Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.19
edited by Xiaoling
on 2022/07/09 13:53
Change comment: There is no comment for this version
To version 57.1
edited by Xiaoling
on 2022/07/08 11:19
Change comment: Uploaded new attachment "image-20220708111918-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,76 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
72 -
73 -
74 74  == 1.3  Specification ==
75 75  
76 76  
... ... @@ -88,111 +88,90 @@
88 88  * - B20 @H-FDD: 800MHz
89 89  * - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 103  
104 104  
105 -
106 106  == ​1.4  Applications ==
107 107  
108 -* Smart Buildings & Home Automation
109 -* Logistics and Supply Chain Management
110 -* Smart Metering
111 111  * Smart Agriculture
112 -* Smart Cities
113 -* Smart Factory
114 114  
115 115  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
116 116  ​
117 117  
118 -
119 119  == 1.5  Pin Definitions ==
120 120  
121 121  
122 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
123 123  
124 124  
125 125  
126 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
127 127  
128 128  == 2.1  How it works ==
129 129  
105 +
130 130  (((
131 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
132 132  )))
133 133  
134 134  
135 135  (((
136 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
137 137  )))
138 138  
139 -(((
140 -
141 -)))
115 +[[image:image-20220708101605-2.png]]
142 142  
143 -[[image:1657328659945-416.png]]
144 -
145 145  (((
146 146  
147 147  )))
148 148  
149 149  
150 -== 2.2 ​ Configure the NDDS75 ==
151 151  
123 +== 2.2 ​ Configure the NSE01 ==
152 152  
125 +
153 153  === 2.2.1 Test Requirement ===
154 154  
155 -(((
156 -To use NDDS75 in your city, make sure meet below requirements:
157 -)))
158 158  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
159 159  * Your local operator has already distributed a NB-IoT Network there.
160 160  * The local NB-IoT network used the band that NSE01 supports.
161 161  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
162 162  
163 163  (((
164 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
165 165  )))
166 166  
167 167  
168 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
169 169  
170 170  
171 171  
172 172  === 2.2.2 Insert SIM card ===
173 173  
174 -(((
175 175  Insert the NB-IoT Card get from your provider.
176 -)))
177 177  
178 -(((
179 179  User need to take out the NB-IoT module and insert the SIM card like below:
180 -)))
181 181  
182 182  
183 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
184 184  
185 185  
186 186  
187 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
188 188  
189 189  (((
190 190  (((
191 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
192 192  )))
193 193  )))
194 194  
195 -[[image:image-20220709092052-2.png]]
196 196  
197 197  **Connection:**
198 198  
... ... @@ -205,21 +205,19 @@
205 205  
206 206  In the PC, use below serial tool settings:
207 207  
208 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
209 209  * Data bits:** (% style="color:green" %)8(%%)**
210 210  * Stop bits: (% style="color:green" %)**1**
211 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
212 212  * Flow Control: (% style="color:green" %)**None**
213 213  
214 214  (((
215 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
216 216  )))
217 217  
218 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
219 219  
220 -(((
221 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
222 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
223 223  
224 224  
225 225  
... ... @@ -228,66 +228,66 @@
228 228  (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
229 229  
230 230  
231 -(((
232 232  **Use below commands:**
233 -)))
234 234  
235 -* (((
236 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
237 -)))
238 -* (((
239 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
240 -)))
241 -* (((
242 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
243 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
244 244  
245 -(((
202 +
203 +
246 246  For parameter description, please refer to AT command set
247 -)))
248 248  
249 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
250 250  
251 251  
252 -(((
253 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
254 -)))
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
255 255  
256 -[[image:1657330472797-498.png]]
211 +[[image:1657249831934-534.png]]
257 257  
258 258  
259 259  
260 260  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
