Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.19
edited by Xiaoling
on 2022/07/09 13:53
Change comment: There is no comment for this version
To version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,692 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 20  
21 -(((
22 -
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
21 += 1. Introduction =
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
41 41  (((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
43 -)))
26 +
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
49 49  
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 +
50 50  
51 51  )))
52 52  
53 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
54 54  
55 55  
42 +[[image:1657245163077-232.png]]
56 56  
57 -== 1.2 ​ Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
45 +
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
60 60  * Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
71 71  
60 +== 1.3 Specification ==
72 72  
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
74 -== 1.3  Specification ==
64 +[[image:image-20220606162220-5.png]]
75 75  
76 76  
77 -(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
79 -* Supply Voltage: 2.1v ~~ 3.6v
80 -* Operating Temperature: -40 ~~ 85°C
68 +== ​1.4 Applications ==
81 81  
82 -(% style="color:#037691" %)**NB-IoT Spec:**
70 +* Smart Agriculture
83 83  
84 -* - B1 @H-FDD: 2100MHz
85 -* - B3 @H-FDD: 1800MHz
86 -* - B8 @H-FDD: 900MHz
87 -* - B5 @H-FDD: 850MHz
88 -* - B20 @H-FDD: 800MHz
89 -* - B28 @H-FDD: 700MHz
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
90 90  
91 -(% style="color:#037691" %)**Battery:**
75 +== 1.5 Firmware Change log ==
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
78 +**LSE01 v1.0 :**  Release
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 103  
104 104  
82 += 2. Configure LSE01 to connect to LoRaWAN network =
105 105  
106 -== ​1. Applications ==
84 +== 2.1 How it works ==
107 107  
108 -* Smart Buildings & Home Automation
109 -* Logistics and Supply Chain Management
110 -* Smart Metering
111 -* Smart Agriculture
112 -* Smart Cities
113 -* Smart Factory
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
114 114  
115 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
116 -​
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
117 117  
118 118  
119 -== 1.5  Pin Definitions ==
120 120  
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
122 -[[image:1657328609906-564.png]]
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
123 123  
124 124  
101 +[[image:1654503992078-669.png]]
125 125  
126 -= 2.  Use NDDS75 to communicate with IoT Server =
127 127  
128 -== 2.1  How it works ==
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
129 129  
106 +
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 +
111 +[[image:image-20220606163732-6.jpeg]]
112 +
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +
115 +**Add APP EUI in the application**
116 +
117 +
118 +[[image:1654504596150-405.png]]
119 +
120 +
121 +
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
130 130  (((
131 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
132 132  )))
133 133  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
134 134  
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
187 +)))
188 +
189 +=== 2.3.3 Battery Info ===
190 +
135 135  (((
136 -The diagram below shows the working flow in default firmware of NDDS75:
192 +Check the battery voltage for LSE01.
137 137  )))
138 138  
139 139  (((
140 -
196 +Ex1: 0x0B45 = 2885mV
141 141  )))
142 142  
143 -[[image:1657328659945-416.png]]
144 -
145 145  (((
146 -
200 +Ex2: 0x0B49 = 2889mV
147 147  )))
148 148  
149 149  
150 -== 2.2 ​ Configure the NDDS75 ==
151 151  
205 +=== 2.3.4 Soil Moisture ===
152 152  
153 -=== 2.2.1 Test Requirement ===
207 +(((
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +)))
154 154  
155 155  (((
156 -To use NDDS75 in your city, make sure meet below requirements:
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
157 157  )))
158 158  
159 -* Your local operator has already distributed a NB-IoT Network there.
160 -* The local NB-IoT network used the band that NSE01 supports.
161 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
215 +(((
216 +
217 +)))
162 162  
163 163  (((
164 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
165 165  )))
166 166  
167 167  
168 -[[image:1657328756309-230.png]]
169 169  
225 +=== 2.3.5 Soil Temperature ===
170 170  
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
171 171  
172 -=== 2.2.2 Insert SIM card ===
231 +(((
232 +**Example**:
233 +)))
173 173  
174 174  (((
175 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
176 176  )))
177 177  
178 178  (((
179 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
180 180  )))
181 181  
182 182  
183 -[[image:1657328884227-504.png]]
184 184  
245 +=== 2.3.6 Soil Conductivity (EC) ===
185 185  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
186 186  
187 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
188 188  
189 189  (((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
258 +
190 190  (((
191 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
260 +
192 192  )))
262 +
263 +(((
264 +
193 193  )))
194 194  
195 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
196 196  
197 -**Connection:**
269 +Firmware version at least v2.1 supports changing mode.
