Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 46 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,690 +1,774 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 15 14 +**Table of Contents:** 16 16 17 -= 1. Introduction = 18 18 19 -== 1.1 What is NDDS75 Distance Detection Sensor == 20 20 21 -((( 22 - 23 23 24 -((( 25 -((( 26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 27 -))) 28 28 29 -((( 30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 31 -))) 32 32 33 -((( 34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 35 -))) 21 += 1. Introduction = 36 36 37 -((( 38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 39 -))) 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 41 ((( 42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 43 -))) 26 + 44 44 45 -((( 46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 47 -))) 48 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 49 49 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 50 50 51 51 ))) 52 52 53 -[[image:165 7327959271-447.png]]39 +[[image:1654503236291-817.png]] 54 54 55 55 42 +[[image:1657245163077-232.png]] 56 56 57 -== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 45 + 46 +== 1.2 Features == 47 + 48 +* LoRaWAN 1.0.3 Class A 60 60 * Ultra low power consumption 61 -* Distance Detectionby Ultrasonictechnology62 -* Flat objectrange280mm - 7500mm63 -* Accuracy:±(1cm+S*0.3%) (S: Distance)64 -* Cable Length: 25cm50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 71 71 60 +== 1.3 Specification == 72 72 73 - ==1.3Specification==62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 64 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**68 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 70 +* Smart Agriculture 89 89 90 -(% style="color:#037691" %)**Battery:** 72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 + 91 91 92 -* Li/SOCI2 un-chargeable battery 93 -* Capacity: 8500mAh 94 -* Self Discharge: <1% / Year @ 25°C 95 -* Max continuously current: 130mA 96 -* Max boost current: 2A, 1 second 75 +== 1.5 Firmware Change log == 97 97 98 -(% style="color:#037691" %)**Power Consumption** 99 99 100 -* STOP Mode: 10uA @ 3.3v 101 -* Max transmit power: 350mA@3.3v 78 +**LSE01 v1.0 :** Release 102 102 103 103 104 -== 1.4 Applications == 105 105 106 -* Smart Buildings & Home Automation 107 -* Logistics and Supply Chain Management 108 -* Smart Metering 109 -* Smart Agriculture 110 -* Smart Cities 111 -* Smart Factory 82 += 2. Configure LSE01 to connect to LoRaWAN network = 112 112 113 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 114 - 84 +== 2.1 How it works == 115 115 86 +((( 87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 +))) 116 116 117 -== 1.5 Pin Definitions == 90 +((( 91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 +))) 118 118 119 119 120 -[[image:1657328609906-564.png]] 121 121 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 122 122 98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 123 123 124 -= 2. Use NDDS75 to communicate with IoT Server = 125 125 126 - ==2.1 How it works ==101 +[[image:1654503992078-669.png]] 127 127 103 + 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 + 106 + 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 108 + 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 110 + 111 +[[image:image-20220606163732-6.jpeg]] 112 + 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 + 115 +**Add APP EUI in the application** 116 + 117 + 118 +[[image:1654504596150-405.png]] 119 + 120 + 121 + 122 +**Add APP KEY and DEV EUI** 123 + 124 +[[image:1654504683289-357.png]] 125 + 126 + 127 + 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 + 130 + 131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 + 133 +[[image:image-20220606163915-7.png]] 134 + 135 + 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 + 138 +[[image:1654504778294-788.png]] 139 + 140 + 141 + 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 128 128 ((( 129 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.150 +Uplink payload includes in total 11 bytes. 