Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.2
edited by Xiaoling
on 2022/07/09 11:09
Change comment: There is no comment for this version
To version 37.2
edited by Xiaoling
on 2022/06/25 16:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,653 +14,777 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
24 24  (((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
31 31  )))
32 32  
33 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 34  )))
35 35  
36 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
37 37  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
38 38  
39 -[[image:1657327959271-447.png]]
40 40  
50 +[[image:1654503236291-817.png]]
41 41  
42 42  
43 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
44 44  
45 45  
46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
47 47  * Ultra low power consumption
48 -* Distance Detection by Ultrasonic technology
49 -* Flat object range 280mm - 7500mm
50 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
51 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 52  * AT Commands to change parameters
53 53  * Uplink on periodically
54 54  * Downlink to change configure
55 55  * IP66 Waterproof Enclosure
56 -* Micro SIM card slot for NB-IoT SIM
57 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
58 58  
59 59  
60 60  
61 -== 1.3  Specification ==
73 +== 1.3 Specification ==
62 62  
75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 63  
64 -(% style="color:#037691" %)**Common DC Characteristics:**
77 +[[image:image-20220606162220-5.png]]
65 65  
66 -* Supply Voltage: 2.1v ~~ 3.6v
67 -* Operating Temperature: -40 ~~ 85°C
68 68  
69 -(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -* - B1 @H-FDD: 2100MHz
72 -* - B3 @H-FDD: 1800MHz
73 -* - B8 @H-FDD: 900MHz
74 -* - B5 @H-FDD: 850MHz
75 -* - B20 @H-FDD: 800MHz
76 -* - B28 @H-FDD: 700MHz
81 +== ​1.4 Applications ==
77 77  
78 -(% style="color:#037691" %)**Battery:**
83 +* Smart Agriculture
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 +​
85 85  
86 -(% style="color:#037691" %)**Power Consumption**
88 +== 1.5 Firmware Change log ==
87 87  
88 -* STOP Mode: 10uA @ 3.3v
89 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
90 90  
91 +**LSE01 v1.0 :**  Release
91 91  
92 92  
93 -== ​1.4  Applications ==
94 94  
95 -* Smart Buildings & Home Automation
96 -* Logistics and Supply Chain Management
97 -* Smart Metering
98 -* Smart Agriculture
99 -* Smart Cities
100 -* Smart Factory
95 += 2. Configure LSE01 to connect to LoRaWAN network =
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
97 +== 2.1 How it works ==
104 104  
99 +(((
100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 +)))
105 105  
103 +(((
104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 +)))
106 106  
107 -== 1.5  Pin Definitions ==
108 108  
109 109  
110 -[[image:1657328609906-564.png]]
109 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 113  
114 -= 2.  Use NDDS75 to communicate with IoT Server =
114 +[[image:1654503992078-669.png]]
115 115  
116 -== 2.1  How it works ==
117 117  
118 -(((
119 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
120 -)))
117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
121 121  
122 122  
123 -(((
124 -The diagram below shows the working flow in default firmware of NDDS75:
125 -)))
120 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
126 126  
127 -(((
128 -
129 -)))
122 +Each LSE01 is shipped with a sticker with the default device EUI as below:
130 130  
131 -[[image:1657328659945-416.png]]
124 +[[image:image-20220606163732-6.jpeg]]
132 132  
133 -(((
134 -
135 -)))
126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
136 136  
128 +**Add APP EUI in the application**
137 137  
138 -== 2.2 ​ Configure the NDDS75 ==
139 139  
131 +[[image:1654504596150-405.png]]
140 140  
141 -=== 2.2.1 Test Requirement ===
142 142  
143 -(((
144 -To use NDDS75 in your city, make sure meet below requirements:
145 -)))
146 146  
147 -* Your local operator has already distributed a NB-IoT Network there.
148 -* The local NB-IoT network used the band that NSE01 supports.
149 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +**Add APP KEY and DEV EUI**
150 150  
151 -(((
152 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
153 -)))
137 +[[image:1654504683289-357.png]]
154 154  
155 155  
156 -[[image:1657328756309-230.png]]
157 157  
141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
158 158  
159 159  
160 -=== 2.2.2 Insert SIM card ===
144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
161 161  
162 -(((
163 -Insert the NB-IoT Card get from your provider.