198 198  
199 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 +For example, bytes[10]=90
200 200  
201 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 +mod=(bytes[10]>>7)&0x01=1.
202 202  
203 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
204 204  
276 +**Downlink Command:**
205 205  
206 -In the PC, use below serial tool settings:
278 +If payload = 0x0A00, workmode=0
207 207  
208 -* Baud:  (% style="color:green" %)**9600**
209 -* Data bits:** (% style="color:green" %)8(%%)**
210 -* Stop bits: (% style="color:green" %)**1**
211 -* Parity:  (% style="color:green" %)**None**
212 -* Flow Control: (% style="color:green" %)**None**
280 +If** **payload =** **0x0A01, workmode=1
213 213  
282 +
283 +
284 +=== 2.3.8 ​Decode payload in The Things Network ===
285 +
286 +While using TTN network, you can add the payload format to decode the payload.
287 +
288 +
289 +[[image:1654505570700-128.png]]
290 +
214 214  (((
215 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
292 +The payload decoder function for TTN is here:
216 216  )))
217 217  
218 -[[image:1657329814315-101.png]]
219 -
220 220  (((
221 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
222 222  )))
223 223  
224 224  
300 +== 2.4 Uplink Interval ==
225 225  
226 -=== 2.2.4 Use CoAP protocol to uplink data ===
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
227 227  
228 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
229 229  
230 230  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
231 231  (((
232 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
233 233  )))
234 234  
235 -* (((
236 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
237 237  )))
320 +
238 238  * (((
239 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
240 240  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
241 241  * (((
242 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
243 243  )))
244 244  
245 245  (((
246 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
247 247  )))
248 248  
249 -[[image:1657330452568-615.png]]
250 250  
350 +* (% style="color:blue" %)**CFM**
251 251  
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 +
354 +
355 +
356 +== 2.6 ​Show Data in DataCake IoT Server ==
357 +
252 252  (((
253 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
254 254  )))
255 255  
256 -[[image:1657330472797-498.png]]
362 +(((
363 +
364 +)))
257 257  
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
258 258  
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
259 259  
260 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
375 +[[image:1654505857935-743.png]]
262 262  
263 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
264 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
265 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
266 266  
267 -[[image:1657330501006-241.png]]
378 +[[image:1654505874829-548.png]]
268 268  
269 269  
270 -[[image:1657330533775-472.png]]
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
271 271  
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
272 272  
273 273  
274 -=== 2.2.6 Use MQTT protocol to uplink data ===
386 +[[image:1654505905236-553.png]]
275 275  
276 276  
277 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
279 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
280 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
281 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
282 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
283 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
284 284  
285 -[[image:1657249978444-674.png]]
391 +[[image:1654505925508-181.png]]
286 286  
287 287  
288 -[[image:1657330723006-866.png]]
289 289  
395 +== 2.7 Frequency Plans ==
290 290  
291 -(((
292 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
293 -)))
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
294 294  
295 295  
400 +=== 2.7.1 EU863-870 (EU868) ===
296 296  
297 -=== 2.2.7 Use TCP protocol to uplink data ===
402 +(% style="color:#037691" %)** Uplink:**
298 298  
404 +868.1 - SF7BW125 to SF12BW125
299 299  
300 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
301 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
302 302  
303 -[[image:image-20220709093918-1.png]]
408 +868.5 - SF7BW125 to SF12BW125
304 304  
410 +867.1 - SF7BW125 to SF12BW125
305 305  
306 -[[image:image-20220709093918-2.png]]
412 +867.3 - SF7BW125 to SF12BW125
307 307  
414 +867.5 - SF7BW125 to SF12BW125
308 308  
416 +867.7 - SF7BW125 to SF12BW125
309 309  
310 -=== 2.2.8 Change Update Interval ===
418 +867.9 - SF7BW125 to SF12BW125
311 311  
312 -User can use below command to change the (% style="color:green" %)**uplink interval**.
