Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.22
edited by Xiaoling
on 2022/07/11 14:08
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,74 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
62 +
63 +
72 72  == 1.3  Specification ==
73 73  
74 74  
... ... @@ -77,6 +77,7 @@
77 77  * Supply Voltage: 2.1v ~~ 3.6v
78 78  * Operating Temperature: -40 ~~ 85°C
79 79  
72 +
80 80  (% style="color:#037691" %)**NB-IoT Spec:**
81 81  
82 82  * - B1 @H-FDD: 2100MHz
... ... @@ -86,603 +86,719 @@
86 86  * - B20 @H-FDD: 800MHz
87 87  * - B28 @H-FDD: 700MHz
88 88  
89 -(% style="color:#037691" %)**Battery:**
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -* STOP Mode: 10uA @ 3.3v
100 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
101 101  
89 +
90 +
102 102  == ​1.4  Applications ==
103 103  
104 -* Smart Buildings & Home Automation
105 -* Logistics and Supply Chain Management
106 -* Smart Metering
107 107  * Smart Agriculture
108 -* Smart Cities
109 -* Smart Factory
110 110  
111 111  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
112 112  ​
113 113  
114 -
115 115  == 1.5  Pin Definitions ==
116 116  
117 117  
118 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
119 119  
120 120  
121 121  
122 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
123 123  
124 -== 2.1  How it works ==
107 +== 2.1 How it works ==
125 125  
126 126  (((
127 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
128 128  )))
129 129  
130 -
131 131  (((
132 -The diagram below shows the working flow in default firmware of NDDS75:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
133 133  )))
134 134  
135 -(((
136 -
137 -)))
138 138  
139 -[[image:1657328659945-416.png]]
140 140  
141 -(((
142 -
143 -)))
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
144 144  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
145 145  
146 -== 2.2 ​ Configure the NDDS75 ==
147 147  
124 +[[image:1654503992078-669.png]]
148 148  
149 -=== 2.2.1 Test Requirement ===
150 150  
151 -(((
152 -To use NDDS75 in your city, make sure meet below requirements:
153 -)))
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
154 154  
155 -* Your local operator has already distributed a NB-IoT Network there.
156 -* The local NB-IoT network used the band that NDDS75 supports.
157 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
158 158  
159 -(((
160 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
161 -)))
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
162 162  
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
163 163  
164 -[[image:1657328756309-230.png]]
134 +[[image:image-20220606163732-6.jpeg]]
165 165  
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
166 166  
138 +**Add APP EUI in the application**
167 167  
168 -=== 2.2.2 Insert SIM card ===
169 169  
170 -(((
171 -Insert the NB-IoT Card get from your provider.
172 -)))
141 +[[image:1654504596150-405.png]]
173 173  
174 -(((
175 -User need to take out the NB-IoT module and insert the SIM card like below:
176 -)))
177 177  
178 178  
179 -[[image:1657328884227-504.png]]
145 +**Add APP KEY and DEV EUI**
180 180  
147 +[[image:1654504683289-357.png]]
181 181  
182 182  
183 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
184 184  
185 -(((
186 -(((
187 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
188 -)))
189 -)))
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
190 190  
191 -[[image:image-20220709092052-2.png]]
192 192  
193 -**Connection:**
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
194 194  
195 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
156 +[[image:image-20220606163915-7.png]]
196 196  
197 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
198 198  
199 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
200 200  
161 +[[image:1654504778294-788.png]]
201 201  
202 -In the PC, use below serial tool settings:
203 203  
204 -* Baud:  (% style="color:green" %)**9600**
205 -* Data bits:** (% style="color:green" %)8(%%)**
206 -* Stop bits: (% style="color:green" %)**1**
207 -* Parity:  (% style="color:green" %)**None**
208 -* Flow Control: (% style="color:green" %)**None**
209 209  
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
210 210  (((
211 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
173 +Uplink payload includes in total 11 bytes.