164 -)))
146 +[[image:image-20220606163915-7.png]]
165 165  
166 -(((
167 -User need to take out the NB-IoT module and insert the SIM card like below:
168 -)))
169 169  
149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170 170  
171 -[[image:1657328884227-504.png]]
151 +[[image:1654504778294-788.png]]
172 172  
173 173  
174 174  
175 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +== 2.3 Uplink Payload ==
176 176  
157 +
158 +=== 2.3.1 MOD~=0(Default Mode) ===
159 +
160 +LSE01 will uplink payload via LoRaWAN with below payload format: 
161 +
177 177  (((
178 -(((
179 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
163 +Uplink payload includes in total 11 bytes.
180 180  )))
181 -)))
182 182  
183 -[[image:image-20220709092052-2.png]]
166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 +|(((
168 +**Size**
184 184  
185 -**Connection:**
170 +**(bytes)**
171 +)))|**2**|**2**|**2**|**2**|**2**|**1**
172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 +Temperature
186 186  
187 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
175 +(Reserve, Ignore now)
176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 +MOD & Digital Interrupt
188 188  
189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
179 +(Optional)
180 +)))
190 190  
191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
192 192  
193 193  
194 -In the PC, use below serial tool settings:
184 +=== 2.3.2 MOD~=1(Original value) ===
195 195  
196 -* Baud:  (% style="color:green" %)**9600**
197 -* Data bits:** (% style="color:green" %)8(%%)**
198 -* Stop bits: (% style="color:green" %)**1**
199 -* Parity:  (% style="color:green" %)**None**
200 -* Flow Control: (% style="color:green" %)**None**
186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
201 201  
202 -(((
203 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
204 -)))
188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 +|(((
190 +**Size**
205 205  
206 -[[image:1657329814315-101.png]]
192 +**(bytes)**
193 +)))|**2**|**2**|**2**|**2**|**2**|**1**
194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 +Temperature
207 207  
208 -(((
209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
197 +(Reserve, Ignore now)
198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 +MOD & Digital Interrupt
200 +
201 +(Optional)
210 210  )))
211 211  
212 212  
213 213  
214 -=== 2.2.4 Use CoAP protocol to uplink data ===
206 +=== 2.3.3 Battery Info ===
215 215  
216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
208 +(((
209 +Check the battery voltage for LSE01.
210 +)))
217 217  
212 +(((
213 +Ex1: 0x0B45 = 2885mV
214 +)))
218 218  
219 -**Use below commands:**
216 +(((
217 +Ex2: 0x0B49 = 2889mV
218 +)))
220 220  
221 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
224 224  
225 -For parameter description, please refer to AT command set
226 226  
227 -[[image:1657330452568-615.png]]
222 +=== 2.3.4 Soil Moisture ===
228 228  
224 +(((
225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 +)))
229 229  
230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
228 +(((
229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 +)))
231 231  
232 -[[image:1657330472797-498.png]]
232 +(((
233 +
234 +)))
233 233  
236 +(((
237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 +)))
234 234  
235 235  
236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
237 237  
242 +=== 2.3.5 Soil Temperature ===
238 238  
239 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
244 +(((
245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 +)))
242 242  
243 -[[image:1657330501006-241.png]]
248 +(((
249 +**Example**:
250 +)))
244 244  
252 +(((
253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 +)))
245 245  
246 -[[image:1657330533775-472.png]]
256 +(((
257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
258 +)))
247 247  
248 248  
249 249  
250 -=== 2.2.6 Use MQTT protocol to uplink data ===
262 +=== 2.3.6 Soil Conductivity (EC) ===
251 251  
264 +(((
265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 +)))
252 252  
253 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
259 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
268 +(((
269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 +)))
260 260  
261 -[[image:1657249978444-674.png]]
272 +(((
273 +Generally, the EC value of irrigation water is less than 800uS / cm.
274 +)))
262 262  
276 +(((
277 +
278 +)))
263 263  
264 -[[image:1657330723006-866.png]]
265 -
266 -
267 267  (((
268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
281 +
269 269  )))
270 270  
284 +=== 2.3.7 MOD ===
271 271  
286 +Firmware version at least v2.1 supports changing mode.
272 272  
273 -=== 2.2.7 Use TCP protocol to uplink data ===
288 +For example, bytes[10]=90
274 274  
290 +mod=(bytes[10]>>7)&0x01=1.