420 +868.8 - FSK
313 313  
314 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
315 315  
316 -(((
317 -(% style="color:red" %)**NOTE:**
318 -)))
423 +(% style="color:#037691" %)** Downlink:**
319 319  
320 -(((
321 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
322 -)))
425 +Uplink channels 1-9 (RX1)
323 323  
427 +869.525 - SF9BW125 (RX2 downlink only)
324 324  
325 325  
326 -== 2.3  Uplink Payload ==
327 327  
328 -In this mode, uplink payload includes in total 14 bytes
431 +=== 2.7.2 US902-928(US915) ===
329 329  
433 +Used in USA, Canada and South America. Default use CHE=2
330 330  
331 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
332 -|=(% style="width: 60px;" %)(((
333 -**Size(bytes)**
334 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
335 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
435 +(% style="color:#037691" %)**Uplink:**
336 336  
337 -(((
338 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
339 -)))
437 +903.9 - SF7BW125 to SF10BW125
340 340  
439 +904.1 - SF7BW125 to SF10BW125
341 341  
342 -[[image:1657331036973-987.png]]
441 +904.3 - SF7BW125 to SF10BW125
343 343  
344 -(((
345 -The payload is ASCII string, representative same HEX:
346 -)))
443 +904.5 - SF7BW125 to SF10BW125
347 347  
348 -(((
349 -0x72403155615900640c6c19029200 where:
350 -)))
445 +904.7 - SF7BW125 to SF10BW125
351 351  
352 -* (((
353 -Device ID: 0x724031556159 = 724031556159
354 -)))
355 -* (((
356 -Version: 0x0064=100=1.0.0
357 -)))
447 +904.9 - SF7BW125 to SF10BW125
358 358  
359 -* (((
360 -BAT: 0x0c6c = 3180 mV = 3.180V
361 -)))
362 -* (((
363 -Signal: 0x19 = 25
364 -)))
365 -* (((
366 -Distance: 0x0292= 658 mm
367 -)))
368 -* (((
369 -Interrupt: 0x00 = 0
449 +905.1 - SF7BW125 to SF10BW125
370 370  
451 +905.3 - SF7BW125 to SF10BW125
371 371  
372 372  
373 -
374 -)))
454 +(% style="color:#037691" %)**Downlink:**
375 375  
376 -== 2. Payload Explanation and Sensor Interface ==
456 +923.3 - SF7BW500 to SF12BW500
377 377  
458 +923.9 - SF7BW500 to SF12BW500
378 378  
379 -=== 2.4.1  Device ID ===
460 +924.5 - SF7BW500 to SF12BW500
380 380  
381 -(((
382 -By default, the Device ID equal to the last 6 bytes of IMEI.
383 -)))
462 +925.1 - SF7BW500 to SF12BW500
384 384  
385 -(((
386 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
387 -)))
464 +925.7 - SF7BW500 to SF12BW500
388 388  
389 -(((
390 -**Example:**
391 -)))
466 +926.3 - SF7BW500 to SF12BW500
392 392  
393 -(((
394 -AT+DEUI=A84041F15612
395 -)))
468 +926.9 - SF7BW500 to SF12BW500
396 396  
397 -(((
398 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
399 -)))
470 +927.5 - SF7BW500 to SF12BW500
400 400  
472 +923.3 - SF12BW500(RX2 downlink only)
401 401  
402 402  
403 -=== 2.4.2  Version Info ===
404 404  
405 -(((
406 -Specify the software version: 0x64=100, means firmware version 1.00.
407 -)))
476 +=== 2.7.3 CN470-510 (CN470) ===
408 408  
409 -(((
410 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
411 -)))
478 +Used in China, Default use CHE=1
412 412  
480 +(% style="color:#037691" %)**Uplink:**
413 413  
482 +486.3 - SF7BW125 to SF12BW125
414 414  
415 -=== 2.4. Battery Info ===
484 +486.5 - SF7BW125 to SF12BW125
416 416  
417 -(((
418 -Ex1: 0x0B45 = 2885mV
419 -)))
486 +486.7 - SF7BW125 to SF12BW125
420 420  
421 -(((
422 -Ex2: 0x0B49 = 2889mV
423 -)))
488 +486.9 - SF7BW125 to SF12BW125
424 424  
490 +487.1 - SF7BW125 to SF12BW125
425 425  
492 +487.3 - SF7BW125 to SF12BW125
426 426  
427 -=== 2.4. Signal Strength ===
494 +487.5 - SF7BW125 to SF12BW125
428 428  
429 -(((
430 -NB-IoT Network signal Strength.
