Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 47 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,692 +1,774 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 15 14 +**Table of Contents:** 16 16 17 -= 1. Introduction = 18 18 19 -== 1.1 What is NDDS75 Distance Detection Sensor == 20 20 21 -((( 22 - 23 23 24 -((( 25 -((( 26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 27 -))) 28 28 29 -((( 30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 31 -))) 32 32 33 -((( 34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 35 -))) 21 += 1. Introduction = 36 36 37 -((( 38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 39 -))) 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 41 ((( 42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 43 -))) 26 + 44 44 45 -((( 46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 47 -))) 48 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 49 49 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 50 50 51 51 ))) 52 52 53 -[[image:165 7327959271-447.png]]39 +[[image:1654503236291-817.png]] 54 54 55 55 42 +[[image:1657245163077-232.png]] 56 56 57 -== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 45 + 46 +== 1.2 Features == 47 + 48 +* LoRaWAN 1.0.3 Class A 60 60 * Ultra low power consumption 61 -* Distance Detectionby Ultrasonictechnology62 -* Flat objectrange280mm - 7500mm63 -* Accuracy:±(1cm+S*0.3%) (S: Distance)64 -* Cable Length: 25cm50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 71 71 60 +== 1.3 Specification == 72 72 62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 74 - == 1.3 Specification==64 +[[image:image-20220606162220-5.png]] 75 75 76 76 77 -(% style="color:#037691" %)**Common DC Characteristics:** 78 78 79 -* Supply Voltage: 2.1v ~~ 3.6v 80 -* Operating Temperature: -40 ~~ 85°C 68 +== 1.4 Applications == 81 81 82 - (%style="color:#037691" %)**NB-IoT Spec:**70 +* Smart Agriculture 83 83 84 -* - B1 @H-FDD: 2100MHz 85 -* - B3 @H-FDD: 1800MHz 86 -* - B8 @H-FDD: 900MHz 87 -* - B5 @H-FDD: 850MHz 88 -* - B20 @H-FDD: 800MHz 89 -* - B28 @H-FDD: 700MHz 72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 + 90 90 91 - (% style="color:#037691"%)**Battery:**75 +== 1.5 Firmware Change log == 92 92 93 -* Li/SOCI2 un-chargeable battery 94 -* Capacity: 8500mAh 95 -* Self Discharge: <1% / Year @ 25°C 96 -* Max continuously current: 130mA 97 -* Max boost current: 2A, 1 second 98 98 99 - (% style="color:#037691"%)**PowerConsumption**78 +**LSE01 v1.0 :** Release 100 100 101 -* STOP Mode: 10uA @ 3.3v 102 -* Max transmit power: 350mA@3.3v 103 103 104 104 82 += 2. Configure LSE01 to connect to LoRaWAN network = 105 105 106 -== 1.4Applications ==84 +== 2.1 How it works == 107 107 108 -* Smart Buildings & Home Automation 109 -* Logistics and Supply Chain Management 110 -* Smart Metering 111 -* Smart Agriculture 112 -* Smart Cities 113 -* Smart Factory 86 +((( 87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 +))) 114 114 115 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 116 - 90 +((( 91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 +))) 117 117 118 118 119 -== 1.5 Pin Definitions == 120 120 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 121 121 122 - [[image:1657328609906-564.png]]98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 123 123 124 124 101 +[[image:1654503992078-669.png]] 125 125 126 -= 2. Use NDDS75 to communicate with IoT Server = 127 127 128 - ==2.1How it==104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 129 129 106 + 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 108 + 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 110 + 111 +[[image:image-20220606163732-6.jpeg]] 112 + 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 + 115 +**Add APP EUI in