212 212  )))
213 213  
214 -[[image:1657329814315-101.png]]
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
215 215  
216 -(((
217 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
218 218  )))
219 219  
192 +=== 2.3.2 MOD~=1(Original value) ===
220 220  
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
221 221  
222 -=== 2.2.4 Use CoAP protocol to uplink data ===
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
223 223  
224 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
225 225  
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
226 226  
209 +(Optional)
210 +)))
211 +
212 +=== 2.3.3 Battery Info ===
213 +
227 227  (((
228 -**Use below commands:**
215 +Check the battery voltage for LSE01.
229 229  )))
230 230  
231 -* (((
232 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +(((
219 +Ex1: 0x0B45 = 2885mV
233 233  )))
234 -* (((
235 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
236 -)))
237 -* (((
238 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
239 -)))
240 240  
241 241  (((
242 -For parameter description, please refer to AT command set
223 +Ex2: 0x0B49 = 2889mV
243 243  )))
244 244  
245 -[[image:1657330452568-615.png]]
246 246  
247 247  
228 +=== 2.3.4 Soil Moisture ===
229 +
248 248  (((
249 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
250 250  )))
251 251  
252 -[[image:1657330472797-498.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
253 253  
238 +(((
239 +
240 +)))
254 254  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
255 255  
256 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
257 257  
258 258  
259 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
261 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
248 +=== 2.3.5 Soil Temperature ===
262 262  
263 -[[image:1657330501006-241.png]]
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
264 264  
254 +(((
255 +**Example**:
256 +)))
265 265  
266 -[[image:1657330533775-472.png]]
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
267 267  
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
268 268  
269 269  
270 -=== 2.2.6 Use MQTT protocol to uplink data ===
271 271  
268 +=== 2.3.6 Soil Conductivity (EC) ===
272 272  
273 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
274 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
275 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
276 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
277 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
278 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
279 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
280 280  
281 -[[image:1657249978444-674.png]]
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
282 282  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
283 283  
284 -[[image:1657330723006-866.png]]
282 +(((
283 +
284 +)))
285 285  
286 -
287 287  (((
288 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
287 +
289 289  )))
290 290  
290 +=== 2.3.7 MOD ===
291 291  
292 +Firmware version at least v2.1 supports changing mode.
292 292  
293 -=== 2.2.7 Use TCP protocol to uplink data ===
294 +For example, bytes[10]=90
294 294  
296 +mod=(bytes[10]>>7)&0x01=1.
295 295  
296 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
297 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
298 298  
299 -[[image:image-20220709093918-1.png]]
299 +**Downlink Command:**
300 300  
301 +If payload = 0x0A00, workmode=0
301 301  
302 -[[image:image-20220709093918-2.png]]
303 +If** **payload =** **0x0A01, workmode=1
303 303  
304 304  
305 305  
306 -=== 2.2.8 Change Update Interval ===
307 +=== 2.3.8 ​Decode payload in The Things Network ===
307 307  
308 -User can use below command to change the (% style="color:green" %)**uplink interval**.
309 +While using TTN network, you can add the payload format to decode the payload.
309 309  
310 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
311 311  
312 +[[image:1654505570700-128.png]]
313 +
312 312  (((
313 -(% style="color:red" %)**NOTE:**
315 +The payload decoder function for TTN is here:
314 314  )))
315 315  
316 316  (((
317 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
318 318  )))
319 319  
320 320  
323 +== 2.4 Uplink Interval ==
321 321  
322 -== 2. Uplink Payload ==
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323 323  
324 -In this mode, uplink payload includes in total 14 bytes
325 325  
326 326  
327 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
328 -|=(% style="width: 60px;" %)(((
329 -**Size(bytes)**
330 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
331 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
329 +== 2.5 Downlink Payload ==
332 332  
333 -(((
334 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
335 -)))
331 +By default, LSE50 prints the downlink payload to console port.
