426 -NB-IoT Network signal Strength.
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
427 427  )))
428 428  
429 429  (((
430 -**Ex1: 0x1d = 29**
383 +**Example**:
431 431  )))
432 432  
433 433  (((
434 -(% style="color:blue" %)**0**(%%)  -113dBm or less
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
435 435  )))
436 436  
437 437  (((
438 -(% style="color:blue" %)**1**(%%)  -111dBm
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
439 439  )))
440 440  
441 -(((
442 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
443 -)))
444 444  
445 -(((
446 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
447 -)))
448 448  
396 +=== 2.3.6 Soil Conductivity (EC) ===
397 +
449 449  (((
450 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
451 451  )))
452 452  
453 -
454 -
455 -=== 2.4.5  Distance ===
456 -
457 -Get the distance. Flat object range 280mm - 7500mm.
458 -
459 459  (((
460 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
461 461  )))
462 462  
463 463  (((
464 -(((
465 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 466  )))
467 -)))
468 468  
469 469  (((
470 470  
... ... @@ -474,68 +474,52 @@
474 474  
475 475  )))
476 476  
477 -=== 2.4. Digital Interrupt ===
418 +=== 2.3.7 MOD ===
478 478  
479 -(((
480 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
481 -)))
420 +Firmware version at least v2.1 supports changing mode.
482 482  
483 -(((
484 -The command is:
485 -)))
422 +For example, bytes[10]=90
486 486  
487 -(((
488 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
489 -)))
424 +mod=(bytes[10]>>7)&0x01=1.
490 490  
491 491  
492 -(((
493 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
494 -)))
427 +**Downlink Command:**
495 495  
429 +If payload = 0x0A00, workmode=0
496 496  
497 -(((
498 -Example:
499 -)))
431 +If** **payload =** **0x0A01, workmode=1
500 500  
501 -(((
502 -0x(00): Normal uplink packet.
503 -)))
504 504  
505 -(((
506 -0x(01): Interrupt Uplink Packet.
507 -)))
508 508  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
509 509  
437 +While using TTN network, you can add the payload format to decode the payload.
510 510  
511 -=== 2.4.7  ​+5V Output ===
512 512  
513 -(((
514 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
515 -)))
440 +[[image:1654505570700-128.png]]
516 516  
517 -
518 518  (((
519 -The 5V output time can be controlled by AT Command.
443 +The payload decoder function for TTN is here:
520 520  )))
521 521  
522 522  (((
523 -(% style="color:blue" %)**AT+5VT=1000**
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
524 524  )))
525 525  
526 -(((
527 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
528 -)))
529 529  
451 +== 2.4 Uplink Interval ==
530 530  
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
531 531  
532 -== 2.5  Downlink Payload ==
533 533  
534 -By default, NDDS75 prints the downlink payload to console port.
535 535  
536 -[[image:image-20220709100028-1.png]]
457 +== 2.5 Downlink Payload ==
537 537  
459 +By default, LSE50 prints the downlink payload to console port.
538 538  
461 +[[image:image-20220606165544-8.png]]
462 +
463 +
539 539  (((
540 540  (% style="color:blue" %)**Examples:**
541 541  )))
... ... @@ -549,7 +549,7 @@
549 549  )))
550 550  
551 551  (((
552 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
477 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
553 553  )))
554 554  
555 555  (((
... ... @@ -569,120 +569,432 @@
569 569  )))
570 570  
571 571  (((
572 -If payload = 0x04FF, it will reset the NDDS75
497 +If payload = 0x04FF, it will reset the LSE01
573 573  )))
574 574  
575 575  
576 -* (% style="color:blue" %)**INTMOD**
501 +* (% style="color:blue" %)**CFM**
577 577  
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
504 +
505 +
506 +
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
578 578  (((
579 -Downlink Payload: 06000003, Set AT+INTMOD=3
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
580 580  )))
581 581  
513 +(((
514 +
515 +)))
582 582  
517 +(((
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
519 +)))
583 583  
584 -== 2.6  ​LED Indicator ==
521 +(((
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 +)))
585 585  
586 586  
587 -The NDDS75 has an internal LED which is to show the status of different state.
526 +[[image:1654505857935-743.png]]
588 588  
589 589  
590 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
591 -* Then the LED will be on for 1 second means device is boot normally.
592 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
593 -* For each uplink probe, LED will be on for 500ms.