the application** 116 + 117 + 118 +[[image:1654504596150-405.png]] 119 + 120 + 121 + 122 +**Add APP KEY and DEV EUI** 123 + 124 +[[image:1654504683289-357.png]] 125 + 126 + 127 + 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 + 130 + 131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 + 133 +[[image:image-20220606163915-7.png]] 134 + 135 + 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 + 138 +[[image:1654504778294-788.png]] 139 + 140 + 141 + 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 130 130 ((( 131 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.150 +Uplink payload includes in total 11 bytes. 132 132 ))) 133 133 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 134 134 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 +=== 2.3.2 MOD~=1(Original value) === 170 + 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 + 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 176 + 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 181 + 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 185 + 186 +(Optional) 187 +))) 188 + 189 +=== 2.3.3 Battery Info === 190 + 135 135 ((( 136 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:192 +Check the battery voltage for LSE01. 137 137 ))) 138 138 139 139 ((( 140 - 196 +Ex1: 0x0B45 = 2885mV 141 141 ))) 142 142 143 -[[image:1657328659945-416.png]] 144 - 145 145 ((( 146 - 200 +Ex2: 0x0B49 = 2889mV 147 147 ))) 148 148 149 149 150 -== 2.2 Configure the NDDS75 == 151 151 205 +=== 2.3.4 Soil Moisture === 152 152 153 -=== 2.2.1 Test Requirement === 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 154 154 155 155 ((( 156 - TouseNDDS75inyourcity,make suremeetbelowrequirements:212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 157 157 ))) 158 158 159 - * Your local operator has already distributed a NB-IoT Network there.160 - *The local NB-IoT network used the band that NSE01 supports.161 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.215 +((( 216 + 217 +))) 162 162 163 163 ((( 164 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 165 165 ))) 166 166 167 167 168 -[[image:1657328756309-230.png]] 169 169 225 +=== 2.3.5 Soil Temperature === 170 170 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 171 171 172 -=== 2.2.2 Insert SIM card === 231 +((( 232 +**Example**: 233 +))) 173 173 174 174 ((( 175 -I nsertthe NB-IoT Cardgetfromyourprovider.236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 176 176 ))) 177 177 178 178 ((( 179 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 180 180 ))) 181 181 182 182 183 -[[image:1657328884227-504.png]] 184 184 245 +=== 2.3.6 Soil Conductivity (EC) === 185 185 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 186 186 187 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 188 188 189 189 ((( 256 +Generally, the EC value of irrigation water is less than 800uS / cm. 257 +))) 258 + 190 190 ((( 191 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.260 + 192 192 ))) 262 + 263 +((( 264 + 193 193 ))) 194 194 195 - [[image:image-20220709092052-2.png]]267 +=== 2.3.7 MOD === 196 196 197 - **Connection:**269 +Firmware version at least v2.1 supports changing mode. 198 198 199 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND271 +For example, bytes[10]=90 200 200 201 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD273 +mod=(bytes[10]>>7)&0x01=1. 