130 130 ))) 131 131 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 132 132 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 +=== 2.3.2 MOD~=1(Original value) === 170 + 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 + 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 176 + 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 181 + 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 185 + 186 +(Optional) 187 +))) 188 + 189 +=== 2.3.3 Battery Info === 190 + 133 133 ((( 134 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:192 +Check the battery voltage for LSE01. 135 135 ))) 136 136 137 137 ((( 138 - 196 +Ex1: 0x0B45 = 2885mV 139 139 ))) 140 140 141 -[[image:1657328659945-416.png]] 142 - 143 143 ((( 144 - 200 +Ex2: 0x0B49 = 2889mV 145 145 ))) 146 146 147 147 148 -== 2.2 Configure the NDDS75 == 149 149 205 +=== 2.3.4 Soil Moisture === 150 150 151 -=== 2.2.1 Test Requirement === 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 152 152 153 153 ((( 154 - TouseNDDS75inyourcity,make suremeetbelowrequirements:212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 155 155 ))) 156 156 157 - * Your local operator has already distributed a NB-IoT Network there.158 - *The local NB-IoT network used the band that NSE01 supports.159 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.215 +((( 216 + 217 +))) 160 160 161 161 ((( 162 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 163 163 ))) 164 164 165 165 166 -[[image:1657328756309-230.png]] 167 167 225 +=== 2.3.5 Soil Temperature === 168 168 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 169 169 170 -=== 2.2.2 Insert SIM card === 231 +((( 232 +**Example**: 233 +))) 171 171 172 172 ((( 173 -I nsertthe NB-IoT Cardgetfromyourprovider.236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 174 174 ))) 175 175 176 176 ((( 177 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 178 178 ))) 179 179 180 180 181 -[[image:1657328884227-504.png]] 182 182 245 +=== 2.3.6 Soil Conductivity (EC) === 183 183 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 184 184 185 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 186 186 187 187 ((( 256 +Generally, the EC value of irrigation water is less than 800uS / cm. 257 +))) 258 + 188 188 ((( 189 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.260 + 190 190 ))) 262 + 263 +((( 264 + 191 191 ))) 192 192 193 - [[image:image-20220709092052-2.png]]267 +=== 2.3.7 MOD === 194 194 195 - **Connection:**269 +Firmware version at least v2.1 supports changing mode. 196 196 197 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND271 +For example, bytes[10]=90 198 198 199 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD273 +mod=(bytes[10]>>7)&0x01=1. 200 200 201 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 202 202 276 +**Downlink Command:** 203 203 204 -I nthePC,usebelowserial tool settings:278 +If payload = 0x0A00, workmode=0 205 205 206 -* Baud: (% style="color:green" %)**9600** 207 -* Data bits:** (% style="color:green" %)8(%%)** 208 -* Stop bits: (% style="color:green" %)**1** 209 -* Parity: (% style="color:green" %)**None** 210 -* Flow Control: (% style="color:green" %)**None** 280 +If** **payload =** **0x0A01, workmode=1 211 211 282 + 283 + 284 +=== 2.3.8 Decode payload in The Things Network === 285 + 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 212 212 ((( 213 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNDDS75. NDDS75 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.292 +The payload decoder function for TTN is here: 214 214 ))) 215 215 216 -[[image:1657329814315-101.png]] 217 - 218 218 ((( 219 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 220 220 ))) 221 221 222 222 300 +== 2.4 Uplink Interval == 223 223 224 - ===2.2.4APprotocoltouplink data ===302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 225 225 226 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 227 227 228 228 306 +== 2.5 Downlink Payload == 307 + 308 +By default, LSE50 prints the downlink payload to console port. 309 + 310 +[[image:image-20220606165544-8.png]] 311 + 312 + 229 229 ((( 230 - **Usebelowcommands:**314 +(% style="color:blue" %)**Examples:** 231 231 ))) 232 232 233 - *(((234 - (%style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink317 +((( 318 + 235 235 ))) 320 + 236 236 * ((( 237 -(% style="color:blue" %)** AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port322 +(% style="color:blue" %)**Set TDC** 238 238 ))) 324 + 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 