529 +[[image:1654505874829-548.png]]
594 594  
595 -(((
596 -
597 -)))
598 598  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
599 599  
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
600 600  
601 -== 2.7  ​Firmware Change Log ==
602 602  
537 +[[image:1654505905236-553.png]]
603 603  
604 -(((
605 -Download URL & Firmware Change log
606 -)))
607 607  
608 -(((
609 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
610 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
611 611  
542 +[[image:1654505925508-181.png]]
612 612  
613 -(((
614 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
615 -)))
616 616  
617 617  
546 +== 2.7 Frequency Plans ==
618 618  
619 -== 2. ​Battery Analysis ==
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
620 620  
621 -=== 2.8.1  ​Battery Type ===
622 622  
551 +=== 2.7.1 EU863-870 (EU868) ===
623 623  
553 +(% style="color:#037691" %)** Uplink:**
554 +
555 +868.1 - SF7BW125 to SF12BW125
556 +
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
558 +
559 +868.5 - SF7BW125 to SF12BW125
560 +
561 +867.1 - SF7BW125 to SF12BW125
562 +
563 +867.3 - SF7BW125 to SF12BW125
564 +
565 +867.5 - SF7BW125 to SF12BW125
566 +
567 +867.7 - SF7BW125 to SF12BW125
568 +
569 +867.9 - SF7BW125 to SF12BW125
570 +
571 +868.8 - FSK
572 +
573 +
574 +(% style="color:#037691" %)** Downlink:**
575 +
576 +Uplink channels 1-9 (RX1)
577 +
578 +869.525 - SF9BW125 (RX2 downlink only)
579 +
580 +
581 +
582 +=== 2.7.2 US902-928(US915) ===
583 +
584 +Used in USA, Canada and South America. Default use CHE=2
585 +
586 +(% style="color:#037691" %)**Uplink:**
587 +
588 +903.9 - SF7BW125 to SF10BW125
589 +
590 +904.1 - SF7BW125 to SF10BW125
591 +
592 +904.3 - SF7BW125 to SF10BW125
593 +
594 +904.5 - SF7BW125 to SF10BW125
595 +
596 +904.7 - SF7BW125 to SF10BW125
597 +
598 +904.9 - SF7BW125 to SF10BW125
599 +
600 +905.1 - SF7BW125 to SF10BW125
601 +
602 +905.3 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**Downlink:**
606 +
607 +923.3 - SF7BW500 to SF12BW500
608 +
609 +923.9 - SF7BW500 to SF12BW500
610 +
611 +924.5 - SF7BW500 to SF12BW500
612 +
613 +925.1 - SF7BW500 to SF12BW500
614 +
615 +925.7 - SF7BW500 to SF12BW500
616 +
617 +926.3 - SF7BW500 to SF12BW500
618 +
619 +926.9 - SF7BW500 to SF12BW500
620 +
621 +927.5 - SF7BW500 to SF12BW500
622 +
623 +923.3 - SF12BW500(RX2 downlink only)
624 +
625 +
626 +
627 +=== 2.7.3 CN470-510 (CN470) ===
628 +
629 +Used in China, Default use CHE=1
630 +
631 +(% style="color:#037691" %)**Uplink:**
632 +
633 +486.3 - SF7BW125 to SF12BW125
634 +
635 +486.5 - SF7BW125 to SF12BW125
636 +
637 +486.7 - SF7BW125 to SF12BW125
638 +
639 +486.9 - SF7BW125 to SF12BW125
640 +
641 +487.1 - SF7BW125 to SF12BW125
642 +
643 +487.3 - SF7BW125 to SF12BW125
644 +
645 +487.5 - SF7BW125 to SF12BW125
646 +
647 +487.7 - SF7BW125 to SF12BW125
648 +
649 +
650 +(% style="color:#037691" %)**Downlink:**
651 +
652 +506.7 - SF7BW125 to SF12BW125
653 +
654 +506.9 - SF7BW125 to SF12BW125
655 +
656 +507.1 - SF7BW125 to SF12BW125
657 +
658 +507.3 - SF7BW125 to SF12BW125
659 +
660 +507.5 - SF7BW125 to SF12BW125
661 +
662 +507.7 - SF7BW125 to SF12BW125
663 +
664 +507.9 - SF7BW125 to SF12BW125
665 +
666 +508.1 - SF7BW125 to SF12BW125
667 +
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
624 624  (((
625 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
626 626  )))
843 +)))
627 627  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
628 628  (((
629 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
630 630  )))
631 631  
632 632  (((
633 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
634 634  )))
635 635  
636 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
637 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 639  
858 +== 2.10 ​Firmware Change Log ==
859 +
640 640  (((
641 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
642 642  )))
643 643  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
644 644  
868 +(((
869 +
870 +)))
645 645  
646 -=== 2.8.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
647 647  
648 648  (((
649 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
877 +
650 650  )))
651 651  
880 +(((
881 +**V1.0.**
882 +)))
652 652  
653 653  (((
654 -Instruction to use as below:
885 +Release
655 655  )))
656 656  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
657 657  (((
658 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
659 659  )))
660 660  
897 +(((
898 +The battery is designed to last for more than 5 years for the LSN50.
899 +)))
661 661  
662 662  (((
663 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
664 664  )))
905 +)))
665 665  
666 666  * (((
667 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
668 668  )))
669 669  * (((
670 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 671  )))
672 672  * (((
673 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
674 674  )))
675 675  
676 -(((
677 -And the Life expectation in difference case will be shown on the right.