336 336  
333 +[[image:image-20220606165544-8.png]]
337 337  
338 -[[image:1657331036973-987.png]]
339 339  
340 340  (((
341 -The payload is ASCII string, representative same HEX:
337 +(% style="color:blue" %)**Examples:**
342 342  )))
343 343  
344 344  (((
345 -0x72403155615900640c6c19029200 where:
341 +
346 346  )))
347 347  
348 348  * (((
349 -Device ID: 0x724031556159 = 724031556159
345 +(% style="color:blue" %)**Set TDC**
350 350  )))
351 -* (((
352 -Version: 0x0064=100=1.0.0
347 +
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
353 353  )))
354 354  
355 -* (((
356 -BAT: 0x0c6c = 3180 mV = 3.180V
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
357 357  )))
358 -* (((
359 -Signal: 0x19 = 25
355 +
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
360 360  )))
361 -* (((
362 -Distance: 0x0292= 658 mm
359 +
360 +(((
361 +
363 363  )))
363 +
364 364  * (((
365 -Interrupt: 0x00 = 0
365 +(% style="color:blue" %)**Reset**
366 +)))
366 366  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
367 367  
368 368  
369 -
370 -)))
373 +* (% style="color:blue" %)**CFM**
371 371  
372 -== 2.4  Payload Explanation and Sensor Interface ==
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
373 373  
374 374  
375 -=== 2.4.1  Device ID ===
376 376  
377 -(((
378 -By default, the Device ID equal to the last 6 bytes of IMEI.
379 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
380 380  
381 381  (((
382 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 383  )))
384 384  
385 385  (((
386 -**Example:**
386 +
387 387  )))
388 388  
389 389  (((
390 -AT+DEUI=A84041F15612
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 391  )))
392 392  
393 393  (((
394 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 395  )))
396 396  
397 397  
398 +[[image:1654505857935-743.png]]
398 398  
399 -=== 2.4.2  Version Info ===
400 400  
401 -(((
402 -Specify the software version: 0x64=100, means firmware version 1.00.
403 -)))
401 +[[image:1654505874829-548.png]]
404 404  
405 -(((
406 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
407 -)))
408 408  
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
409 409  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
410 410  
411 -=== 2.4.3  Battery Info ===
412 412  
413 -(((
414 -Ex1: 0x0B45 = 2885mV
415 -)))
409 +[[image:1654505905236-553.png]]
416 416  
417 -(((
418 -Ex2: 0x0B49 = 2889mV
419 -)))
420 420  
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
421 421  
414 +[[image:1654505925508-181.png]]
422 422  
423 -=== 2.4.4  Signal Strength ===
424 424  
425 -(((
426 -NB-IoT Network signal Strength.
427 -)))
428 428  
429 -(((
430 -**Ex1: 0x1d = 29**
431 -)))
418 +== 2.7 Frequency Plans ==
432 432  
433 -(((
434 -(% style="color:blue" %)**0**(%%)  -113dBm or less
435 -)))
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
436 436  
437 -(((
438 -(% style="color:blue" %)**1**(%%)  -111dBm
439 -)))
440 440  
441 -(((
442 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
443 -)))
423 +=== 2.7.1 EU863-870 (EU868) ===
444 444  
445 -(((
446 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
447 -)))
425 +(% style="color:#037691" %)** Uplink:**
448 448  
449 -(((
450 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
451 -)))
427 +868.1 - SF7BW125 to SF12BW125
452 452  
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
453 453  
431 +868.5 - SF7BW125 to SF12BW125
454 454  
455 -=== 2.4.5  Distance ===
433 +867.1 - SF7BW125 to SF12BW125
456 456  
457 -Get the distance. Flat object range 280mm - 7500mm.