202 202 203 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 204 204 276 +**Downlink Command:** 205 205 206 -I nthePC,usebelowserial tool settings:278 +If payload = 0x0A00, workmode=0 207 207 208 -* Baud: (% style="color:green" %)**9600** 209 -* Data bits:** (% style="color:green" %)8(%%)** 210 -* Stop bits: (% style="color:green" %)**1** 211 -* Parity: (% style="color:green" %)**None** 212 -* Flow Control: (% style="color:green" %)**None** 280 +If** **payload =** **0x0A01, workmode=1 213 213 282 + 283 + 284 +=== 2.3.8 Decode payload in The Things Network === 285 + 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 214 214 ((( 215 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNDDS75. NDDS75 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.292 +The payload decoder function for TTN is here: 216 216 ))) 217 217 218 -[[image:1657329814315-101.png]] 219 - 220 220 ((( 221 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 222 222 ))) 223 223 224 224 300 +== 2.4 Uplink Interval == 225 225 226 - ===2.2.4APprotocoltouplink data ===302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 227 227 228 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 229 229 230 230 306 +== 2.5 Downlink Payload == 307 + 308 +By default, LSE50 prints the downlink payload to console port. 309 + 310 +[[image:image-20220606165544-8.png]] 311 + 312 + 231 231 ((( 232 - **Usebelowcommands:**314 +(% style="color:blue" %)**Examples:** 233 233 ))) 234 234 235 - *(((236 - (%style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink317 +((( 318 + 237 237 ))) 320 + 238 238 * ((( 239 -(% style="color:blue" %)** AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port322 +(% style="color:blue" %)**Set TDC** 240 240 ))) 324 + 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 328 + 329 +((( 330 +Payload: 01 00 00 1E TDC=30S 331 +))) 332 + 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 335 +))) 336 + 337 +((( 338 + 339 +))) 340 + 241 241 * ((( 242 -(% style="color:blue" %)** AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resourcepath342 +(% style="color:blue" %)**Reset** 243 243 ))) 244 244 245 245 ((( 246 - Forparameterdescription,pleaserefertoAT command set346 +If payload = 0x04FF, it will reset the LSE01 247 247 ))) 248 248 249 -[[image:1657330452568-615.png]] 250 250 350 +* (% style="color:blue" %)**CFM** 251 251 352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 353 + 354 + 355 + 356 +== 2.6 Show Data in DataCake IoT Server == 357 + 252 252 ((( 253 -A fter configure theserver addressand(% style="color:green"%)**resetthedevice**(%%)(viaAT+ATZ ),NDDS75willstart touplink sensorvalues toCoAPserver.359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 254 254 ))) 255 255 256 -[[image:1657330472797-498.png]] 362 +((( 363 + 364 +))) 257 257 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 258 258 370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 259 259 260 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 261 261 375 +[[image:1654505857935-743.png]] 262 262 263 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 264 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 265 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 266 266 267 -[[image:165 7330501006-241.png]]378 +[[image:1654505874829-548.png]] 268 268 269 269 270 - [[image:1657330533775-472.png]]381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 271 271 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 272 272 273 273 274 - ===2.2.6Use MQTTprotocol to uplink data ===386 +[[image:1654505905236-553.png]] 275 275 276 276 277 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 279 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 280 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 281 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 282 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 283 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 284 284 285 -[[image:165 7249978444-674.png]]391 +[[image:1654505925508-181.png]] 286 286 287 287 288 -[[image:1657330723006-866.png]] 289 289 395 +== 2.7 Frequency Plans == 290 290 291 -((( 292 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 