328 + 329 +((( 330 +Payload: 01 00 00 1E TDC=30S 331 +))) 332 + 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 335 +))) 336 + 337 +((( 338 + 339 +))) 340 + 239 239 * ((( 240 -(% style="color:blue" %)** AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resourcepath342 +(% style="color:blue" %)**Reset** 241 241 ))) 242 242 243 243 ((( 244 - Forparameterdescription,pleaserefertoAT command set346 +If payload = 0x04FF, it will reset the LSE01 245 245 ))) 246 246 247 -[[image:1657330452568-615.png]] 248 248 350 +* (% style="color:blue" %)**CFM** 249 249 352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 353 + 354 + 355 + 356 +== 2.6 Show Data in DataCake IoT Server == 357 + 250 250 ((( 251 -A fter configure theserver addressand(% style="color:green"%)**resetthedevice**(%%)(viaAT+ATZ ),NDDS75willstart touplink sensorvalues toCoAPserver.359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 252 252 ))) 253 253 254 -[[image:1657330472797-498.png]] 362 +((( 363 + 364 +))) 255 255 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 256 256 370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 257 257 258 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 259 259 375 +[[image:1654505857935-743.png]] 260 260 261 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 263 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 264 264 265 -[[image:165 7330501006-241.png]]378 +[[image:1654505874829-548.png]] 266 266 267 267 268 - [[image:1657330533775-472.png]]381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 269 269 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 270 270 271 271 272 - ===2.2.6Use MQTTprotocol to uplink data ===386 +[[image:1654505905236-553.png]] 273 273 274 274 275 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 277 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 278 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 279 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 280 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 281 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 282 282 283 -[[image:165 7249978444-674.png]]391 +[[image:1654505925508-181.png]] 284 284 285 285 286 -[[image:1657330723006-866.png]] 287 287 395 +== 2.7 Frequency Plans == 288 288 289 -((( 290 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 291 -))) 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 292 292 293 293 400 +=== 2.7.1 EU863-870 (EU868) === 294 294 295 - ===2.2.7 Use TCP protocoltouplinkdata ===402 +(% style="color:#037691" %)** Uplink:** 296 296 404 +868.1 - SF7BW125 to SF12BW125 297 297 298 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 299 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 300 300 301 - [[image:image-20220709093918-1.png]]408 +868.5 - SF7BW125 to SF12BW125 302 302 410 +867.1 - SF7BW125 to SF12BW125 303 303 304 - [[image:image-20220709093918-2.png]]412 +867.3 - SF7BW125 to SF12BW125 305 305 414 +867.5 - SF7BW125 to SF12BW125 306 306 416 +867.7 - SF7BW125 to SF12BW125 307 307 308 - === 2.2.8ChangeUpdateInterval ===418 +867.9 - SF7BW125 to SF12BW125 309 309 310 - User can use below command to change the (% style="color:green" %)**uplink interval**.420 +868.8 - FSK 311 311 312 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 313 313 314 -((( 315 -(% style="color:red" %)**NOTE:** 316 -))) 423 +(% style="color:#037691" %)** Downlink:** 317 317 318 -((( 319 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 320 -))) 425 +Uplink channels 1-9 (RX1) 321 321 427 +869.525 - SF9BW125 (RX2 downlink only) 322 322 323 323 324 -== 2.3 Uplink Payload == 325 325 326 - Inthismode, uplink payload includes in total14bytes431 +=== 2.7.2 US902-928(US915) === 327 327 433 +Used in USA, Canada and South America. Default use CHE=2 328 328 329 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %) 330 -|=(% style="width: 60px;" %)((( 331 -**Size(bytes)** 332 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1** 333 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 435 +(% style="color:#037691" %)**Uplink:** 334 334 335 -((( 336 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 337 -))) 437 +903.9 - SF7BW125 to SF10BW125 338 338 439 +904.1 - SF7BW125 to SF10BW125 339 339 340 - [[image:1657331036973-987.png]]441 +904.3 - SF7BW125 to SF10BW125 341 