275 275  
276 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
278 278  
279 -[[image:image-20220709093918-1.png]]
293 +**Downlink Command:**
280 280  
295 +If payload = 0x0A00, workmode=0
281 281  
282 -[[image:image-20220709093918-2.png]]
297 +If** **payload =** **0x0A01, workmode=1
283 283  
284 284  
285 285  
286 -=== 2.2.8 Change Update Interval ===
301 +=== 2.3.8 ​Decode payload in The Things Network ===
287 287  
288 -User can use below command to change the (% style="color:green" %)**uplink interval**.
303 +While using TTN network, you can add the payload format to decode the payload.
289 289  
290 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
291 291  
306 +[[image:1654505570700-128.png]]
307 +
292 292  (((
293 -(% style="color:red" %)**NOTE:**
309 +The payload decoder function for TTN is here:
294 294  )))
295 295  
296 296  (((
297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
298 298  )))
299 299  
300 300  
317 +== 2.4 Uplink Interval ==
301 301  
302 -== 2. Uplink Payload ==
319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
303 303  
304 -In this mode, uplink payload includes in total 14 bytes
305 305  
306 306  
307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 -|=(% style="width: 80px;" %)(((
309 -**Size(bytes)**
310 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
323 +== 2.5 Downlink Payload ==
312 312  
313 -(((
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
315 -)))
325 +By default, LSE50 prints the downlink payload to console port.
316 316  
327 +[[image:image-20220606165544-8.png]]
317 317  
318 -[[image:1657331036973-987.png]]
319 319  
320 320  (((
321 -The payload is ASCII string, representative same HEX:
331 +**Examples:**
322 322  )))
323 323  
324 324  (((
325 -0x72403155615900640c6c19029200 where:
335 +
326 326  )))
327 327  
328 328  * (((
329 -Device ID: 0x724031556159 = 724031556159
339 +**Set TDC**
330 330  )))
331 -* (((
332 -Version: 0x0064=100=1.0.0
341 +
342 +(((
343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
333 333  )))
334 334  
335 -* (((
336 -BAT: 0x0c6c = 3180 mV = 3.180V
346 +(((
347 +Payload:    01 00 00 1E    TDC=30S
337 337  )))
338 -* (((
339 -Signal: 0x19 = 25
349 +
350 +(((
351 +Payload:    01 00 00 3C    TDC=60S
340 340  )))
341 -* (((
342 -Distance: 0x0292= 658 mm
353 +
354 +(((
355 +
343 343  )))
357 +
344 344  * (((
345 -Interrupt: 0x00 = 0
359 +**Reset**
360 +)))
346 346  
362 +(((
363 +If payload = 0x04FF, it will reset the LSE01
364 +)))
347 347  
348 348  
349 -
350 -)))
367 +* **CFM**
351 351  
352 -== 2.4  Payload Explanation and Sensor Interface ==
369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 353  
354 354  
355 -=== 2.4.1  Device ID ===
356 356  
357 -(((
358 -By default, the Device ID equal to the last 6 bytes of IMEI.
359 -)))
373 +== 2.6 ​Show Data in DataCake IoT Server ==
360 360  
361 361  (((
362 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
363 363  )))
364 364  
365 365  (((
366 -**Example:**
380 +
367 367  )))
368 368  
369 369  (((
370 -AT+DEUI=A84041F15612
384 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
371 371  )))
372 372  
373 373  (((
374 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
388 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
375 375  )))
376 376  
377 377  
392 +[[image:1654505857935-743.png]]
378 378  
379 -=== 2.4.2  Version Info ===
380 380  
381 -(((
382 -Specify the software version: 0x64=100, means firmware version 1.00.
383 -)))
395 +[[image:1654505874829-548.png]]
384 384  
385 -(((
386 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
387 -)))
388 388  
398 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
389 389  
400 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
390 390  
391 -=== 2.4.3  Battery Info ===
392 392  
393 -(((
394 -Check the battery voltage for LSE01.
395 -)))
403 +[[image:1654505905236-553.png]]
396 396  
397 -(((
398 -Ex1: 0x0B45 = 2885mV
399 -)))
400 400  
401 -(((
402 -Ex2: 0x0B49 = 2889mV
403 -)))
406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
404 404  
408 +[[image:1654505925508-181.png]]
405 405  
406 406  
407 -=== 2.4.4  Signal Strength ===
408 408  
409 -(((
410 -NB-IoT Network signal Strength.