217 +This feature is supported since firmware version v1.0.1
262 262  
263 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
264 264  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
265 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
266 266  
267 -[[image:1657330501006-241.png]]
268 268  
269 269  
270 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
271 271  
272 272  
273 273  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
274 274  === 2.2.6 Use MQTT protocol to uplink data ===
275 275  
236 +This feature is supported since firmware version v110
276 276  
277 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
279 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
280 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
281 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
282 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
283 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
284 284  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
285 285  [[image:1657249978444-674.png]]
286 286  
287 287  
288 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
289 289  
290 290  
255 +
291 291  (((
292 292  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
293 293  )))
... ... @@ -296,17 +296,18 @@
296 296  
297 297  === 2.2.7 Use TCP protocol to uplink data ===
298 298  
264 +This feature is supported since firmware version v110
299 299  
266 +
300 300  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
301 301  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
302 302  
303 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
304 304  
305 305  
306 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
307 307  
308 308  
309 -
310 310  === 2.2.8 Change Update Interval ===
311 311  
312 312  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -313,6 +313,7 @@
313 313  
314 314  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
315 315  
282 +
316 316  (((
317 317  (% style="color:red" %)**NOTE:**
318 318  )))
... ... @@ -323,152 +323,122 @@
323 323  
324 324  
325 325  
326 -== 2.3  Uplink Payload ==
293 +== 2.3 Uplink Payload ==
327 327  
328 -In this mode, uplink payload includes in total 14 bytes
329 329  
296 +=== 2.3.1 MOD~=0(Default Mode) ===
330 330  
331 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
332 -|=(% style="width: 60px;" %)(((
333 -**Size(bytes)**
334 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
335 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
336 336  
337 337  (((
338 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
301 +Uplink payload includes in total 11 bytes.
339 339  )))
340 340  
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
341 341  
342 -[[image:1657331036973-987.png]]
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
343 343  
344 -(((
345 -The payload is ASCII string, representative same HEX:
346 -)))
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
347 347  
348 -(((
349 -0x72403155615900640c6c19029200 where:
317 +(Optional)
350 350  )))
351 351  
352 -* (((
353 -Device ID: 0x724031556159 = 724031556159
354 -)))
355 -* (((
356 -Version: 0x0064=100=1.0.0
357 -)))
320 +=== 2.3.2 MOD~=1(Original value) ===
358 358  
359 -* (((
360 -BAT: 0x0c6c = 3180 mV = 3.180V
361 -)))
362 -* (((
363 -Signal: 0x19 = 25
364 -)))
365 -* (((
366 -Distance: 0x0292= 658 mm
367 -)))
368 -* (((
369 -Interrupt: 0x00 = 0
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
370 370  
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
371 371  
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
372 372  
373 -
374 -)))
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
375 375  
376 -== 2.4  Payload Explanation and Sensor Interface ==
377 -
378 -
379 -=== 2.4.1  Device ID ===
380 -
381 -(((
382 -By default, the Device ID equal to the last 6 bytes of IMEI.
337 +(Optional)
383 383  )))
384 384  
385 -(((
386 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
387 -)))
340 +=== 2.3.3 Battery Info ===
388 388  
389 389  (((
390 -**Example:**
343 +Check the battery voltage for LSE01.
391 391  )))
392 392  
393 393  (((
394 -AT+DEUI=A84041F15612
347 +Ex1: 0x0B45 = 2885mV
395 395  )))
396 396  
397 397  (((
398 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
351 +Ex2: 0x0B49 = 2889mV
399 399  )))
400 400  
401 401  
402 402  
403 -=== 2.4. Version Info ===
356 +=== 2.3.4 Soil Moisture ===
404 404  
405 405  (((
406 -Specify the software version: 0x64=100, means firmware version 1.00.