341 342 -((( 343 -The payload is ASCII string, representative same HEX: 344 -))) 443 +904.5 - SF7BW125 to SF10BW125 345 345 346 -((( 347 -0x72403155615900640c6c19029200 where: 348 -))) 445 +904.7 - SF7BW125 to SF10BW125 349 349 350 -* ((( 351 -Device ID: 0x724031556159 = 724031556159 352 -))) 353 -* ((( 354 -Version: 0x0064=100=1.0.0 355 -))) 447 +904.9 - SF7BW125 to SF10BW125 356 356 357 -* ((( 358 -BAT: 0x0c6c = 3180 mV = 3.180V 359 -))) 360 -* ((( 361 -Signal: 0x19 = 25 362 -))) 363 -* ((( 364 -Distance: 0x0292= 658 mm 365 -))) 366 -* ((( 367 -Interrupt: 0x00 = 0 449 +905.1 - SF7BW125 to SF10BW125 368 368 451 +905.3 - SF7BW125 to SF10BW125 369 369 370 370 371 - 372 -))) 454 +(% style="color:#037691" %)**Downlink:** 373 373 374 - ==2.4PayloadExplanation andSensorInterface==456 +923.3 - SF7BW500 to SF12BW500 375 375 458 +923.9 - SF7BW500 to SF12BW500 376 376 377 - ===2.4.1 DeviceID===460 +924.5 - SF7BW500 to SF12BW500 378 378 379 -((( 380 -By default, the Device ID equal to the last 6 bytes of IMEI. 381 -))) 462 +925.1 - SF7BW500 to SF12BW500 382 382 383 -((( 384 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 385 -))) 464 +925.7 - SF7BW500 to SF12BW500 386 386 387 -((( 388 -**Example:** 389 -))) 466 +926.3 - SF7BW500 to SF12BW500 390 390 391 -((( 392 -AT+DEUI=A84041F15612 393 -))) 468 +926.9 - SF7BW500 to SF12BW500 394 394 395 -((( 396 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 397 -))) 470 +927.5 - SF7BW500 to SF12BW500 398 398 472 +923.3 - SF12BW500(RX2 downlink only) 399 399 400 400 401 -=== 2.4.2 Version Info === 402 402 403 -((( 404 -Specify the software version: 0x64=100, means firmware version 1.00. 405 -))) 476 +=== 2.7.3 CN470-510 (CN470) === 406 406 407 -((( 408 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 409 -))) 478 +Used in China, Default use CHE=1 410 410 480 +(% style="color:#037691" %)**Uplink:** 411 411 482 +486.3 - SF7BW125 to SF12BW125 412 412 413 - === 2.4.3BatteryInfo===484 +486.5 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -Ex1: 0x0B45 = 2885mV 417 -))) 486 +486.7 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -Ex2: 0x0B49 = 2889mV 421 -))) 488 +486.9 - SF7BW125 to SF12BW125 422 422 490 +487.1 - SF7BW125 to SF12BW125 423 423 492 +487.3 - SF7BW125 to SF12BW125 424 424 425 - === 2.4.4SignalStrength===494 +487.5 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -NB-IoT Network signal Strength. 429 -))) 496 +487.7 - SF7BW125 to SF12BW125 430 430 431 -((( 432 -**Ex1: 0x1d = 29** 433 -))) 434 434 435 -((( 436 -(% style="color:blue" %)**0**(%%) -113dBm or less 437 -))) 499 +(% style="color:#037691" %)**Downlink:** 438 438 439 -((( 440 -(% style="color:blue" %)**1**(%%) -111dBm 441 -))) 501 +506.7 - SF7BW125 to SF12BW125 442 442 443 -((( 444 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 445 -))) 503 +506.9 - SF7BW125 to SF12BW125 446 446 447 -((( 448 -(% style="color:blue" %)**31** (%%) -51dBm or greater 449 -))) 505 +507.1 - SF7BW125 to SF12BW125 450 450 451 -((( 452 -(% style="color:blue" %)**99** (%%) Not known or not detectable 453 -))) 507 +507.3 - SF7BW125 to SF12BW125 454 454 509 +507.5 - SF7BW125 to SF12BW125 455 455 511 +507.7 - SF7BW125 to SF12BW125 456 456 457 - ===2.4.5Distance===513 +507.9 - SF7BW125 to SF12BW125 458 458 459 - Get the distance. Flatobjectrange280mm - 7500mm.515 +508.1 - SF7BW125 to SF12BW125 460 460 461 -((( 462 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 463 -))) 517 +505.3 - SF12BW125 (RX2 downlink only) 464 464 465 -((( 466 -((( 467 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 468 -))) 469 -))) 470 470 471 -((( 472 - 473 -))) 474 474 475 -((( 476 - 477 -))) 521 +=== 2.7.4 AU915-928(AU915) === 478 478 479 - === 2.4.6DigitalInterrupt===523 +Default use CHE=2 480 480 481 -((( 482 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 483 -))) 525 +(% style="color:#037691" %)**Uplink:** 484 484 485 -((( 486 -The command is: 487 -))) 527 +916.8 - SF7BW125 to SF12BW125 488 488 489 -((( 490 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 491 -))) 529 +917.0 - SF7BW125 to SF12BW125 492 492 531 +917.2 - SF7BW125 to SF12BW125 493 493 494 -((( 495 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 496 -))) 533 +917.4 - SF7BW125 to SF12BW125 497 497 535 +917.6 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -Example: 501 -))) 537 +917.8 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -0x(00): Normal uplink packet. 