Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.20
edited by Xiaoling
on 2022/07/09 17:49
Change comment: There is no comment for this version
To version 45.3
edited by Xiaoling
on 2022/07/08 10:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,75 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
72 72  
63 +
73 73  == 1.3  Specification ==
74 74  
75 75  
... ... @@ -78,6 +78,7 @@
78 78  * Supply Voltage: 2.1v ~~ 3.6v
79 79  * Operating Temperature: -40 ~~ 85°C
80 80  
72 +
81 81  (% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 83  * - B1 @H-FDD: 2100MHz
... ... @@ -87,604 +87,727 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -(% style="color:#037691" %)**Battery:**
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
99 99  
100 -* STOP Mode: 10uA @ 3.3v
101 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
102 102  
103 103  
90 +
104 104  == ​1.4  Applications ==
105 105  
106 -* Smart Buildings & Home Automation
107 -* Logistics and Supply Chain Management
108 -* Smart Metering
109 109  * Smart Agriculture
110 -* Smart Cities
111 -* Smart Factory
112 112  
113 113  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
114 114  ​
115 115  
116 -
117 117  == 1.5  Pin Definitions ==
118 118  
119 119  
120 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
121 121  
122 122  
123 123  
124 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
125 125  
126 126  == 2.1  How it works ==
127 127  
109 +
128 128  (((
129 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
130 130  )))
131 131  
132 132  
133 133  (((
134 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
135 135  )))
136 136  
119 +[[image:image-20220708101605-2.png]]
120 +
137 137  (((
138 138  
139 139  )))
140 140  
141 -[[image:1657328659945-416.png]]
142 142  
143 -(((
144 -
145 -)))
146 146  
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
147 147  
148 -== 2.2 Configure the NDDS75 ==
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
149 149  
150 150  
151 -=== 2.2.1 Test Requirement ===
132 +[[image:1654503992078-669.png]]
152 152  
153 -(((
154 -To use NDDS75 in your city, make sure meet below requirements:
155 -)))
156 156  
157 -* Your local operator has already distributed a NB-IoT Network there.
158 -* The local NB-IoT network used the band that NSE01 supports.
159 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 160  
161 -(((
162 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
163 -)))
164 164  
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
165 165  
166 -[[image:1657328756309-230.png]]
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
167 167  
142 +[[image:image-20220606163732-6.jpeg]]
168 168  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
169 169  
170 -=== 2.2.2 Insert SIM card ===
146 +**Add APP EUI in the application**
171 171  
172 -(((
173 -Insert the NB-IoT Card get from your provider.
174 -)))
175 175  
176 -(((
177 -User need to take out the NB-IoT module and insert the SIM card like below:
178 -)))
149 +[[image:1654504596150-405.png]]
179 179  
180 180  
181 -[[image:1657328884227-504.png]]
182 182  
153 +**Add APP KEY and DEV EUI**
183 183  
155 +[[image:1654504683289-357.png]]
184 184  
185 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
186 186  
187 -(((
188 -(((
189 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
190 -)))
191 -)))
192 192  
193 -[[image:image-20220709092052-2.png]]
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
194 194  
195 -**Connection:**
196 196  
197 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
198 198  
199 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
164 +[[image:image-20220606163915-7.png]]
200 200  
201 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
202 202  
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203 203  
204 -In the PC, use below serial tool settings:
169 +[[image:1654504778294-788.png]]
205 205  
206 -* Baud:  (% style="color:green" %)**9600**
207 -* Data bits:** (% style="color:green" %)8(%%)**
208 -* Stop bits: (% style="color:green" %)**1**
209 -* Parity:  (% style="color:green" %)**None**
210 -* Flow Control: (% style="color:green" %)**None**
211 211  
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
212 212  (((
213 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
181 +Uplink payload includes in total 11 bytes.
214 214  )))
215 215  
216 -[[image:1657329814315-101.png]]
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
217 217  
218 -(((
219 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
220 220  )))
221 221  
200 +=== 2.3.2 MOD~=1(Original value) ===
222 222  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
223 223  
224 -=== 2.2.4 Use CoAP protocol to uplink data ===
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
225 225  
226 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
227 227  
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
228 228  
217 +(Optional)
218 +)))
219 +
220 +=== 2.3.3 Battery Info ===
221 +
229 229  (((
230 -**Use below commands:**
223 +Check the battery voltage for LSE01.