293 -))) 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 294 294 295 295 400 +=== 2.7.1 EU863-870 (EU868) === 296 296 297 - ===2.2.7 Use TCP protocoltouplinkdata ===402 +(% style="color:#037691" %)** Uplink:** 298 298 404 +868.1 - SF7BW125 to SF12BW125 299 299 300 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 301 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 302 302 303 - [[image:image-20220709093918-1.png]]408 +868.5 - SF7BW125 to SF12BW125 304 304 410 +867.1 - SF7BW125 to SF12BW125 305 305 306 - [[image:image-20220709093918-2.png]]412 +867.3 - SF7BW125 to SF12BW125 307 307 414 +867.5 - SF7BW125 to SF12BW125 308 308 416 +867.7 - SF7BW125 to SF12BW125 309 309 310 - === 2.2.8ChangeUpdateInterval ===418 +867.9 - SF7BW125 to SF12BW125 311 311 312 - User can use below command to change the (% style="color:green" %)**uplink interval**.420 +868.8 - FSK 313 313 314 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 315 315 316 -((( 317 -(% style="color:red" %)**NOTE:** 318 -))) 423 +(% style="color:#037691" %)** Downlink:** 319 319 320 -((( 321 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 322 -))) 425 +Uplink channels 1-9 (RX1) 323 323 427 +869.525 - SF9BW125 (RX2 downlink only) 324 324 325 325 326 -== 2.3 Uplink Payload == 327 327 328 - Inthismode, uplink payload includes in total14bytes431 +=== 2.7.2 US902-928(US915) === 329 329 433 +Used in USA, Canada and South America. Default use CHE=2 330 330 331 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %) 332 -|=(% style="width: 60px;" %)((( 333 -**Size(bytes)** 334 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1** 335 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 435 +(% style="color:#037691" %)**Uplink:** 336 336 337 -((( 338 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 339 -))) 437 +903.9 - SF7BW125 to SF10BW125 340 340 439 +904.1 - SF7BW125 to SF10BW125 341 341 342 - [[image:1657331036973-987.png]]441 +904.3 - SF7BW125 to SF10BW125 343 343 344 -((( 345 -The payload is ASCII string, representative same HEX: 346 -))) 443 +904.5 - SF7BW125 to SF10BW125 347 347 348 -((( 349 -0x72403155615900640c6c19029200 where: 350 -))) 445 +904.7 - SF7BW125 to SF10BW125 351 351 352 -* ((( 353 -Device ID: 0x724031556159 = 724031556159 354 -))) 355 -* ((( 356 -Version: 0x0064=100=1.0.0 357 -))) 447 +904.9 - SF7BW125 to SF10BW125 358 358 359 -* ((( 360 -BAT: 0x0c6c = 3180 mV = 3.180V 361 -))) 362 -* ((( 363 -Signal: 0x19 = 25 364 -))) 365 -* ((( 366 -Distance: 0x0292= 658 mm 367 -))) 368 -* ((( 369 -Interrupt: 0x00 = 0 449 +905.1 - SF7BW125 to SF10BW125 370 370 451 +905.3 - SF7BW125 to SF10BW125 371 371 372 372 373 - 374 -))) 454 +(% style="color:#037691" %)**Downlink:** 375 375 376 - ==2.4PayloadExplanation andSensorInterface==456 +923.3 - SF7BW500 to SF12BW500 377 377 458 +923.9 - SF7BW500 to SF12BW500 378 378 379 - ===2.4.1 DeviceID===460 +924.5 - SF7BW500 to SF12BW500 380 380 381 -((( 382 -By default, the Device ID equal to the last 6 bytes of IMEI. 383 -))) 462 +925.1 - SF7BW500 to SF12BW500 384 384 385 -((( 386 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 387 -))) 464 +925.7 - SF7BW500 to SF12BW500 388 388 389 -((( 390 -**Example:** 391 -))) 466 +926.3 - SF7BW500 to SF12BW500 392 392 393 -((( 394 -AT+DEUI=A84041F15612 395 -))) 468 +926.9 - SF7BW500 to SF12BW500 396 396 397 -((( 398 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 399 -))) 470 +927.5 - SF7BW500 to SF12BW500 400 400 472 +923.3 - SF12BW500(RX2 downlink only) 401 401 402 402 403 -=== 2.4.2 Version Info === 404 404 405 -((( 406 -Specify the software version: 0x64=100, means firmware version 1.00. 