431 -)))
496 +487.7 - SF7BW125 to SF12BW125
432 432  
433 -(((
434 -**Ex1: 0x1d = 29**
435 -)))
436 436  
437 -(((
438 -(% style="color:blue" %)**0**(%%)  -113dBm or less
439 -)))
499 +(% style="color:#037691" %)**Downlink:**
440 440  
441 -(((
442 -(% style="color:blue" %)**1**(%%)  -111dBm
443 -)))
501 +506.7 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
447 -)))
503 +506.9 - SF7BW125 to SF12BW125
448 448  
449 -(((
450 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 -)))
505 +507.1 - SF7BW125 to SF12BW125
452 452  
453 -(((
454 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
455 -)))
507 +507.3 - SF7BW125 to SF12BW125
456 456  
509 +507.5 - SF7BW125 to SF12BW125
457 457  
511 +507.7 - SF7BW125 to SF12BW125
458 458  
459 -=== 2.4.5  Distance ===
513 +507.9 - SF7BW125 to SF12BW125
460 460  
461 -Get the distance. Flat object range 280mm - 7500mm.
515 +508.1 - SF7BW125 to SF12BW125
462 462  
463 -(((
464 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
465 -)))
517 +505.3 - SF12BW125 (RX2 downlink only)
466 466  
467 -(((
468 -(((
469 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
470 -)))
471 -)))
472 472  
473 -(((
474 -
475 -)))
476 476  
477 -(((
478 -
479 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
480 480  
481 -=== 2.4.6  Digital Interrupt ===
523 +Default use CHE=2
482 482  
483 -(((
484 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
485 -)))
525 +(% style="color:#037691" %)**Uplink:**
486 486  
487 -(((
488 -The command is:
489 -)))
527 +916.8 - SF7BW125 to SF12BW125
490 490  
491 -(((
492 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
493 -)))
529 +917.0 - SF7BW125 to SF12BW125
494 494  
531 +917.2 - SF7BW125 to SF12BW125
495 495  
496 -(((
497 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
498 -)))
533 +917.4 - SF7BW125 to SF12BW125
499 499  
535 +917.6 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -Example:
503 -)))
537 +917.8 - SF7BW125 to SF12BW125
504 504  
505 -(((
506 -0x(00): Normal uplink packet.
507 -)))
539 +918.0 - SF7BW125 to SF12BW125
508 508  
509 -(((
510 -0x(01): Interrupt Uplink Packet.
511 -)))
541 +918.2 - SF7BW125 to SF12BW125
512 512  
513 513  
544 +(% style="color:#037691" %)**Downlink:**
514 514  
515 -=== 2.4.7  ​+5V Output ===
546 +923.3 - SF7BW500 to SF12BW500
516 516  
517 -(((
518 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
519 -)))
548 +923.9 - SF7BW500 to SF12BW500
520 520  
550 +924.5 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -The 5V output time can be controlled by AT Command.
524 -)))
552 +925.1 - SF7BW500 to SF12BW500
525 525  
526 -(((
527 -(% style="color:blue" %)**AT+5VT=1000**
528 -)))
554 +925.7 - SF7BW500 to SF12BW500
529 529  
530 -(((
531 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
532 -)))
556 +926.3 - SF7BW500 to SF12BW500
533 533  
558 +926.9 - SF7BW500 to SF12BW500
534 534  
560 +927.5 - SF7BW500 to SF12BW500
535 535  
536 -== 2.5  Downlink Payload ==
562 +923.3 - SF12BW500(RX2 downlink only)
537 537  
538 -By default, NDDS75 prints the downlink payload to console port.