505 -))) 539 +918.0 - SF7BW125 to SF12BW125 506 506 507 -((( 508 -0x(01): Interrupt Uplink Packet. 509 -))) 541 +918.2 - SF7BW125 to SF12BW125 510 510 511 511 544 +(% style="color:#037691" %)**Downlink:** 512 512 513 - ===2.4.7+5VOutput===546 +923.3 - SF7BW500 to SF12BW500 514 514 515 -((( 516 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 517 -))) 548 +923.9 - SF7BW500 to SF12BW500 518 518 550 +924.5 - SF7BW500 to SF12BW500 519 519 520 -((( 521 -The 5V output time can be controlled by AT Command. 522 -))) 552 +925.1 - SF7BW500 to SF12BW500 523 523 524 -((( 525 -(% style="color:blue" %)**AT+5VT=1000** 526 -))) 554 +925.7 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 530 -))) 556 +926.3 - SF7BW500 to SF12BW500 531 531 558 +926.9 - SF7BW500 to SF12BW500 532 532 560 +927.5 - SF7BW500 to SF12BW500 533 533 534 - ==2.5DownlinkPayload ==562 +923.3 - SF12BW500(RX2 downlink only) 535 535 536 -By default, NDDS75 prints the downlink payload to console port. 537 537 538 -[[image:image-20220709100028-1.png]] 539 539 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 540 540 541 -((( 542 -(% style="color:blue" %)**Examples:** 543 -))) 568 +(% style="color:#037691" %)**Default Uplink channel:** 544 544 545 -((( 546 - 547 -))) 570 +923.2 - SF7BW125 to SF10BW125 548 548 549 -* ((( 550 -(% style="color:blue" %)**Set TDC** 551 -))) 572 +923.4 - SF7BW125 to SF10BW125 552 552 553 -((( 554 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 555 -))) 556 556 557 -((( 558 -Payload: 01 00 00 1E TDC=30S 559 -))) 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 560 560 561 -((( 562 -Payload: 01 00 00 3C TDC=60S 563 -))) 577 +(OTAA mode, channel added by JoinAccept message) 564 564 565 -((( 566 - 567 -))) 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 568 568 569 -* ((( 570 -(% style="color:blue" %)**Reset** 571 -))) 581 +922.2 - SF7BW125 to SF10BW125 572 572 573 -((( 574 -If payload = 0x04FF, it will reset the NDDS75 575 -))) 583 +922.4 - SF7BW125 to SF10BW125 576 576 585 +922.6 - SF7BW125 to SF10BW125 577 577 578 - *(%style="color:blue"%)**INTMOD**587 +922.8 - SF7BW125 to SF10BW125 579 579 580 -((( 581 -Downlink Payload: 06000003, Set AT+INTMOD=3 582 -))) 589 +923.0 - SF7BW125 to SF10BW125 583 583 591 +922.0 - SF7BW125 to SF10BW125 584 584 585 585 586 -= =2.6LEDIndicator==594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 587 587 596 +923.6 - SF7BW125 to SF10BW125 588 588 589 - TheNDDS75has an internal LED which is toshow the status of different state.598 +923.8 - SF7BW125 to SF10BW125 590 590 600 +924.0 - SF7BW125 to SF10BW125 591 591 592 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 593 -* Then the LED will be on for 1 second means device is boot normally. 594 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 595 -* For each uplink probe, LED will be on for 500ms. 602 +924.2 - SF7BW125 to SF10BW125 596 596 597 -((( 598 - 599 -))) 604 +924.4 - SF7BW125 to SF10BW125 600 600 606 +924.6 - SF7BW125 to SF10BW125 601 601 602 602 603 - ==2.7FirmwareChange Log ==609 +(% style="color:#037691" %)** Downlink:** 604 604 611 +Uplink channels 1-8 (RX1) 605 605 606 -((( 607 -Download URL & Firmware Change log 608 -))) 613 +923.2 - SF10BW125 (RX2) 609 609 610 -((( 611 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 612 -))) 613 613 614 614 615 -((( 616 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 617 -))) 617 +=== 2.7.6 KR920-923 (KR920) === 618 618 619 +Default channel: 619 619 621 +922.1 - SF7BW125 to SF12BW125 620 620 621 - ==2.8BatteryAnalysis ==623 +922.3 - SF7BW125 to SF12BW125 622 622 623 - ===2.8.1BatteryType ===625 +922.5 - SF7BW125 to SF12BW125 624 624 625 625 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 + 630 +922.1 - SF7BW125 to SF12BW125 631 + 632 +922.3 - SF7BW125 to SF12BW125 633 + 634 +922.5 - SF7BW125 to SF12BW125 635 + 636 +922.7 - SF7BW125 to SF12BW125 637 + 638 +922.9 - SF7BW125 to SF12BW125 639 + 640 +923.1 - SF7BW125 to SF12BW125 641 + 642 +923.3 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Downlink:** 646 + 647 +Uplink channels 1-7(RX1) 648 + 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 + 651 + 652 + 653 +=== 2.7.7 IN865-867 (IN865) === 