411 -)))
412 +== 2.7 Frequency Plans ==
412 412  
413 -(((
414 -**Ex1: 0x1d = 29**
415 -)))
414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
416 416  
417 -(((
418 -(% style="color:blue" %)**0**(%%)  -113dBm or less
419 -)))
420 420  
421 -(((
422 -(% style="color:blue" %)**1**(%%)  -111dBm
423 -)))
417 +=== 2.7.1 EU863-870 (EU868) ===
424 424  
425 -(((
426 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
427 -)))
419 +(% style="color:#037691" %)** Uplink:**
428 428  
429 -(((
430 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
431 -)))
421 +868.1 - SF7BW125 to SF12BW125
432 432  
433 -(((
434 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
435 -)))
423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
436 436  
425 +868.5 - SF7BW125 to SF12BW125
437 437  
427 +867.1 - SF7BW125 to SF12BW125
438 438  
439 -=== 2.4.5  Distance ===
429 +867.3 - SF7BW125 to SF12BW125
440 440  
441 -Get the distance. Flat object range 280mm - 7500mm.
431 +867.5 - SF7BW125 to SF12BW125
442 442  
443 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
433 +867.7 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -(((
447 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
448 -)))
449 -)))
435 +867.9 - SF7BW125 to SF12BW125
450 450  
451 -(((
452 -
453 -)))
437 +868.8 - FSK
454 454  
455 -(((
456 -
457 -)))
458 458  
459 -=== 2.4.6  Digital Interrupt ===
440 +(% style="color:#037691" %)** Downlink:**
460 460  
461 -(((
462 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
463 -)))
442 +Uplink channels 1-9 (RX1)
464 464  
465 -(((
466 -The command is:
467 -)))
444 +869.525 - SF9BW125 (RX2 downlink only)
468 468  
469 -(((
470 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
471 -)))
472 472  
473 473  
474 -(((
475 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
476 -)))
448 +=== 2.7.2 US902-928(US915) ===
477 477  
450 +Used in USA, Canada and South America. Default use CHE=2
478 478  
479 -(((
480 -Example:
481 -)))
452 +(% style="color:#037691" %)**Uplink:**
482 482  
483 -(((
484 -0x(00): Normal uplink packet.
485 -)))
454 +903.9 - SF7BW125 to SF10BW125
486 486  
487 -(((
488 -0x(01): Interrupt Uplink Packet.
489 -)))
456 +904.1 - SF7BW125 to SF10BW125
490 490  
458 +904.3 - SF7BW125 to SF10BW125
491 491  
460 +904.5 - SF7BW125 to SF10BW125
492 492  
493 -=== 2.4.7  ​+5V Output ===
462 +904.7 - SF7BW125 to SF10BW125
494 494  
495 -(((
496 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
497 -)))
464 +904.9 - SF7BW125 to SF10BW125
498 498  
466 +905.1 - SF7BW125 to SF10BW125
499 499  
500 -(((
501 -The 5V output time can be controlled by AT Command.
502 -)))
468 +905.3 - SF7BW125 to SF10BW125
503 503  
504 -(((
505 -(% style="color:blue" %)**AT+5VT=1000**
506 -)))
507 507  
508 -(((
509 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
510 -)))
471 +(% style="color:#037691" %)**Downlink:**
511 511  
473 +923.3 - SF7BW500 to SF12BW500
512 512  
475 +923.9 - SF7BW500 to SF12BW500
513 513  
514 -== 2.5  Downlink Payload ==
477 +924.5 - SF7BW500 to SF12BW500
515 515  
516 -By default, NDDS75 prints the downlink payload to console port.
479 +925.1 - SF7BW500 to SF12BW500
517 517  
518 -[[image:image-20220709100028-1.png]]
481 +925.7 - SF7BW500 to SF12BW500
519 519  
483 +926.3 - SF7BW500 to SF12BW500
520 520  
521 -(((
522 -(% style="color:blue" %)**Examples:**
523 -)))
485 +926.9 - SF7BW500 to SF12BW500
524 524  
525 -(((
526 -
527 -)))
487 +927.5 - SF7BW500 to SF12BW500
528 528  
529 -* (((
530 -(% style="color:blue" %)**Set TDC**
531 -)))
489 +923.3 - SF12BW500(RX2 downlink only)
532 532  
533 -(((
534 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
535 -)))
536 536  
537 -(((
538 -Payload:    01 00 00 1E    TDC=30S
539 -)))
540 540  
541 -(((
542 -Payload:    01 00 00 3C    TDC=60S
543 -)))
493 +=== 2.7.3 CN470-510 (CN470) ===
544 544  
545 -(((
546 -
547 -)))
495 +Used in China, Default use CHE=1
548 548  
549 -* (((
550 -(% style="color:blue" %)**Reset**
551 -)))
497 +(% style="color:#037691" %)**Uplink:**
552 552  
553 -(((
554 -If payload = 0x04FF, it will reset the NDDS75
555 -)))
499 +486.3 - SF7BW125 to SF12BW125
556 556  
501 +486.5 - SF7BW125 to SF12BW125
557 557  
558 -* (% style="color:blue" %)**INTMOD**
503 +486.7 - SF7BW125 to SF12BW125
559 559  
560 -(((
561 -Downlink Payload: 06000003, Set AT+INTMOD=3
562 -)))
505 +486.9 - SF7BW125 to SF12BW125
563 563  
507 +487.1 - SF7BW125 to SF12BW125
564 564  
509 +487.3 - SF7BW125 to SF12BW125
565 565  
566 -== 2. ​LED Indicator ==
511 +487.5 - SF7BW125 to SF12BW125
567 567  
513 +487.7 - SF7BW125 to SF12BW125
568 568  
569 -The NDDS75 has an internal LED which is to show the status of different state.