435 +867.3 - SF7BW125 to SF12BW125
458 458  
459 -(((
460 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
461 -)))
437 +867.5 - SF7BW125 to SF12BW125
462 462  
463 -(((
464 -(((
465 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
466 -)))
467 -)))
439 +867.7 - SF7BW125 to SF12BW125
468 468  
469 -(((
470 -
471 -)))
441 +867.9 - SF7BW125 to SF12BW125
472 472  
473 -(((
474 -
475 -)))
443 +868.8 - FSK
476 476  
477 -=== 2.4.6  Digital Interrupt ===
478 478  
479 -(((
480 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
481 -)))
446 +(% style="color:#037691" %)** Downlink:**
482 482  
483 -(((
484 -The command is:
485 -)))
448 +Uplink channels 1-9 (RX1)
486 486  
487 -(((
488 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
489 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
490 490  
491 491  
492 -(((
493 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
494 -)))
495 495  
454 +=== 2.7.2 US902-928(US915) ===
496 496  
497 -(((
498 -Example:
499 -)))
456 +Used in USA, Canada and South America. Default use CHE=2
500 500  
501 -(((
502 -0x(00): Normal uplink packet.
503 -)))
458 +(% style="color:#037691" %)**Uplink:**
504 504  
505 -(((
506 -0x(01): Interrupt Uplink Packet.
507 -)))
460 +903.9 - SF7BW125 to SF10BW125
508 508  
462 +904.1 - SF7BW125 to SF10BW125
509 509  
464 +904.3 - SF7BW125 to SF10BW125
510 510  
511 -=== 2.4. ​+5V Output ===
466 +904.5 - SF7BW125 to SF10BW125
512 512  
513 -(((
514 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
515 -)))
468 +904.7 - SF7BW125 to SF10BW125
516 516  
470 +904.9 - SF7BW125 to SF10BW125
517 517  
518 -(((
519 -The 5V output time can be controlled by AT Command.
520 -)))
472 +905.1 - SF7BW125 to SF10BW125
521 521  
522 -(((
523 -(% style="color:blue" %)**AT+5VT=1000**
524 -)))
474 +905.3 - SF7BW125 to SF10BW125
525 525  
526 -(((
527 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
528 -)))
529 529  
477 +(% style="color:#037691" %)**Downlink:**
530 530  
479 +923.3 - SF7BW500 to SF12BW500
531 531  
532 -== 2.5  Downlink Payload ==
481 +923.9 - SF7BW500 to SF12BW500
533 533  
534 -By default, NDDS75 prints the downlink payload to console port.
483 +924.5 - SF7BW500 to SF12BW500
535 535  
536 -[[image:image-20220709100028-1.png]]
485 +925.1 - SF7BW500 to SF12BW500
537 537  
487 +925.7 - SF7BW500 to SF12BW500
538 538  
539 -(((
540 -(% style="color:blue" %)**Examples:**
541 -)))
489 +926.3 - SF7BW500 to SF12BW500
542 542  
543 -(((
544 -
545 -)))
491 +926.9 - SF7BW500 to SF12BW500
546 546  
547 -* (((
548 -(% style="color:blue" %)**Set TDC**
549 -)))
493 +927.5 - SF7BW500 to SF12BW500
550 550  
551 -(((
552 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
553 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
554 554  
555 -(((
556 -Payload:    01 00 00 1E    TDC=30S
557 -)))
558 558  
559 -(((
560 -Payload:    01 00 00 3C    TDC=60S
561 -)))
562 562  
563 -(((
564 -
565 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
566 566  
567 -* (((
568 -(% style="color:blue" %)**Reset**
569 -)))
501 +Used in China, Default use CHE=1
570 570  
571 -(((
572 -If payload = 0x04FF, it will reset the NDDS75
573 -)))
503 +(% style="color:#037691" %)**Uplink:**
574 574  
505 +486.3 - SF7BW125 to SF12BW125
575 575  
576 -* (% style="color:blue" %)**INTMOD**
507 +486.5 - SF7BW125 to SF12BW125
577 577  
578 -(((
579 -Downlink Payload: 06000003, Set AT+INTMOD=3
580 -)))
509 +486.7 - SF7BW125 to SF12BW125
581 581  
511 +486.9 - SF7BW125 to SF12BW125
582 582  
513 +487.1 - SF7BW125 to SF12BW125
583 583  
584 -== 2. ​LED Indicator ==
515 +487.3 - SF7BW125 to SF12BW125
585 585  
517 +487.5 - SF7BW125 to SF12BW125
586 586  
587 -The NDDS75 has an internal LED which is to show the status of different state.