231 231  )))
232 232  
233 -* (((
234 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 +(((
227 +Ex1: 0x0B45 = 2885mV
235 235  )))
236 -* (((
237 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
238 -)))
239 -* (((
240 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
241 -)))
242 242  
243 243  (((
244 -For parameter description, please refer to AT command set
231 +Ex2: 0x0B49 = 2889mV
245 245  )))
246 246  
247 -[[image:1657330452568-615.png]]
248 248  
249 249  
236 +=== 2.3.4 Soil Moisture ===
237 +
250 250  (((
251 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
252 252  )))
253 253  
254 -[[image:1657330472797-498.png]]
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
255 255  
246 +(((
247 +
248 +)))
256 256  
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
257 257  
258 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
259 259  
260 260  
261 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
263 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
256 +=== 2.3.5 Soil Temperature ===
264 264  
265 -[[image:1657330501006-241.png]]
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
266 266  
262 +(((
263 +**Example**:
264 +)))
267 267  
268 -[[image:1657330533775-472.png]]
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
269 269  
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
270 270  
271 271  
272 -=== 2.2.6 Use MQTT protocol to uplink data ===
273 273  
276 +=== 2.3.6 Soil Conductivity (EC) ===
274 274  
275 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
277 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
278 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
279 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
280 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
281 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
282 282  
283 -[[image:1657249978444-674.png]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
284 284  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
285 285  
286 -[[image:1657330723006-866.png]]
290 +(((
291 +
292 +)))
287 287  
288 -
289 289  (((
290 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
295 +
291 291  )))
292 292  
298 +=== 2.3.7 MOD ===
293 293  
300 +Firmware version at least v2.1 supports changing mode.
294 294  
295 -=== 2.2.7 Use TCP protocol to uplink data ===
302 +For example, bytes[10]=90
296 296  
304 +mod=(bytes[10]>>7)&0x01=1.
297 297  
298 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
299 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
300 300  
301 -[[image:image-20220709093918-1.png]]
307 +**Downlink Command:**
302 302  
309 +If payload = 0x0A00, workmode=0
303 303  
304 -[[image:image-20220709093918-2.png]]
311 +If** **payload =** **0x0A01, workmode=1
305 305  
306 306  
307 307  
308 -=== 2.2.8 Change Update Interval ===
315 +=== 2.3.8 ​Decode payload in The Things Network ===
309 309  
310 -User can use below command to change the (% style="color:green" %)**uplink interval**.
317 +While using TTN network, you can add the payload format to decode the payload.
311 311  
312 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
313 313  
320 +[[image:1654505570700-128.png]]
321 +
314 314  (((
315 -(% style="color:red" %)**NOTE:**
323 +The payload decoder function for TTN is here:
316 316  )))
317 317  
318 318  (((
319 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 320  )))
321 321  
322 322  
331 +== 2.4 Uplink Interval ==
323 323  
324 -== 2. Uplink Payload ==
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
325 325  
326 -In this mode, uplink payload includes in total 14 bytes
327 327  
328 328  
329 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
330 -|=(% style="width: 60px;" %)(((
331 -**Size(bytes)**
332 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
333 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
337 +== 2.5 Downlink Payload ==
334 334  
335 -(((
336 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
337 -)))
339 +By default, LSE50 prints the downlink payload to console port.
338 338  
341 +[[image:image-20220606165544-8.png]]
339 339  
340 -[[image:1657331036973-987.png]]
341 341  
342 342  (((
343 -The payload is ASCII string, representative same HEX:
345 +(% style="color:blue" %)**Examples:**
344 344  )))
345 345  
346 346  (((
347 -0x72403155615900640c6c19029200 where:
349 +
348 348  )))
349 349  
350 350  * (((
351 -Device ID: 0x724031556159 = 724031556159
353 +(% style="color:blue" %)**Set TDC**
352 352  )))
353 -* (((
354 -Version: 0x0064=100=1.0.0
355 +
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
355 355  )))
356 356  
357 -* (((
358 -BAT: 0x0c6c = 3180 mV = 3.180V
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
359 359  )))
360 -* (((
361 -Signal: 0x19 = 25
363 +
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
362 362  )))
363 -* (((
364 -Distance: 0x0292= 658 mm
367 +
368 +(((
369 +
365 365  )))
371 +
366 366  * (((
367 -Interrupt: 0x00 = 0
373 +(% style="color:blue" %)**Reset**
374 +)))
368 368  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
369 369  
370 370  
371 -
372 -)))
381 +* (% style="color:blue" %)**CFM**
373 373  
374 -== 2.4  Payload Explanation and Sensor Interface ==
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
375 375  
376 376  
377 -=== 2.4.1  Device ID ===
378 378  
379 -(((
380 -By default, the Device ID equal to the last 6 bytes of IMEI.