570 570  
516 +(% style="color:#037691" %)**Downlink:**
571 571  
572 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
573 -* Then the LED will be on for 1 second means device is boot normally.
574 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
575 -* For each uplink probe, LED will be on for 500ms.
518 +506.7 - SF7BW125 to SF12BW125
576 576  
577 -(((
578 -
579 -)))
520 +506.9 - SF7BW125 to SF12BW125
580 580  
522 +507.1 - SF7BW125 to SF12BW125
581 581  
524 +507.3 - SF7BW125 to SF12BW125
582 582  
583 -== 2.7  Firmware Change Log ==
526 +507.5 - SF7BW125 to SF12BW125
584 584  
528 +507.7 - SF7BW125 to SF12BW125
585 585  
586 -Download URL & Firmware Change log
530 +507.9 - SF7BW125 to SF12BW125
587 587  
588 -(((
589 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
590 -)))
532 +508.1 - SF7BW125 to SF12BW125
591 591  
534 +505.3 - SF12BW125 (RX2 downlink only)
592 592  
593 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
594 594  
595 595  
538 +=== 2.7.4 AU915-928(AU915) ===
596 596  
597 -== 2.8  ​Battery Analysis ==
540 +Default use CHE=2
598 598  
599 -=== 2.8.1  ​Battery Type ===
542 +(% style="color:#037691" %)**Uplink:**
600 600  
544 +916.8 - SF7BW125 to SF12BW125
601 601  
546 +917.0 - SF7BW125 to SF12BW125
547 +
548 +917.2 - SF7BW125 to SF12BW125
549 +
550 +917.4 - SF7BW125 to SF12BW125
551 +
552 +917.6 - SF7BW125 to SF12BW125
553 +
554 +917.8 - SF7BW125 to SF12BW125
555 +
556 +918.0 - SF7BW125 to SF12BW125
557 +
558 +918.2 - SF7BW125 to SF12BW125
559 +
560 +
561 +(% style="color:#037691" %)**Downlink:**
562 +
563 +923.3 - SF7BW500 to SF12BW500
564 +
565 +923.9 - SF7BW500 to SF12BW500
566 +
567 +924.5 - SF7BW500 to SF12BW500
568 +
569 +925.1 - SF7BW500 to SF12BW500
570 +
571 +925.7 - SF7BW500 to SF12BW500
572 +
573 +926.3 - SF7BW500 to SF12BW500
574 +
575 +926.9 - SF7BW500 to SF12BW500
576 +
577 +927.5 - SF7BW500 to SF12BW500
578 +
579 +923.3 - SF12BW500(RX2 downlink only)
580 +
581 +
582 +
583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
584 +
585 +(% style="color:#037691" %)**Default Uplink channel:**
586 +
587 +923.2 - SF7BW125 to SF10BW125
588 +
589 +923.4 - SF7BW125 to SF10BW125
590 +
591 +
592 +(% style="color:#037691" %)**Additional Uplink Channel**:
593 +
594 +(OTAA mode, channel added by JoinAccept message)
595 +
596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
597 +
598 +922.2 - SF7BW125 to SF10BW125
599 +
600 +922.4 - SF7BW125 to SF10BW125
601 +
602 +922.6 - SF7BW125 to SF10BW125
603 +
604 +922.8 - SF7BW125 to SF10BW125
605 +
606 +923.0 - SF7BW125 to SF10BW125
607 +
608 +922.0 - SF7BW125 to SF10BW125
609 +
610 +
611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
612 +
613 +923.6 - SF7BW125 to SF10BW125
614 +
615 +923.8 - SF7BW125 to SF10BW125
616 +
617 +924.0 - SF7BW125 to SF10BW125
618 +
619 +924.2 - SF7BW125 to SF10BW125
620 +
621 +924.4 - SF7BW125 to SF10BW125
622 +
623 +924.6 - SF7BW125 to SF10BW125
624 +
625 +
626 +(% style="color:#037691" %)** Downlink:**
627 +
628 +Uplink channels 1-8 (RX1)
629 +
630 +923.2 - SF10BW125 (RX2)
631 +
632 +
633 +
634 +=== 2.7.6 KR920-923 (KR920) ===
635 +
636 +Default channel:
637 +
638 +922.1 - SF7BW125 to SF12BW125
639 +
640 +922.3 - SF7BW125 to SF12BW125
641 +
642 +922.5 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
646 +
647 +922.1 - SF7BW125 to SF12BW125
648 +
649 +922.3 - SF7BW125 to SF12BW125
650 +
651 +922.5 - SF7BW125 to SF12BW125