519 +487.7 - SF7BW125 to SF12BW125
588 588  
589 589  
590 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
591 -* Then the LED will be on for 1 second means device is boot normally.
592 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
593 -* For each uplink probe, LED will be on for 500ms.
522 +(% style="color:#037691" %)**Downlink:**
594 594  
595 -(((
596 -
597 -)))
524 +506.7 - SF7BW125 to SF12BW125
598 598  
526 +506.9 - SF7BW125 to SF12BW125
599 599  
528 +507.1 - SF7BW125 to SF12BW125
600 600  
601 -== 2.7  Firmware Change Log ==
530 +507.3 - SF7BW125 to SF12BW125
602 602  
532 +507.5 - SF7BW125 to SF12BW125
603 603  
604 -(((
605 -Download URL & Firmware Change log
606 -)))
534 +507.7 - SF7BW125 to SF12BW125
607 607  
608 -(((
609 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
610 -)))
536 +507.9 - SF7BW125 to SF12BW125
611 611  
538 +508.1 - SF7BW125 to SF12BW125
612 612  
613 -(((
614 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
615 -)))
540 +505.3 - SF12BW125 (RX2 downlink only)
616 616  
617 617  
618 618  
619 -== 2. ​Battery Analysis ==
544 +=== 2.7.4 AU915-928(AU915) ===
620 620  
621 -=== 2.8.1  ​Battery Type ===
546 +Default use CHE=2
622 622  
548 +(% style="color:#037691" %)**Uplink:**
623 623  
550 +916.8 - SF7BW125 to SF12BW125
551 +
552 +917.0 - SF7BW125 to SF12BW125
553 +
554 +917.2 - SF7BW125 to SF12BW125
555 +
556 +917.4 - SF7BW125 to SF12BW125
557 +
558 +917.6 - SF7BW125 to SF12BW125
559 +
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
624 624  (((
625 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
626 626  )))
715 +)))
627 627  
717 +
718 +
719 +[[image:1654506665940-119.png]]
720 +
628 628  (((
629 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
630 630  )))
631 631  
632 632  (((
633 -The battery related documents as below:
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
634 634  )))
635 635  
636 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
637 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 639  
730 +== 2.10 ​Firmware Change Log ==
731 +
640 640  (((
641 -[[image:image-20220709101450-2.png]]
733 +**Firmware download link:**
642 642  )))
643 643  
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
644 644  
740 +(((
741 +
742 +)))
645 645  
646 -=== 2.8.2  Power consumption Analyze ===
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
647 647  
648 648  (((
649 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
749 +
650 650  )))
651 651  
752 +(((
753 +**V1.0.**
754 +)))
652 652  
653 653  (((
654 -Instruction to use as below:
757 +Release
655 655  )))
656 656  
760 +
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
657 657  (((
658 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
659 659  )))
660 660  
769 +(((
770 +The battery is designed to last for more than 5 years for the LSN50.
771 +)))
661 661  
662 662  (((
663 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
664 664  )))
777 +)))
665 665  
666 666  * (((
667 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
668 668  )))
669 669  * (((
670 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 671  )))
672 672  * (((
673 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
674 674  )))
675 675  
676 -(((
677 -And the Life expectation in difference case will be shown on the right.