381 -)))
387 +== 2.6 ​Show Data in DataCake IoT Server ==
382 382  
383 383  (((
384 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
385 385  )))
386 386  
387 387  (((
388 -**Example:**
394 +
389 389  )))
390 390  
391 391  (((
392 -AT+DEUI=A84041F15612
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
393 393  )))
394 394  
395 395  (((
396 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
397 397  )))
398 398  
399 399  
406 +[[image:1654505857935-743.png]]
400 400  
401 -=== 2.4.2  Version Info ===
402 402  
403 -(((
404 -Specify the software version: 0x64=100, means firmware version 1.00.
405 -)))
409 +[[image:1654505874829-548.png]]
406 406  
407 -(((
408 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
409 -)))
410 410  
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
411 411  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
412 412  
413 -=== 2.4.3  Battery Info ===
414 414  
415 -(((
416 -Ex1: 0x0B45 = 2885mV
417 -)))
417 +[[image:1654505905236-553.png]]
418 418  
419 -(((
420 -Ex2: 0x0B49 = 2889mV
421 -)))
422 422  
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
423 423  
422 +[[image:1654505925508-181.png]]
424 424  
425 -=== 2.4.4  Signal Strength ===
426 426  
427 -(((
428 -NB-IoT Network signal Strength.
429 -)))
430 430  
431 -(((
432 -**Ex1: 0x1d = 29**
433 -)))
426 +== 2.7 Frequency Plans ==
434 434  
435 -(((
436 -(% style="color:blue" %)**0**(%%)  -113dBm or less
437 -)))
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
438 438  
439 -(((
440 -(% style="color:blue" %)**1**(%%)  -111dBm
441 -)))
442 442  
443 -(((
444 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
445 -)))
431 +=== 2.7.1 EU863-870 (EU868) ===
446 446  
447 -(((
448 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
449 -)))
433 +(% style="color:#037691" %)** Uplink:**
450 450  
451 -(((
452 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
453 -)))
435 +868.1 - SF7BW125 to SF12BW125
454 454  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
455 455  
439 +868.5 - SF7BW125 to SF12BW125
456 456  
457 -=== 2.4.5  Distance ===
441 +867.1 - SF7BW125 to SF12BW125
458 458  
459 -Get the distance. Flat object range 280mm - 7500mm.
443 +867.3 - SF7BW125 to SF12BW125
460 460  
461 -(((
462 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
463 -)))
445 +867.5 - SF7BW125 to SF12BW125
464 464  
465 -(((
466 -(((
467 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
468 -)))
469 -)))
447 +867.7 - SF7BW125 to SF12BW125
470 470  
471 -(((
472 -
473 -)))
449 +867.9 - SF7BW125 to SF12BW125
474 474  
475 -(((
476 -
477 -)))
451 +868.8 - FSK
478 478  
479 -=== 2.4.6  Digital Interrupt ===
480 480  
481 -(((
482 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
483 -)))
454 +(% style="color:#037691" %)** Downlink:**
484 484  
485 -(((
486 -The command is:
487 -)))
456 +Uplink channels 1-9 (RX1)
488 488  
489 -(((
490 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
491 -)))
458 +869.525 - SF9BW125 (RX2 downlink only)
492 492  
493 493  
494 -(((
495 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
496 -)))
497 497  
462 +=== 2.7.2 US902-928(US915) ===
498 498  
499 -(((
500 -Example:
501 -)))
464 +Used in USA, Canada and South America. Default use CHE=2
502 502  
503 -(((
504 -0x(00): Normal uplink packet.
505 -)))
466 +(% style="color:#037691" %)**Uplink:**
506 506  
507 -(((
508 -0x(01): Interrupt Uplink Packet.