652 +
653 +922.7 - SF7BW125 to SF12BW125
654 +
655 +922.9 - SF7BW125 to SF12BW125
656 +
657 +923.1 - SF7BW125 to SF12BW125
658 +
659 +923.3 - SF7BW125 to SF12BW125
660 +
661 +
662 +(% style="color:#037691" %)**Downlink:**
663 +
664 +Uplink channels 1-7(RX1)
665 +
666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
667 +
668 +
669 +
670 +=== 2.7.7 IN865-867 (IN865) ===
671 +
672 +(% style="color:#037691" %)** Uplink:**
673 +
674 +865.0625 - SF7BW125 to SF12BW125
675 +
676 +865.4025 - SF7BW125 to SF12BW125
677 +
678 +865.9850 - SF7BW125 to SF12BW125
679 +
680 +
681 +(% style="color:#037691" %) **Downlink:**
682 +
683 +Uplink channels 1-3 (RX1)
684 +
685 +866.550 - SF10BW125 (RX2)
686 +
687 +
688 +
689 +
690 +== 2.8 LED Indicator ==
691 +
692 +The LSE01 has an internal LED which is to show the status of different state.
693 +
694 +* Blink once when device power on.
695 +* Solid ON for 5 seconds once device successful Join the network.
696 +* Blink once when device transmit a packet.
697 +
698 +
699 +
700 +
701 +
702 +
703 +== 2.9 Installation in Soil ==
704 +
705 +**Measurement the soil surface**
706 +
707 +
708 +[[image:1654506634463-199.png]] ​
709 +
602 602  (((
603 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 +(((
712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
604 604  )))
714 +)))
605 605  
716 +
717 +
718 +[[image:1654506665940-119.png]]
719 +
606 606  (((
607 -The battery is designed to last for several years depends on the actually use environment and update interval. 
721 +Dig a hole with diameter > 20CM.
608 608  )))
609 609  
610 610  (((
611 -The battery related documents as below:
725 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
612 612  )))
613 613  
614 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
615 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
616 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
617 617  
729 +== 2.10 ​Firmware Change Log ==
730 +
618 618  (((
619 -[[image:image-20220709101450-2.png]]
732 +**Firmware download link:**
620 620  )))
621 621  
735 +(((
736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
737 +)))
622 622  
739 +(((
740 +
741 +)))
623 623  
624 -=== 2.8.2  Power consumption Analyze ===
743 +(((
744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
745 +)))
625 625  
626 626  (((
627 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
748 +
628 628  )))
629 629  
751 +(((
752 +**V1.0.**
753 +)))
630 630  
631 631  (((
632 -Instruction to use as below:
756 +Release
633 633  )))
634 634  
759 +
760 +== 2.11 ​Battery Analysis ==
761 +
762 +=== 2.11.1 ​Battery Type ===
763 +
635 635  (((
636 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
637 637  )))
638 638  
768 +(((
769 +The battery is designed to last for more than 5 years for the LSN50.
770 +)))
639 639  
640 640  (((
641 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
773 +(((
774 +The battery-related documents are as below:
642 642  )))
776 +)))
643 643  
644 644  * (((
645 -Product Model
779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
646 646  )))
647 647  * (((
648 -Uplink Interval
782 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
649 649  )))
650 650  * (((
651 -Working Mode
785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
652 652  )))
653 653  
654 -(((
655 -And the Life expectation in difference case will be shown on the right.