654 + 655 +(% style="color:#037691" %)** Uplink:** 656 + 657 +865.0625 - SF7BW125 to SF12BW125 658 + 659 +865.4025 - SF7BW125 to SF12BW125 660 + 661 +865.9850 - SF7BW125 to SF12BW125 662 + 663 + 664 +(% style="color:#037691" %) **Downlink:** 665 + 666 +Uplink channels 1-3 (RX1) 667 + 668 +866.550 - SF10BW125 (RX2) 669 + 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 626 626 ((( 627 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 628 628 ))) 692 +))) 629 629 694 + 695 + 696 +[[image:1654506665940-119.png]] 697 + 630 630 ((( 631 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 632 632 ))) 633 633 634 634 ((( 635 - The batteryrelateddocumentsasbelow:703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 636 ))) 637 637 638 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 639 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 640 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 641 641 707 +== 2.10 Firmware Change Log == 708 + 642 642 ((( 643 - [[image:image-20220709101450-2.png]]710 +**Firmware download link:** 644 644 ))) 645 645 713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 646 646 717 +((( 718 + 719 +))) 647 647 648 -=== 2.8.2 Power consumption Analyze === 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 649 649 650 650 ((( 651 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.726 + 652 652 ))) 653 653 729 +((( 730 +**V1.0.** 731 +))) 654 654 655 655 ((( 656 - Instruction to usebelow:734 +Release 657 657 ))) 658 658 737 + 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 659 659 ((( 660 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 661 661 ))) 662 662 746 +((( 747 +The battery is designed to last for more than 5 years for the LSN50. 748 +))) 663 663 664 664 ((( 665 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 666 666 ))) 754 +))) 667 667 668 668 * ((( 669 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 670 670 ))) 671 671 * ((( 672 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 673 673 ))) 674 674 * ((( 675 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 676 676 ))) 677 677 678 -((( 679 -And the Life expectation in difference case will be shown on the right. 680 -))) 766 + [[image:image-20220610172436-1.png]] 681 681 682 -[[image:image-20220709110451-3.png]] 683 683 684 684 770 +=== 2.11.2 Battery Note === 685 685 686 -=== 2.8.3 Battery Note === 687 - 688 688 ((( 689 689 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 690 690 ))) ... ... @@ -691,169 +691,302 @@ 691 691 692 692 693 693 694 -=== 2. 8.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 695 695 696 696 ((( 697 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 698 698 ))) 699 699 700 - 701 - 702 -= 3. Access NB-IoT Module = 703 - 704 704 ((( 705 - Userscan directly accesstheATcommand set of theNB-IoTmodule.785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 706 706 ))) 707 707 708 708 ((( 709 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 710 710 ))) 711 711 712 -[[image:1657333200519-600.png]] 713 713 714 714 794 += 3. Using the AT Commands = 715 715 716 -= 4.UsingtheAT Commands =796 +== 3.1 Access AT Commands == 717 717 718 -== 4.1 Access AT Commands == 719 719 720 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 721 721 801 +[[image:1654501986557-872.png||height="391" width="800"]] 722 722 723 -AT+<CMD>? : Help on <CMD> 724 724 725 - AT+<CMD>: Run<CMD>804 +Or if you have below board, use below connection: 726 726 727 -AT+<CMD>=<value> : Set the value 728 728 729 - AT+<CMD>=?:Get the value807 +[[image:1654502005655-729.png||height="503" width="801"]] 730 730 731 731 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 732 732 (% style="color:#037691" %)**General Commands**(%%) 733 733 734 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 735 735 736 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 737 737 738 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 739 739 740 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 741 741 742 -AT+CFG : Print all configurations 743 743 744 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 745 745 746 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 747 747 748 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 749 749 750 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 