407 -))) 476 +=== 2.7.3 CN470-510 (CN470) === 408 408 409 -((( 410 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 411 -))) 478 +Used in China, Default use CHE=1 412 412 480 +(% style="color:#037691" %)**Uplink:** 413 413 482 +486.3 - SF7BW125 to SF12BW125 414 414 415 - === 2.4.3BatteryInfo===484 +486.5 - SF7BW125 to SF12BW125 416 416 417 -((( 418 -Ex1: 0x0B45 = 2885mV 419 -))) 486 +486.7 - SF7BW125 to SF12BW125 420 420 421 -((( 422 -Ex2: 0x0B49 = 2889mV 423 -))) 488 +486.9 - SF7BW125 to SF12BW125 424 424 490 +487.1 - SF7BW125 to SF12BW125 425 425 492 +487.3 - SF7BW125 to SF12BW125 426 426 427 - === 2.4.4SignalStrength===494 +487.5 - SF7BW125 to SF12BW125 428 428 429 -((( 430 -NB-IoT Network signal Strength. 431 -))) 496 +487.7 - SF7BW125 to SF12BW125 432 432 433 -((( 434 -**Ex1: 0x1d = 29** 435 -))) 436 436 437 -((( 438 -(% style="color:blue" %)**0**(%%) -113dBm or less 439 -))) 499 +(% style="color:#037691" %)**Downlink:** 440 440 441 -((( 442 -(% style="color:blue" %)**1**(%%) -111dBm 443 -))) 501 +506.7 - SF7BW125 to SF12BW125 444 444 445 -((( 446 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 447 -))) 503 +506.9 - SF7BW125 to SF12BW125 448 448 449 -((( 450 -(% style="color:blue" %)**31** (%%) -51dBm or greater 451 -))) 505 +507.1 - SF7BW125 to SF12BW125 452 452 453 -((( 454 -(% style="color:blue" %)**99** (%%) Not known or not detectable 455 -))) 507 +507.3 - SF7BW125 to SF12BW125 456 456 509 +507.5 - SF7BW125 to SF12BW125 457 457 511 +507.7 - SF7BW125 to SF12BW125 458 458 459 - ===2.4.5Distance===513 +507.9 - SF7BW125 to SF12BW125 460 460 461 - Get the distance. Flatobjectrange280mm - 7500mm.515 +508.1 - SF7BW125 to SF12BW125 462 462 463 -((( 464 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 465 -))) 517 +505.3 - SF12BW125 (RX2 downlink only) 466 466 467 -((( 468 -((( 469 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 470 -))) 471 -))) 472 472 473 -((( 474 - 475 -))) 476 476 477 -((( 478 - 479 -))) 521 +=== 2.7.4 AU915-928(AU915) === 480 480 481 - === 2.4.6DigitalInterrupt===523 +Default use CHE=2 482 482 483 -((( 484 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 485 -))) 525 +(% style="color:#037691" %)**Uplink:** 486 486 487 -((( 488 -The command is: 489 -))) 527 +916.8 - SF7BW125 to SF12BW125 490 490 491 -((( 492 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 493 -))) 529 +917.0 - SF7BW125 to SF12BW125 494 494 531 +917.2 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 498 -))) 533 +917.4 - SF7BW125 to SF12BW125 499 499 535 +917.6 - SF7BW125 to SF12BW125 500 500 501 -((( 502 -Example: 503 -))) 537 +917.8 - SF7BW125 to SF12BW125 504 504 505 -((( 506 -0x(00): Normal uplink packet. 507 -))) 539 +918.0 - SF7BW125 to SF12BW125 508 508 509 -((( 510 -0x(01): Interrupt Uplink Packet. 511 -))) 541 +918.2 - SF7BW125 to SF12BW125 512 512 513 513 544 +(% style="color:#037691" %)**Downlink:** 514 514 515 - ===2.4.7+5VOutput===546 +923.3 - SF7BW500 to SF12BW500 516 516 517 -((( 518 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 519 -))) 548 +923.9 - SF7BW500 to SF12BW500 520 520 550 +924.5 - SF7BW500 to SF12BW500 521 521 522 -((( 523 -The 5V output time can be controlled by AT Command. 524 -))) 552 +925.1 - SF7BW500 to SF12BW500 525 525 526 -((( 527 -(% style="color:blue" %)**AT+5VT=1000** 528 -))) 554 +925.7 - SF7BW500 to SF12BW500 529 529 530 -((( 531 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 532 -))) 556 +926.3 - SF7BW500 to SF12BW500 533 533 558 +926.9 - SF7BW500 to SF12BW500 534 534 560 +927.5 - SF7BW500 to SF12BW500 535 535 536 - ==2.5DownlinkPayload ==562 +923.3 - SF12BW500(RX2 downlink only) 537 537 538 -By default, NDDS75 prints the downlink payload to console port. 539 539 540 -[[image:image-20220709100028-1.png]] 541 541 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 542 542 543 -((( 544 -(% style="color:blue" %)**Examples:** 545 -))) 568 +(% style="color:#037691" %)**Default Uplink channel:** 546 546 547 -((( 548 - 549 -))) 570 +923.2 - SF7BW125 to SF10BW125 550 550 551 -* ((( 552 -(% style="color:blue" %)**Set TDC** 553 -))) 572 +923.4 - SF7BW125 to SF10BW125 554 554 555 -((( 556 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 557 -))) 558 558 559 -((( 560 -Payload: 01 00 00 1E TDC=30S 561 -))) 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 562 562 563 -((( 564 -Payload: 01 00 00 3C TDC=60S 565 -))) 577 +(OTAA mode, channel added by JoinAccept message) 566 566 567 -((( 568 - 569 -))) 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 570 570 571 -* ((( 572 -(% style="color:blue" %)**Reset** 573 -))) 581 +922.2 - SF7BW125 to SF10BW125 574 574 575 -((( 576 -If payload = 0x04FF, it will reset the NDDS75 577 -))) 583 +922.4 - SF7BW125 to SF10BW125 578 578 585 +922.6 - SF7BW125 to SF10BW125 579 579 580 - *(%style="color:blue"%)**INTMOD**587 +922.8 - SF7BW125 to SF10BW125 581 581 582 -((( 583 -Downlink Payload: 06000003, Set AT+INTMOD=3 584 -))) 589 +923.0 - SF7BW125 to SF10BW125 585 585 591 +922.0 - SF7BW125 to SF10BW125 586 586 587 587 588 -= =2.6LEDIndicator==594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 589 589 596 +923.6 - SF7BW125 to SF10BW125 590 590 591 - TheNDDS75has an internal LED which is toshow the status of different state.598 +923.8 - SF7BW125 to SF10BW125 592 592 600 +924.0 - SF7BW125 to SF10BW125 593 593 594 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 595 -* Then the LED will be on for 1 second means device is boot normally. 596 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 597 -* For each uplink probe, LED will be on for 500ms. 602 +924.2 - SF7BW125 to SF10BW125 598 598 599 -((( 600 - 601 -))) 604 +924.4 - SF7BW125 to SF10BW125 602 602 606 +924.6 - SF7BW125 to SF10BW125 603 603 604 604 605 - ==2.7FirmwareChange Log ==609 +(% style="color:#037691" %)** Downlink:** 606 606 611 +Uplink channels 1-8 (RX1) 607 607 608 -((( 609 -Download URL & Firmware Change log 610 -))) 613 +923.2 - SF10BW125 (RX2) 611 611 612 -((( 613 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 614 -))) 615 615 616 616 617 -((( 618 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 619 -))) 617 +=== 2.7.6 KR920-923 (KR920) === 620 620 619 +Default channel: 621 621 621 +922.1 - SF7BW125 to SF12BW125 622 622 623 - ==2.8BatteryAnalysis ==623 +922.3 - SF7BW125 to SF12BW125 624 624 625 - ===2.8.1BatteryType ===625 +922.5 - SF7BW125 to SF12BW125 626 626 627 627 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 + 630 +922.1 - SF7BW125 to SF12BW125 631 + 632 +922.3 - SF7BW125 to SF12BW125 633 + 634 +922.5 - SF7BW125 to SF12BW125 635 + 636 +922.7 - SF7BW125 to SF12BW125 637 + 638 +922.9 - SF7BW125 to SF12BW125 639 + 640 +923.1 - SF7BW125 to SF12BW125 641 + 642 +923.3 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Downlink:** 646 + 647 +Uplink channels 1-7(RX1) 648 + 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 + 651 + 652 + 653 +=== 2.7.7 IN865-867 (IN865) === 654 + 655 +(% style="color:#037691" %)** Uplink:** 656 + 657 +865.0625 - SF7BW125 to SF12BW125 658 + 659 +865.4025 - SF7BW125 to SF12BW125 660 + 661 +865.9850 - SF7BW125 to SF12BW125 662 + 663 + 664 +(% style="color:#037691" %) **Downlink:** 665 + 666 +Uplink channels 1-3 (RX1) 667 + 668 +866.550 - SF10BW125 (RX2) 669 + 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 628 628 ((( 629 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 630 630 ))) 692 +))) 631 631 694 + 695 + 696 +[[image:1654506665940-119.png]] 697 + 632 632 ((( 633 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 634 634 ))) 635 635 636 636 ((( 637 - The batteryrelateddocumentsasbelow:703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 638 ))) 639 639 