509 -)))
468 +903.9 - SF7BW125 to SF10BW125
510 510  
470 +904.1 - SF7BW125 to SF10BW125
511 511  
472 +904.3 - SF7BW125 to SF10BW125
512 512  
513 -=== 2.4. ​+5V Output ===
474 +904.5 - SF7BW125 to SF10BW125
514 514  
515 -(((
516 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
517 -)))
476 +904.7 - SF7BW125 to SF10BW125
518 518  
478 +904.9 - SF7BW125 to SF10BW125
519 519  
520 -(((
521 -The 5V output time can be controlled by AT Command.
522 -)))
480 +905.1 - SF7BW125 to SF10BW125
523 523  
524 -(((
525 -(% style="color:blue" %)**AT+5VT=1000**
526 -)))
482 +905.3 - SF7BW125 to SF10BW125
527 527  
528 -(((
529 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
530 -)))
531 531  
485 +(% style="color:#037691" %)**Downlink:**
532 532  
487 +923.3 - SF7BW500 to SF12BW500
533 533  
534 -== 2.5  Downlink Payload ==
489 +923.9 - SF7BW500 to SF12BW500
535 535  
536 -By default, NDDS75 prints the downlink payload to console port.
491 +924.5 - SF7BW500 to SF12BW500
537 537  
538 -[[image:image-20220709100028-1.png]]
493 +925.1 - SF7BW500 to SF12BW500
539 539  
495 +925.7 - SF7BW500 to SF12BW500
540 540  
541 -(((
542 -(% style="color:blue" %)**Examples:**
543 -)))
497 +926.3 - SF7BW500 to SF12BW500
544 544  
545 -(((
546 -
547 -)))
499 +926.9 - SF7BW500 to SF12BW500
548 548  
549 -* (((
550 -(% style="color:blue" %)**Set TDC**
551 -)))
501 +927.5 - SF7BW500 to SF12BW500
552 552  
553 -(((
554 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
555 -)))
503 +923.3 - SF12BW500(RX2 downlink only)
556 556  
557 -(((
558 -Payload:    01 00 00 1E    TDC=30S
559 -)))
560 560  
561 -(((
562 -Payload:    01 00 00 3C    TDC=60S
563 -)))
564 564  
565 -(((
566 -
567 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
568 568  
569 -* (((
570 -(% style="color:blue" %)**Reset**
571 -)))
509 +Used in China, Default use CHE=1
572 572  
573 -(((
574 -If payload = 0x04FF, it will reset the NDDS75
575 -)))
511 +(% style="color:#037691" %)**Uplink:**
576 576  
513 +486.3 - SF7BW125 to SF12BW125
577 577  
578 -* (% style="color:blue" %)**INTMOD**
515 +486.5 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -Downlink Payload: 06000003, Set AT+INTMOD=3
582 -)))
517 +486.7 - SF7BW125 to SF12BW125
583 583  
519 +486.9 - SF7BW125 to SF12BW125
584 584  
521 +487.1 - SF7BW125 to SF12BW125
585 585  
586 -== 2. ​LED Indicator ==
523 +487.3 - SF7BW125 to SF12BW125
587 587  
525 +487.5 - SF7BW125 to SF12BW125
588 588  
589 -The NDDS75 has an internal LED which is to show the status of different state.
527 +487.7 - SF7BW125 to SF12BW125
590 590  
591 591  
592 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
593 -* Then the LED will be on for 1 second means device is boot normally.
594 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
595 -* For each uplink probe, LED will be on for 500ms.