656 -)))
788 + [[image:image-20220610172436-1.png]]
657 657  
658 -[[image:image-20220709110451-3.png]]
659 659  
660 660  
792 +=== 2.11.2 ​Battery Note ===
661 661  
662 -=== 2.8.3  ​Battery Note ===
663 -
664 664  (((
665 665  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
666 666  )))
... ... @@ -667,169 +667,298 @@
667 667  
668 668  
669 669  
670 -=== 2.8. Replace the battery ===
800 +=== 2.11.3 Replace the battery ===
671 671  
672 672  (((
673 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
803 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
674 674  )))
675 675  
676 -
677 -
678 -= 3. ​ Access NB-IoT Module =
679 -
680 680  (((
681 -Users can directly access the AT command set of the NB-IoT module.
807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
682 682  )))
683 683  
684 684  (((
685 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
686 686  )))
687 687  
688 -[[image:1657333200519-600.png]]
689 689  
690 690  
816 += 3. ​Using the AT Commands =
691 691  
692 -= 4.  Using the AT Commands =
818 +== 3.1 Access AT Commands ==
693 693  
694 -== 4.1  Access AT Commands ==
695 695  
696 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
697 697  
823 +[[image:1654501986557-872.png||height="391" width="800"]]
698 698  
699 -AT+<CMD>?  : Help on <CMD>
700 700  
701 -AT+<CMD>         : Run <CMD>
826 +Or if you have below board, use below connection:
702 702  
703 -AT+<CMD>=<value> : Set the value
704 704  
705 -AT+<CMD>=?  : Get the value
829 +[[image:1654502005655-729.png||height="503" width="801"]]
706 706  
707 707  
832 +
833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
834 +
835 +
836 + [[image:1654502050864-459.png||height="564" width="806"]]
837 +
838 +
839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 +
841 +
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 +
844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
845 +
846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
847 +
848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
849 +
850 +
708 708  (% style="color:#037691" %)**General Commands**(%%)      
709 709  
710 -AT  : Attention       
853 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
711 711  
712 -AT?  : Short Help     
855 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
713 713  
714 -ATZ  : MCU Reset    
857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
715 715  
716 -AT+TDC  : Application Data Transmission Interval
859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
717 717  
718 -AT+CFG  : Print all configurations
719 719  
720 -AT+CFGMOD           : Working mode selection
862 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
721 721  
722 -AT+INTMOD            : Set the trigger interrupt mode
864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
723 723  
724 -AT+5VT  : Set extend the time of 5V power  
866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
725 725  
726 -AT+PRO  : Choose agreement
868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
727 727  
728 -AT+WEIGRE  : Get weight or set weight to 0
870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
729 729  
730 -AT+WEIGAP  : Get or Set the GapValue of weight
872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
731 731  
732 -AT+RXDL  : Extend the sending and receiving time
874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
733 733  
734 -AT+CNTFAC  : Get or set counting parameters
876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
735 735  
736 -AT+SERVADDR  : Server Address
878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
737 737  
880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
738 738  
739 -(% style="color:#037691" %)**COAP Management**      
882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
740 740  
741 -AT+URI            : Resource parameters
884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
742 742  
886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
743 743  
744 -(% style="color:#037691" %)**UDP Management**
888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
745 745  
746 -AT+CFM          : Upload confirmation mode (only valid for UDP)
890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
747 747  
892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
748 748  
749 -(% style="color:#037691" %)**MQTT Management**
894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
750 750  
751 -AT+CLIENT               : Get or Set MQTT client
752 752  
753 -AT+UNAME  : Get or Set MQTT Username
897 +(% style="color:#037691" %)**LoRa Network Management**
754 754  
755 -AT+PWD                  : Get or Set MQTT password
899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
756 756  
757 -AT+PUBTOPI : Get or Set MQTT publish topic
901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
758 758  
759 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
760 760  
905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
761 761  
762 -(% style="color:#037691" %)**Information**          
907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
763 763  
764 -AT+FDR  : Factory Data Reset
909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
765 765  
766 -AT+PWOR : Serial Access Password