539 539  
540 -[[image:image-20220709100028-1.png]]
541 541  
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
542 542  
543 -(((
544 -(% style="color:blue" %)**Examples:**
545 -)))
568 +(% style="color:#037691" %)**Default Uplink channel:**
546 546  
547 -(((
548 -
549 -)))
570 +923.2 - SF7BW125 to SF10BW125
550 550  
551 -* (((
552 -(% style="color:blue" %)**Set TDC**
553 -)))
572 +923.4 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
557 -)))
558 558  
559 -(((
560 -Payload:    01 00 00 1E    TDC=30S
561 -)))
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
562 562  
563 -(((
564 -Payload:    01 00 00 3C    TDC=60S
565 -)))
577 +(OTAA mode, channel added by JoinAccept message)
566 566  
567 -(((
568 -
569 -)))
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
570 570  
571 -* (((
572 -(% style="color:blue" %)**Reset**
573 -)))
581 +922.2 - SF7BW125 to SF10BW125
574 574  
575 -(((
576 -If payload = 0x04FF, it will reset the NDDS75
577 -)))
583 +922.4 - SF7BW125 to SF10BW125
578 578  
585 +922.6 - SF7BW125 to SF10BW125
579 579  
580 -* (% style="color:blue" %)**INTMOD**
587 +922.8 - SF7BW125 to SF10BW125
581 581  
582 -(((
583 -Downlink Payload: 06000003, Set AT+INTMOD=3
584 -)))
589 +923.0 - SF7BW125 to SF10BW125
585 585  
591 +922.0 - SF7BW125 to SF10BW125
586 586  
587 587  
588 -== 2.6  ​LED Indicator ==
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
589 589  
596 +923.6 - SF7BW125 to SF10BW125
590 590  
591 -The NDDS75 has an internal LED which is to show the status of different state.
598 +923.8 - SF7BW125 to SF10BW125
592 592  
600 +924.0 - SF7BW125 to SF10BW125
593 593  
594 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
595 -* Then the LED will be on for 1 second means device is boot normally.
596 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
597 -* For each uplink probe, LED will be on for 500ms.
602 +924.2 - SF7BW125 to SF10BW125
598 598  
599 -(((
600 -
601 -)))
604 +924.4 - SF7BW125 to SF10BW125
602 602  
606 +924.6 - SF7BW125 to SF10BW125
603 603  
604 604  
605 -== 2.7  ​Firmware Change Log ==
609 +(% style="color:#037691" %)** Downlink:**
606 606  
611 +Uplink channels 1-8 (RX1)
607 607  
608 -(((
609 -Download URL & Firmware Change log
610 -)))
613 +923.2 - SF10BW125 (RX2)
611 611  
612 -(((
613 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
614 -)))
615 615  
616 616  
617 -(((
618 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
619 -)))
617 +=== 2.7.6 KR920-923 (KR920) ===
620 620  
619 +Default channel:
621 621  
621 +922.1 - SF7BW125 to SF12BW125
622 622  
623 -== 2. Battery Analysis ==
623 +922.3 - SF7BW125 to SF12BW125
624 624  
625 -=== 2.8.1  Battery Type ===
625 +922.5 - SF7BW125 to SF12BW125
626 626  
627 627  
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +922.7 - SF7BW125 to SF12BW125
637 +
638 +922.9 - SF7BW125 to SF12BW125
639 +
640 +923.1 - SF7BW125 to SF12BW125
641 +
642 +923.3 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +Uplink channels 1-7(RX1)
648 +
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 +
651 +
652 +
653 +=== 2.7.7 IN865-867 (IN865) ===
654 +
655 +(% style="color:#037691" %)** Uplink:**
656 +
657 +865.0625 - SF7BW125 to SF12BW125
658 +
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
628 628  (((
629 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
630 630  )))
692 +)))
631 631  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
632 632  (((
633 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
634 634  )))
635 635  
636 636  (((
637 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 638  )))
639 639  
640 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 643  
707 +== 2.10 ​Firmware Change Log ==
708 +
644 644  (((
645 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
646 646  )))
647 647  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
648 648  
717 +(((
718 +
719 +)))
649 649  
650 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
651 651  
652 652  (((
653 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +
654 654  )))
655 655  
729 +(((
730 +**V1.0.**
731 +)))
656 656  
657 657  (((
658 -Instruction to use as below:
734 +Release
659 659  )))
660 660  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
661 661  (((
662 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
663 663  )))
664 664  
746 +(((
747 +The battery is designed to last for more than 5 years for the LSN50.
748 +)))
665 665  
666 666  (((
667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
668 668  )))
754 +)))
669 669  
670 670  * (((
671 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
672 672  )))
673 673  * (((
674 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
675 675  )))
676 676  * (((
677 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
678 678  )))
679 679  
680 -(((
681 -And the Life expectation in difference case will be shown on the right.