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
407 407  )))
408 408  
409 409  (((
410 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
411 411  )))
412 412  
413 -
414 -
415 -=== 2.4.3  Battery Info ===
416 -
417 417  (((
418 -Ex1: 0x0B45 = 2885mV
367 +
419 419  )))
420 420  
421 421  (((
422 -Ex2: 0x0B49 = 2889mV
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
423 423  )))
424 424  
425 425  
426 426  
427 -=== 2.4. Signal Strength ===
376 +=== 2.3.5 Soil Temperature ===
428 428  
429 429  (((
430 -NB-IoT Network signal Strength.
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
431 431  )))
432 432  
433 433  (((
434 -**Ex1: 0x1d = 29**
383 +**Example**:
435 435  )))
436 436  
437 437  (((
438 -(% style="color:blue" %)**0**(%%)  -113dBm or less
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
439 439  )))
440 440  
441 441  (((
442 -(% style="color:blue" %)**1**(%%)  -111dBm
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
443 443  )))
444 444  
445 -(((
446 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
447 -)))
448 448  
449 -(((
450 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 -)))
452 452  
396 +=== 2.3.6 Soil Conductivity (EC) ===
397 +
453 453  (((
454 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
455 455  )))
456 456  
457 -
458 -
459 -=== 2.4.5  Distance ===
460 -
461 -Get the distance. Flat object range 280mm - 7500mm.
462 -
463 463  (((
464 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
465 465  )))
466 466  
467 467  (((
468 -(((
469 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
470 470  )))
471 -)))
472 472  
473 473  (((
474 474  
... ... @@ -478,68 +478,52 @@
478 478  
479 479  )))
480 480  
481 -=== 2.4. Digital Interrupt ===
418 +=== 2.3.7 MOD ===
482 482  
483 -(((
484 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
485 -)))
420 +Firmware version at least v2.1 supports changing mode.
486 486  
487 -(((
488 -The command is:
489 -)))
422 +For example, bytes[10]=90
490 490  
491 -(((
492 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
493 -)))
424 +mod=(bytes[10]>>7)&0x01=1.
494 494  
495 495  
496 -(((
497 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
498 -)))
427 +**Downlink Command:**
499 499  
429 +If payload = 0x0A00, workmode=0
500 500  
501 -(((
502 -Example:
503 -)))
431 +If** **payload =** **0x0A01, workmode=1
504 504  
505 -(((
506 -0x(00): Normal uplink packet.
507 -)))
508 508  
509 -(((
510 -0x(01): Interrupt Uplink Packet.
511 -)))
512 512  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
513 513  
437 +While using TTN network, you can add the payload format to decode the payload.
514 514  
515 -=== 2.4.7  ​+5V Output ===
516 516  
517 -(((
518 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
519 -)))
440 +[[image:1654505570700-128.png]]
520 520  
521 -
522 522  (((
523 -The 5V output time can be controlled by AT Command.
443 +The payload decoder function for TTN is here:
524 524  )))
525 525  
526 526  (((
527 -(% style="color:blue" %)**AT+5VT=1000**
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
528 528  )))
529 529  
530 -(((
531 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
532 -)))
533 533  
451 +== 2.4 Uplink Interval ==
534 534  
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
535 535  
536 -== 2.5  Downlink Payload ==
537 537  
538 -By default, NDDS75 prints the downlink payload to console port.
539 539  
540 -[[image:image-20220709100028-1.png]]
457 +== 2.5 Downlink Payload ==
541 541  
459 +By default, LSE50 prints the downlink payload to console port.