530 +(% style="color:#037691" %)**Downlink:**
596 596  
597 -(((
598 -
599 -)))
532 +506.7 - SF7BW125 to SF12BW125
600 600  
534 +506.9 - SF7BW125 to SF12BW125
601 601  
536 +507.1 - SF7BW125 to SF12BW125
602 602  
603 -== 2.7  Firmware Change Log ==
538 +507.3 - SF7BW125 to SF12BW125
604 604  
540 +507.5 - SF7BW125 to SF12BW125
605 605  
606 -(((
607 -Download URL & Firmware Change log
608 -)))
542 +507.7 - SF7BW125 to SF12BW125
609 609  
610 -(((
611 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
612 -)))
544 +507.9 - SF7BW125 to SF12BW125
613 613  
546 +508.1 - SF7BW125 to SF12BW125
614 614  
615 -(((
616 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
617 -)))
548 +505.3 - SF12BW125 (RX2 downlink only)
618 618  
619 619  
620 620  
621 -== 2. ​Battery Analysis ==
552 +=== 2.7.4 AU915-928(AU915) ===
622 622  
623 -=== 2.8.1  ​Battery Type ===
554 +Default use CHE=2
624 624  
556 +(% style="color:#037691" %)**Uplink:**
625 625  
558 +916.8 - SF7BW125 to SF12BW125
559 +
560 +917.0 - SF7BW125 to SF12BW125
561 +
562 +917.2 - SF7BW125 to SF12BW125
563 +
564 +917.4 - SF7BW125 to SF12BW125
565 +
566 +917.6 - SF7BW125 to SF12BW125
567 +
568 +917.8 - SF7BW125 to SF12BW125
569 +
570 +918.0 - SF7BW125 to SF12BW125
571 +
572 +918.2 - SF7BW125 to SF12BW125
573 +
574 +
575 +(% style="color:#037691" %)**Downlink:**
576 +
577 +923.3 - SF7BW500 to SF12BW500
578 +
579 +923.9 - SF7BW500 to SF12BW500
580 +
581 +924.5 - SF7BW500 to SF12BW500
582 +
583 +925.1 - SF7BW500 to SF12BW500
584 +
585 +925.7 - SF7BW500 to SF12BW500
586 +
587 +926.3 - SF7BW500 to SF12BW500
588 +
589 +926.9 - SF7BW500 to SF12BW500
590 +
591 +927.5 - SF7BW500 to SF12BW500
592 +
593 +923.3 - SF12BW500(RX2 downlink only)
594 +
595 +
596 +
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 +
599 +(% style="color:#037691" %)**Default Uplink channel:**
600 +
601 +923.2 - SF7BW125 to SF10BW125
602 +
603 +923.4 - SF7BW125 to SF10BW125
604 +
605 +
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
607 +
608 +(OTAA mode, channel added by JoinAccept message)
609 +
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 +
612 +922.2 - SF7BW125 to SF10BW125
613 +
614 +922.4 - SF7BW125 to SF10BW125
615 +
616 +922.6 - SF7BW125 to SF10BW125
617 +
618 +922.8 - SF7BW125 to SF10BW125
619 +
620 +923.0 - SF7BW125 to SF10BW125
621 +
622 +922.0 - SF7BW125 to SF10BW125
623 +
624 +
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
626 +
627 +923.6 - SF7BW125 to SF10BW125
628 +
629 +923.8 - SF7BW125 to SF10BW125
630 +
631 +924.0 - SF7BW125 to SF10BW125
632 +
633 +924.2 - SF7BW125 to SF10BW125
634 +
635 +924.4 - SF7BW125 to SF10BW125
636 +
637 +924.6 - SF7BW125 to SF10BW125
638 +
639 +
640 +(% style="color:#037691" %)** Downlink:**
641 +
642 +Uplink channels 1-8 (RX1)
643 +
644 +923.2 - SF10BW125 (RX2)
645 +
646 +
647 +
648 +=== 2.7.6 KR920-923 (KR920) ===
649 +
650 +Default channel:
651 +
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
626 626  (((
627 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
628 628  )))
723 +)))
629 629  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
630 630  (((
631 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
632 632  )))
633 633  
634 634  (((
635 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 636  )))
637 637  
638 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 641  
738 +== 2.10 ​Firmware Change Log ==
739 +
642 642  (((
643 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
644 644  )))
645 645  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
646 646  
748 +(((
749 +
750 +)))
647 647  
648 -=== 2.8.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
649 649  
650 650  (((
651 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +
652 652  )))
653 653  
760 +(((
761 +**V1.0.**
762 +)))
654 654  
655 655  (((
656 -Instruction to use as below:
765 +Release
657 657  )))
658 658  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
659 659  (((
660 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
661 661  )))
662 662  
777 +(((
778 +The battery is designed to last for more than 5 years for the LSN50.
779 +)))
663 663  
664 664  (((
665 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
666 666  )))
785 +)))
667 667  
668 668  * (((
669 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
670 670  )))
671 671  * (((
672 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
673 673  )))
674 674  * (((
675 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
676 676  )))
677 677  
678 -(((
679 -And the Life expectation in difference case will be shown on the right.