678 -)))
789 + [[image:image-20220610172436-1.png]]
679 679  
680 -[[image:image-20220709110451-3.png]]
681 681  
682 682  
793 +=== 2.11.2 ​Battery Note ===
683 683  
684 -=== 2.8.3  ​Battery Note ===
685 -
686 686  (((
687 687  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
688 688  )))
... ... @@ -689,169 +689,302 @@
689 689  
690 690  
691 691  
692 -=== 2.8. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
693 693  
694 694  (((
695 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 696  )))
697 697  
698 -
699 -
700 -= 3. ​ Access NB-IoT Module =
701 -
702 702  (((
703 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 704  )))
705 705  
706 706  (((
707 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 708  )))
709 709  
710 -[[image:1657333200519-600.png]]
711 711  
712 712  
817 += 3. ​Using the AT Commands =
713 713  
714 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
715 715  
716 -== 4.1  Access AT Commands ==
717 717  
718 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 719  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
720 720  
721 -AT+<CMD>?  : Help on <CMD>
722 722  
723 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
724 724  
725 -AT+<CMD>=<value> : Set the value
726 726  
727 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
728 728  
729 729  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
730 730  (% style="color:#037691" %)**General Commands**(%%)      
731 731  
732 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 733  
734 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 735  
736 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 737  
738 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 739  
740 -AT+CFG  : Print all configurations
741 741  
742 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 743  
744 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 745  
746 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 747  
748 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 749  
750 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 751  
752 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 753  
754 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
755 755  
756 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 757  
758 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 759  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
760 760  
761 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 762  
763 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 764  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
765 765  
766 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 767  
768 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 769  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
770 770  
771 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 772  
773 -AT+CLIENT               : Get or Set MQTT client
774 774  
775 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
776 776  
777 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 778  
779 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 780  
781 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 782  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
783 783  
784 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 785  
786 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 787  
788 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 789  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
790 790  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
791 791  
792 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 793  
794 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 795  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
796 796  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
797 797  (((
798 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
799 799  )))
800 800  
801 801  (((
802 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
803 803  )))
804 804  
805 805  (((
806 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 807  )))
808 808  
965 +(((
966 +
967 +)))
809 809  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
810 810  
811 -= 6.  Trouble Shooting =
973 +(((
974 +
975 +)))
812 812  
813 -== 6.1  ​Connection problem when uploading firmware ==
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
814 814  
981 +[[image:image-20220606154726-3.png]]
815 815  
983 +
984 +When you use the TTN network, the US915 frequency bands use are:
985 +
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
995 +
816 816  (((
817 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
818 818  )))
819 819  
820 -(% class="wikigeneratedid" %)
821 821  (((
822 822  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
823 823  )))
824 824  
1009 +(((
1010 +
1011 +)))
825 825  
826 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
827 827  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
828 828  (((
829 829  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
830 830  
831 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
832 832  )))
833 833  
834 834  
835 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
836 836  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
837 837  
838 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
839 839  
840 840  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
841 841  (% class="wikigeneratedid" %)
842 842  (((
843 843  
844 844  )))
845 845  
846 -= 8.  Packing Info =
1087 += 7. Packing Info =
847 847  
848 848  (((
849 849  
850 850  
851 851  (% style="color:#037691" %)**Package Includes**:
1093 +)))
852 852  
853 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
854 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
855 855  )))
856 856  
857 857  (((
... ... @@ -858,21 +858,24 @@
858 858  
859 859  
860 860  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
861 861  
862 -* Device Size: 13.0 x 5 x 4.5 cm
863 -* Device Weight: 150g
864 -* Package Size / pcs : 15 x 12x 5.5 cm
865 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
866 866  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
867 867  
868 -(((
869 869  
870 -
871 -
872 -
873 873  )))
874 874  
875 -= 9.  Support =
1120 += 8. Support =
876 876  
877 877  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
878 878  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content