542 542  
461 +[[image:image-20220606165544-8.png]]
462 +
463 +
543 543  (((
544 544  (% style="color:blue" %)**Examples:**
545 545  )))
... ... @@ -553,7 +553,7 @@
553 553  )))
554 554  
555 555  (((
556 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
477 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
557 557  )))
558 558  
559 559  (((
... ... @@ -573,120 +573,432 @@
573 573  )))
574 574  
575 575  (((
576 -If payload = 0x04FF, it will reset the NDDS75
497 +If payload = 0x04FF, it will reset the LSE01
577 577  )))
578 578  
579 579  
580 -* (% style="color:blue" %)**INTMOD**
501 +* (% style="color:blue" %)**CFM**
581 581  
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
504 +
505 +
506 +
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
582 582  (((
583 -Downlink Payload: 06000003, Set AT+INTMOD=3
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
584 584  )))
585 585  
513 +(((
514 +
515 +)))
586 586  
517 +(((
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
519 +)))
587 587  
588 -== 2.6  ​LED Indicator ==
521 +(((
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 +)))
589 589  
590 590  
591 -The NDDS75 has an internal LED which is to show the status of different state.
526 +[[image:1654505857935-743.png]]
592 592  
593 593  
594 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
595 -* Then the LED will be on for 1 second means device is boot normally.
596 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
597 -* For each uplink probe, LED will be on for 500ms.
529 +[[image:1654505874829-548.png]]
598 598  
599 -(((
600 -
601 -)))
602 602  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
603 603  
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
604 604  
605 -== 2.7  ​Firmware Change Log ==
606 606  
537 +[[image:1654505905236-553.png]]
607 607  
608 -(((
609 -Download URL & Firmware Change log
610 -)))
611 611  
612 -(((
613 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
614 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
615 615  
542 +[[image:1654505925508-181.png]]
616 616  
617 -(((
618 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
619 -)))
620 620  
621 621  
546 +== 2.7 Frequency Plans ==
622 622  
623 -== 2. ​Battery Analysis ==
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
624 624  
625 -=== 2.8.1  ​Battery Type ===
626 626  
551 +=== 2.7.1 EU863-870 (EU868) ===
627 627  
553 +(% style="color:#037691" %)** Uplink:**
554 +
555 +868.1 - SF7BW125 to SF12BW125
556 +
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
558 +
559 +868.5 - SF7BW125 to SF12BW125
560 +
561 +867.1 - SF7BW125 to SF12BW125
562 +
563 +867.3 - SF7BW125 to SF12BW125
564 +
565 +867.5 - SF7BW125 to SF12BW125
566 +
567 +867.7 - SF7BW125 to SF12BW125
568 +
569 +867.9 - SF7BW125 to SF12BW125
570 +
571 +868.8 - FSK
572 +
573 +
574 +(% style="color:#037691" %)** Downlink:**
575 +
576 +Uplink channels 1-9 (RX1)
577 +
578 +869.525 - SF9BW125 (RX2 downlink only)
579 +
580 +
581 +
582 +=== 2.7.2 US902-928(US915) ===
583 +
584 +Used in USA, Canada and South America. Default use CHE=2
585 +
586 +(% style="color:#037691" %)**Uplink:**
587 +
588 +903.9 - SF7BW125 to SF10BW125
589 +
590 +904.1 - SF7BW125 to SF10BW125
591 +
592 +904.3 - SF7BW125 to SF10BW125
593 +
594 +904.5 - SF7BW125 to SF10BW125
595 +
596 +904.7 - SF7BW125 to SF10BW125
597 +
598 +904.9 - SF7BW125 to SF10BW125
599 +
600 +905.1 - SF7BW125 to SF10BW125
601 +
602 +905.3 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**Downlink:**
606 +
607 +923.3 - SF7BW500 to SF12BW500
608 +