680 -)))
797 + [[image:image-20220610172436-1.png]]
681 681  
682 -[[image:image-20220709110451-3.png]]
683 683  
684 684  
801 +=== 2.11.2 ​Battery Note ===
685 685  
686 -=== 2.8.3  ​Battery Note ===
687 -
688 688  (((
689 689  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
690 690  )))
... ... @@ -691,169 +691,302 @@
691 691  
692 692  
693 693  
694 -=== 2.8. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
695 695  
696 696  (((
697 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
698 698  )))
699 699  
700 -
701 -
702 -= 3. ​ Access NB-IoT Module =
703 -
704 704  (((
705 -Users can directly access the AT command set of the NB-IoT module.
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
706 706  )))
707 707  
708 708  (((
709 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
710 710  )))
711 711  
712 -[[image:1657333200519-600.png]]
713 713  
714 714  
825 += 3. ​Using the AT Commands =
715 715  
716 -= 4.  Using the AT Commands =
827 +== 3.1 Access AT Commands ==
717 717  
718 -== 4.1  Access AT Commands ==
719 719  
720 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
721 721  
832 +[[image:1654501986557-872.png||height="391" width="800"]]
722 722  
723 -AT+<CMD>?  : Help on <CMD>
724 724  
725 -AT+<CMD>         : Run <CMD>
835 +Or if you have below board, use below connection:
726 726  
727 -AT+<CMD>=<value> : Set the value
728 728  
729 -AT+<CMD>=?  : Get the value
838 +[[image:1654502005655-729.png||height="503" width="801"]]
730 730  
731 731  
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
732 732  (% style="color:#037691" %)**General Commands**(%%)      
733 733  
734 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
735 735  
736 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
737 737  
738 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
739 739  
740 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
741 741  
742 -AT+CFG  : Print all configurations
743 743  
744 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
745 745  
746 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
747 747  
748 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
749 749  
750 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
751 751  
752 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
753 753  
754 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
755 755  
756 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
757 757  
758 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
759 759  
760 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
761 761  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
762 762  
763 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
764 764  
765 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
766 766  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
767 767  
768 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
769 769  
770 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
771 771  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
772 772  
773 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
774 774  
775 -AT+CLIENT               : Get or Set MQTT client
776 776  
777 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
778 778  
779 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
780 780  
781 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
782 782  
783 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
784 784  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
785 785  
786 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
787 787  
788 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
789 789  
790 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
791 791  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
792 792  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
793 793  
794 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
795 795  
796 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
797 797  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
798 798  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
799 799  (((
800 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
801 801  )))
802 802  
803 803  (((
804 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
805 805  )))
806 806  
807 807  (((
808 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
809 809  )))
810 810  
973 +(((
974 +
975 +)))
811 811  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
812 812  
813 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
814 814  
815 -== 6.1  ​Connection problem when uploading firmware ==
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
816 816  
989 +[[image:image-20220606154726-3.png]]
817 817  
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
818 818  (((
819 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
820 820  )))
821 821  
822 -(% class="wikigeneratedid" %)
823 823  (((
824 824  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 825  )))
826 826  
1017 +(((
1018 +
1019 +)))
827 827  
828 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
829 829  
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
830 830  (((
831 831  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
832 832  
833 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
834 834  )))
835 835  
836 836  
837 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
838 838  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
839 839  
840 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
841 841  
842 842  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
843 843  (% class="wikigeneratedid" %)
844 844  (((
845 845  
846 846  )))
847 847  
848 -= 8.  Packing Info =
1095 += 7. Packing Info =
849 849  
850 850  (((
851 851  
852 852  
853 853  (% style="color:#037691" %)**Package Includes**:
1101 +)))
854 854  
855 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
856 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
857 857  )))
858 858  
859 859  (((
... ... @@ -860,21 +860,24 @@
860 860  
861 861  
862 862  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
863 863  
864 -* Device Size: 13.0 x 5 x 4.5 cm
865 -* Device Weight: 150g
866 -* Package Size / pcs : 15 x 12x 5.5 cm
867 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
868 868  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
869 869  
870 -(((
871 871  
872 -
873 -
874 -
875 875  )))
876 876  
877 -= 9.  Support =
1128 += 8. Support =
878 878  
879 879  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
880 880  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content