678 -)))
917 + [[image:image-20220610172436-1.png]]
679 679  
680 -[[image:image-20220709110451-3.png]]
681 681  
682 682  
921 +=== 2.11.2 ​Battery Note ===
683 683  
684 -=== 2.8.3  ​Battery Note ===
685 -
686 686  (((
687 687  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
688 688  )))
... ... @@ -689,169 +689,302 @@
689 689  
690 690  
691 691  
692 -=== 2.8. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
693 693  
694 694  (((
695 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 696  )))
697 697  
698 -
699 -
700 -= 3. ​ Access NB-IoT Module =
701 -
702 702  (((
703 -Users can directly access the AT command set of the NB-IoT module.
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 704  )))
705 705  
706 706  (((
707 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 708  )))
709 709  
710 -[[image:1657333200519-600.png]]
711 711  
712 712  
945 += 3. ​Using the AT Commands =
713 713  
714 -= 4.  Using the AT Commands =
947 +== 3.1 Access AT Commands ==
715 715  
716 -== 4.1  Access AT Commands ==
717 717  
718 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 719  
952 +[[image:1654501986557-872.png||height="391" width="800"]]
720 720  
721 -AT+<CMD>?  : Help on <CMD>
722 722  
723 -AT+<CMD>         : Run <CMD>
955 +Or if you have below board, use below connection:
724 724  
725 -AT+<CMD>=<value> : Set the value
726 726  
727 -AT+<CMD>=?  : Get the value
958 +[[image:1654502005655-729.png||height="503" width="801"]]
728 728  
729 729  
961 +
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
963 +
964 +
965 + [[image:1654502050864-459.png||height="564" width="806"]]
966 +
967 +
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
969 +
970 +
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
730 730  (% style="color:#037691" %)**General Commands**(%%)      
731 731  
732 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 733  
734 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 735  
736 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 737  
738 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 739  
740 -AT+CFG  : Print all configurations
741 741  
742 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 743  
744 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 745  
746 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 747  
748 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 749  
750 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 751  
752 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 753  
754 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
755 755  
756 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 757  
758 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 759  
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
760 760  
761 -(% style="color:#037691" %)**COAP Management**      
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 762  
763 -AT+URI            : Resource parameters
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 764  
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
765 765  
766 -(% style="color:#037691" %)**UDP Management**
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 767  
768 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 769  
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
770 770  
771 -(% style="color:#037691" %)**MQTT Management**
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 772  
773 -AT+CLIENT               : Get or Set MQTT client
774 774  
775 -AT+UNAME  : Get or Set MQTT Username
1026 +(% style="color:#037691" %)**LoRa Network Management**
776 776  
777 -AT+PWD                  : Get or Set MQTT password
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 778  
779 -AT+PUBTOPI : Get or Set MQTT publish topic
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 780  
781 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 782  
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
783 783  
784 -(% style="color:#037691" %)**Information**          
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 785  
786 -AT+FDR  : Factory Data Reset
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 787  
788 -AT+PWOR : Serial Access Password
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 789  
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
790 790  
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
791 791  
792 -= ​5.  FAQ =
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 793  
794 -== 5.1 How to Upgrade Firmware ==
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 795  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
796 796  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1053 +
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057 +
1058 +
1059 +(% style="color:#037691" %)**Information** 
1060 +
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
797 797  (((
798 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
799 799  )))
800 800  
801 801  (((
802 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
803 803  )))
804 804  
805 805  (((
806 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 807  )))
808 808  
1093 +(((
1094 +
1095 +)))
809 809  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
810 810  
811 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
812 812  
813 -== 6.1  ​Connection problem when uploading firmware ==
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
814 814  
1109 +[[image:image-20220606154726-3.png]]
815 815  
1111 +
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
816 816  (((
817 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
818 818  )))
819 819  
820 -(% class="wikigeneratedid" %)
821 821  (((
822 822  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
823 823  )))
824 824  
1137 +(((
1138 +
1139 +)))
825 825  
826 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
827 827  
1145 +[[image:image-20220606154825-4.png]]
1146 +
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
828 828  (((
829 829  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
830 830  
831 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
832 832  )))
833 833  
834 834  
835 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
836 836  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
837 837  
838 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
839 839  
840 840  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
841 841  (% class="wikigeneratedid" %)
842 842  (((
843 843  
844 844  )))
845 845  
846 -= 8.  Packing Info =
1215 += 7. Packing Info =
847 847  
848 848  (((
849 849  
850 850  
851 851  (% style="color:#037691" %)**Package Includes**:
1221 +)))
852 852  
853 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
854 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
855 855  )))
856 856  
857 857  (((
... ... @@ -858,21 +858,24 @@
858 858  
859 859  
860 860  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
861 861  
862 -* Device Size: 13.0 x 5 x 4.5 cm
863 -* Device Weight: 150g
864 -* Package Size / pcs : 15 x 12x 5.5 cm
865 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
866 866  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
867 867  
868 -(((
869 869  
870 -
871 -
872 -
873 873  )))
874 874  
875 -= 9.  Support =
1248 += 8. Support =
876 876  
877 877  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
878 878  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content