751 751 752 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 753 753 754 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 755 755 756 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 757 757 758 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 759 759 760 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 761 761 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 762 762 763 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 764 764 765 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 766 766 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 767 767 768 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 769 769 770 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 771 771 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 772 772 773 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 774 774 775 -AT+CLIENT : Get or Set MQTT client 776 776 777 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 778 778 779 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 780 780 781 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 782 782 783 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 784 784 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 785 785 786 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 787 787 788 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 789 789 790 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 791 791 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 792 792 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 793 793 794 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 795 795 796 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 797 797 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 798 798 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 799 799 ((( 800 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 801 801 ))) 802 802 803 803 ((( 804 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 805 805 ))) 806 806 807 807 ((( 808 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 809 809 ))) 810 810 942 +((( 943 + 944 +))) 811 811 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 812 812 813 -= 6. Trouble Shooting = 950 +((( 951 + 952 +))) 814 814 815 -== 6.1 Connection problem when uploading firmware == 954 +((( 955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 +))) 816 816 958 +[[image:image-20220606154726-3.png]] 817 817 960 + 961 +When you use the TTN network, the US915 frequency bands use are: 962 + 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 972 + 818 818 ((( 819 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 820 820 ))) 821 821 822 -(% class="wikigeneratedid" %) 823 823 ((( 824 824 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 825 ))) 826 826 986 +((( 987 + 988 +))) 827 827 828 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 829 829 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 830 830 ((( 831 831 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 832 832 833 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 834 834 ))) 835 835 836 836 837 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 838 838 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 839 839 840 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 841 841 842 842 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 843 843 (% class="wikigeneratedid" %) 844 844 ((( 845 845 846 846 ))) 847 847 848 -= 8.1064 += 7. Packing Info = 849 849 850 850 ((( 851 851 852 852 853 853 (% style="color:#037691" %)**Package Includes**: 1070 +))) 854 854 855 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1856 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 857 857 ))) 858 858 859 859 ((( ... ... @@ -860,21 +860,24 @@ 860 860 861 861 862 862 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 863 863 864 -* Device Size: 13.0 x 5 x 4.5 cm 865 -* Device Weight: 150g 866 -* Package Size / pcs : 15 x 12x 5.5 cm 867 -* Weight / pcs : 220g 1082 +* ((( 1083 +Device Size: cm 868 868 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 869 869 870 -((( 871 871 872 - 873 - 874 - 875 875 ))) 876 876 877 -= 9.1097 += 8. Support = 878 878 879 879 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 880 880 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content