609 +923.9 - SF7BW500 to SF12BW500
610 +
611 +924.5 - SF7BW500 to SF12BW500
612 +
613 +925.1 - SF7BW500 to SF12BW500
614 +
615 +925.7 - SF7BW500 to SF12BW500
616 +
617 +926.3 - SF7BW500 to SF12BW500
618 +
619 +926.9 - SF7BW500 to SF12BW500
620 +
621 +927.5 - SF7BW500 to SF12BW500
622 +
623 +923.3 - SF12BW500(RX2 downlink only)
624 +
625 +
626 +
627 +=== 2.7.3 CN470-510 (CN470) ===
628 +
629 +Used in China, Default use CHE=1
630 +
631 +(% style="color:#037691" %)**Uplink:**
632 +
633 +486.3 - SF7BW125 to SF12BW125
634 +
635 +486.5 - SF7BW125 to SF12BW125
636 +
637 +486.7 - SF7BW125 to SF12BW125
638 +
639 +486.9 - SF7BW125 to SF12BW125
640 +
641 +487.1 - SF7BW125 to SF12BW125
642 +
643 +487.3 - SF7BW125 to SF12BW125
644 +
645 +487.5 - SF7BW125 to SF12BW125
646 +
647 +487.7 - SF7BW125 to SF12BW125
648 +
649 +
650 +(% style="color:#037691" %)**Downlink:**
651 +
652 +506.7 - SF7BW125 to SF12BW125
653 +
654 +506.9 - SF7BW125 to SF12BW125
655 +
656 +507.1 - SF7BW125 to SF12BW125
657 +
658 +507.3 - SF7BW125 to SF12BW125
659 +
660 +507.5 - SF7BW125 to SF12BW125
661 +
662 +507.7 - SF7BW125 to SF12BW125
663 +
664 +507.9 - SF7BW125 to SF12BW125
665 +
666 +508.1 - SF7BW125 to SF12BW125
667 +
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
628 628  (((
629 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
630 630  )))
843 +)))
631 631  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
632 632  (((
633 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
634 634  )))
635 635  
636 636  (((
637 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 638  )))
639 639  
640 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 643  
858 +== 2.10 ​Firmware Change Log ==
859 +
644 644  (((
645 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
646 646  )))
647 647  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
648 648  
868 +(((
869 +
870 +)))
649 649  
650 -=== 2.8.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
651 651  
652 652  (((
653 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
877 +
654 654  )))
655 655  
880 +(((
881 +**V1.0.**
882 +)))
656 656  
657 657  (((
658 -Instruction to use as below:
885 +Release
659 659  )))
660 660  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
661 661  (((
662 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
663 663  )))
664 664  
897 +(((
898 +The battery is designed to last for more than 5 years for the LSN50.
899 +)))
665 665  
666 666  (((
667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
668 668  )))
905 +)))
669 669  
670 670  * (((
671 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
672 672  )))
673 673  * (((
674 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
675 675  )))
676 676  * (((
677 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
678 678  )))
679 679  
680 -(((
681 -And the Life expectation in difference case will be shown on the right.
682 -)))
917 + [[image:image-20220610172436-1.png]]
683 683  
684 -[[image:image-20220709110451-3.png]]
685 685  
686 686  
921 +=== 2.11.2 ​Battery Note ===
687 687  
688 -=== 2.8.3  ​Battery Note ===
689 -
690 690  (((
691 691  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
692 692  )))
... ... @@ -693,169 +693,302 @@
693 693  
694 694  
695 695  
696 -=== 2.8. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
697 697  
698 698  (((
699 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
700 700  )))
701 701  
702 -
703 -
704 -= 3. ​ Access NB-IoT Module =
705 -
706 706  (((
707 -Users can directly access the AT command set of the NB-IoT module.