911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
767 767  
913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
768 768  
915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
769 769  
770 -= ​5.  FAQ =
917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
771 771  
772 -== 5.1 How to Upgrade Firmware ==
919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
773 773  
921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
774 774  
923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
924 +
925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
926 +
927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
928 +
929 +
930 +(% style="color:#037691" %)**Information** 
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
937 +
938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
939 +
940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
941 +
942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
943 +
944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
945 +
946 +
947 += ​4. FAQ =
948 +
949 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 +
775 775  (((
776 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
953 +When downloading the images, choose the required image file for download. ​
777 777  )))
778 778  
779 779  (((
780 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
957 +
781 781  )))
782 782  
783 783  (((
784 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
785 785  )))
786 786  
964 +(((
965 +
966 +)))
787 787  
968 +(((
969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
970 +)))
788 788  
789 -= 6.  Trouble Shooting =
972 +(((
973 +
974 +)))
790 790  
791 -== 6.1  ​Connection problem when uploading firmware ==
976 +(((
977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
978 +)))
792 792  
980 +[[image:image-20220606154726-3.png]]
793 793  
982 +
983 +When you use the TTN network, the US915 frequency bands use are:
984 +
985 +* 903.9 - SF7BW125 to SF10BW125
986 +* 904.1 - SF7BW125 to SF10BW125
987 +* 904.3 - SF7BW125 to SF10BW125
988 +* 904.5 - SF7BW125 to SF10BW125
989 +* 904.7 - SF7BW125 to SF10BW125
990 +* 904.9 - SF7BW125 to SF10BW125
991 +* 905.1 - SF7BW125 to SF10BW125
992 +* 905.3 - SF7BW125 to SF10BW125
993 +* 904.6 - SF8BW500
994 +
794 794  (((
795 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
997 +
998 +* (% style="color:#037691" %)**AT+CHE=2**
999 +* (% style="color:#037691" %)**ATZ**
796 796  )))
797 797  
798 -(% class="wikigeneratedid" %)
799 799  (((
800 800  
1004 +
1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
801 801  )))
802 802  
1008 +(((
1009 +
1010 +)))
803 803  
804 -== 6.2  AT Command input doesn't work ==
1012 +(((
1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1014 +)))
805 805  
1016 +[[image:image-20220606154825-4.png]]
1017 +
1018 +
1019 +
1020 += 5. Trouble Shooting =
1021 +
1022 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1023 +
1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1025 +
1026 +
1027 +== 5.2 AT Command input doesn’t work ==
1028 +
806 806  (((
807 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 +)))
808 808  
809 -
1033 +
1034 +== 5.3 Device rejoin in at the second uplink packet ==
1035 +
1036 +(% style="color:#4f81bd" %)**Issue describe as below:**
1037 +
1038 +[[image:1654500909990-784.png]]
1039 +
1040 +
1041 +(% style="color:#4f81bd" %)**Cause for this issue:**
1042 +
1043 +(((
1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
810 810  )))
811 811  
812 812  
813 -= 7. ​ Order Info =
1048 +(% style="color:#4f81bd" %)**Solution: **
814 814  
1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
815 815  
816 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1052 +[[image:1654500929571-736.png||height="458" width="832"]]
817 817  
818 818  
1055 += 6. ​Order Info =
1056 +
1057 +
1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1059 +
1060 +
1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1062 +
1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071 +
1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1073 +
1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1076 +
819 819  (% class="wikigeneratedid" %)
820 820  (((
821 821  
822 822  )))
823 823  
824 -= 8.  Packing Info =
1082 += 7. Packing Info =
825 825  
826 826  (((
827 827  
828 828  
829 829  (% style="color:#037691" %)**Package Includes**:
1088 +)))
830 830  
831 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
832 -* External antenna x 1
1090 +* (((
1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
833 833  )))
834 834  
835 835  (((
... ... @@ -836,22 +836,24 @@
836 836  
837 837  
838 838  (% style="color:#037691" %)**Dimension and weight**:
1098 +)))
839 839  
840 -
841 -* Device Size: 13.0 x 5 x 4.5 cm
842 -* Device Weight: 150g
843 -* Package Size / pcs : 15 x 12x 5.5 cm
844 -* Weight / pcs : 220g
1100 +* (((
1101 +Device Size: cm
845 845  )))
1103 +* (((
1104 +Device Weight: g
1105 +)))
1106 +* (((
1107 +Package Size / pcs : cm
1108 +)))
1109 +* (((
1110 +Weight / pcs : g
846 846  
847 -(((
848 848  
849 -
850 -
851 -
852 852  )))
853 853  
854 -= 9.  Support =
1115 += 8. Support =
855 855  
856 856  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
857 857  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content