682 -)))
766 + [[image:image-20220610172436-1.png]]
683 683  
684 -[[image:image-20220709110451-3.png]]
685 685  
686 686  
770 +=== 2.11.2 ​Battery Note ===
687 687  
688 -=== 2.8.3  ​Battery Note ===
689 -
690 690  (((
691 691  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
692 692  )))
... ... @@ -693,169 +693,302 @@
693 693  
694 694  
695 695  
696 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
697 697  
698 698  (((
699 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
700 700  )))
701 701  
702 -
703 -
704 -= 3. ​ Access NB-IoT Module =
705 -
706 706  (((
707 -Users can directly access the AT command set of the NB-IoT module.
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
708 708  )))
709 709  
710 710  (((
711 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
712 712  )))
713 713  
714 -[[image:1657333200519-600.png]]
715 715  
716 716  
794 += 3. ​Using the AT Commands =
717 717  
718 -= 4.  Using the AT Commands =
796 +== 3.1 Access AT Commands ==
719 719  
720 -== 4.1  Access AT Commands ==
721 721  
722 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
723 723  
801 +[[image:1654501986557-872.png||height="391" width="800"]]
724 724  
725 -AT+<CMD>?  : Help on <CMD>
726 726  
727 -AT+<CMD>         : Run <CMD>
804 +Or if you have below board, use below connection:
728 728  
729 -AT+<CMD>=<value> : Set the value
730 730  
731 -AT+<CMD>=?  : Get the value
807 +[[image:1654502005655-729.png||height="503" width="801"]]
732 732  
733 733  
810 +
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 +
813 +
814 + [[image:1654502050864-459.png||height="564" width="806"]]
815 +
816 +
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 +
819 +
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 +
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
734 734  (% style="color:#037691" %)**General Commands**(%%)      
735 735  
736 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
737 737  
738 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
739 739  
740 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
741 741  
742 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
743 743  
744 -AT+CFG  : Print all configurations
745 745  
746 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
747 747  
748 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
749 749  
750 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
751 751  
752 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
753 753  
754 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
755 755  
756 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
757 757  
758 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
759 759  
760 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
761 761  
762 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
763 763  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
764 764  
765 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
766 766  
767 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
768 768  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
769 769  
770 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
771 771  
772 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
773 773  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
774 774  
775 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
776 776  
777 -AT+CLIENT               : Get or Set MQTT client
778 778  
779 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
780 780  
781 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
782 782  
783 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
784 784  
785 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
786 786  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
787 787  
788 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
789 789  
790 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
791 791  
792 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
793 793  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
794 794  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
795 795  
796 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
797 797  
798 -== 5.1 How to Upgrade Firmware ==
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
799 799  
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
800 800  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 +
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
801 801  (((
802 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
803 803  )))
804 804  
805 805  (((
806 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
807 807  )))
808 808  
809 809  (((
810 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
811 811  )))
812 812  
942 +(((
943 +
944 +)))
813 813  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
814 814  
815 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
816 816  
817 -== 6.1  ​Connection problem when uploading firmware ==
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
818 818  
958 +[[image:image-20220606154726-3.png]]
819 819  
960 +
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
820 820  (((
821 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
822 822  )))
823 823  
824 -(% class="wikigeneratedid" %)
825 825  (((
826 826  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
827 827  )))
828 828  
986 +(((
987 +
988 +)))
829 829  
830 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
831 831  
994 +[[image:image-20220606154825-4.png]]
995 +
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
832 832  (((
833 833  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
834 834  
835 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
836 836  )))
837 837  
838 838  
839 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
840 840  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
841 841  
842 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
843 843  
844 844  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
845 845  (% class="wikigeneratedid" %)
846 846  (((
847 847  
848 848  )))
849 849  
850 -= 8.  Packing Info =
1064 += 7. Packing Info =
851 851  
852 852  (((
853 853  
854 854  
855 855  (% style="color:#037691" %)**Package Includes**:
1070 +)))
856 856  
857 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
858 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
859 859  )))
860 860  
861 861  (((
... ... @@ -862,22 +862,24 @@
862 862  
863 863  
864 864  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
865 865  
866 -
867 -* Device Size: 13.0 x 5 x 4.5 cm
868 -* Device Weight: 150g
869 -* Package Size / pcs : 15 x 12x 5.5 cm
870 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
871 871  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
872 872  
873 -(((
874 874  
875 -
876 -
877 -
878 878  )))
879 879  
880 -= 9.  Support =
1097 += 8. Support =
881 881  
882 882  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
883 883  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content