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
708 708  )))
709 709  
710 710  (((
711 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
712 712  )))
713 713  
714 -[[image:1657333200519-600.png]]
715 715  
716 716  
945 += 3. ​Using the AT Commands =
717 717  
718 -= 4.  Using the AT Commands =
947 +== 3.1 Access AT Commands ==
719 719  
720 -== 4.1  Access AT Commands ==
721 721  
722 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
723 723  
952 +[[image:1654501986557-872.png||height="391" width="800"]]
724 724  
725 -AT+<CMD>?  : Help on <CMD>
726 726  
727 -AT+<CMD>         : Run <CMD>
955 +Or if you have below board, use below connection:
728 728  
729 -AT+<CMD>=<value> : Set the value
730 730  
731 -AT+<CMD>=?  : Get the value
958 +[[image:1654502005655-729.png||height="503" width="801"]]
732 732  
733 733  
961 +
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
963 +
964 +
965 + [[image:1654502050864-459.png||height="564" width="806"]]
966 +
967 +
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
969 +
970 +
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
734 734  (% style="color:#037691" %)**General Commands**(%%)      
735 735  
736 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
737 737  
738 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
739 739  
740 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
741 741  
742 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
743 743  
744 -AT+CFG  : Print all configurations
745 745  
746 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
747 747  
748 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
749 749  
750 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
751 751  
752 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
753 753  
754 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
755 755  
756 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
757 757  
758 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
759 759  
760 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
761 761  
762 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
763 763  
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
764 764  
765 -(% style="color:#037691" %)**COAP Management**      
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
766 766  
767 -AT+URI            : Resource parameters
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
768 768  
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
769 769  
770 -(% style="color:#037691" %)**UDP Management**
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
771 771  
772 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
773 773  
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
774 774  
775 -(% style="color:#037691" %)**MQTT Management**
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
776 776  
777 -AT+CLIENT               : Get or Set MQTT client
778 778  
779 -AT+UNAME  : Get or Set MQTT Username
1026 +(% style="color:#037691" %)**LoRa Network Management**
780 780  
781 -AT+PWD                  : Get or Set MQTT password
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
782 782  
783 -AT+PUBTOPI : Get or Set MQTT publish topic
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
784 784  
785 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
786 786  
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
787 787  
788 -(% style="color:#037691" %)**Information**          
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
789 789  
790 -AT+FDR  : Factory Data Reset
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
791 791  
792 -AT+PWOR : Serial Access Password
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
793 793  
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
794 794  
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
795 795  
796 -= ​5.  FAQ =
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
797 797  
798 -== 5.1 How to Upgrade Firmware ==
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
799 799  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
800 800  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1053 +
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057 +
1058 +
1059 +(% style="color:#037691" %)**Information** 
1060 +
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
801 801  (((
802 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
803 803  )))
804 804  
805 805  (((
806 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
807 807  )))
808 808  
809 809  (((
810 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
811 811  )))
812 812  
1093 +(((
1094 +
1095 +)))
813 813  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
814 814  
815 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
816 816  
817 -== 6.1  ​Connection problem when uploading firmware ==
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
818 818  
1109 +[[image:image-20220606154726-3.png]]
819 819  
1111 +
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
820 820  (((
821 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
822 822  )))
823 823  
824 -(% class="wikigeneratedid" %)
825 825  (((
826 826  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
827 827  )))
828 828  
1137 +(((
1138 +
1139 +)))
829 829  
830 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
831 831  
1145 +[[image:image-20220606154825-4.png]]
1146 +
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
832 832  (((
833 833  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
834 834  
835 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
836 836  )))
837 837  
838 838  
839 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
840 840  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
841 841  
842 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
843 843  
844 844  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
845 845  (% class="wikigeneratedid" %)
846 846  (((
847 847  
848 848  )))
849 849  
850 -= 8.  Packing Info =
1215 += 7. Packing Info =
851 851  
852 852  (((
853 853  
854 854  
855 855  (% style="color:#037691" %)**Package Includes**:
1221 +)))
856 856  
857 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
858 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
859 859  )))
860 860  
861 861  (((
... ... @@ -862,22 +862,24 @@
862 862  
863 863  
864 864  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
865 865  
866 -
867 -* Device Size: 13.0 x 5 x 4.5 cm
868 -* Device Weight: 150g
869 -* Package Size / pcs : 15 x 12x 5.5 cm
870 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
871 871  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
872 872  
873 -(((
874 874  
875 -
876 -
877 -
878 878  )))
879 879  
880 -= 9.  Support =
1248 += 8. Support =
881 881  
882 882  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
883 883  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content