640 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 641 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 642 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 643 643 707 +== 2.10 Firmware Change Log == 708 + 644 644 ((( 645 - [[image:image-20220709101450-2.png]]710 +**Firmware download link:** 646 646 ))) 647 647 713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 648 648 717 +((( 718 + 719 +))) 649 649 650 -=== 2.8.2 Power consumption Analyze === 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 651 651 652 652 ((( 653 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.726 + 654 654 ))) 655 655 729 +((( 730 +**V1.0.** 731 +))) 656 656 657 657 ((( 658 - Instruction to usebelow:734 +Release 659 659 ))) 660 660 737 + 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 661 661 ((( 662 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 663 663 ))) 664 664 746 +((( 747 +The battery is designed to last for more than 5 years for the LSN50. 748 +))) 665 665 666 666 ((( 667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 668 668 ))) 754 +))) 669 669 670 670 * ((( 671 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 672 672 ))) 673 673 * ((( 674 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 675 675 ))) 676 676 * ((( 677 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 678 678 ))) 679 679 680 -((( 681 -And the Life expectation in difference case will be shown on the right. 682 -))) 766 + [[image:image-20220610172436-1.png]] 683 683 684 -[[image:image-20220709110451-3.png]] 685 685 686 686 770 +=== 2.11.2 Battery Note === 687 687 688 -=== 2.8.3 Battery Note === 689 - 690 690 ((( 691 691 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 692 692 ))) ... ... @@ -693,169 +693,302 @@ 693 693 694 694 695 695 696 -=== 2. 8.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 697 697 698 698 ((( 699 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 700 700 ))) 701 701 702 - 703 - 704 -= 3. Access NB-IoT Module = 705 - 706 706 ((( 707 - Userscan directly accesstheATcommand set of theNB-IoTmodule.785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 708 708 ))) 709 709 710 710 ((( 711 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 712 712 ))) 713 713 714 -[[image:1657333200519-600.png]] 715 715 716 716 794 += 3. Using the AT Commands = 717 717 718 -= 4.UsingtheAT Commands =796 +== 3.1 Access AT Commands == 719 719 720 -== 4.1 Access AT Commands == 721 721 722 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 723 723 801 +[[image:1654501986557-872.png||height="391" width="800"]] 724 724 725 -AT+<CMD>? : Help on <CMD> 726 726 727 - AT+<CMD>: Run<CMD>804 +Or if you have below board, use below connection: 728 728 729 -AT+<CMD>=<value> : Set the value 730 730 731 - AT+<CMD>=?:Get the value807 +[[image:1654502005655-729.png||height="503" width="801"]] 732 732 733 733 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 734 734 (% style="color:#037691" %)**General Commands**(%%) 735 735 736 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 737 737 738 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 739 739 740 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 741 741 742 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 743 743 744 -AT+CFG : Print all configurations 745 745 746 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 747 747 748 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 749 749 750 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 751 751 752 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 753 753 754 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 755 755 756 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 757 757 758 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 759 759 760 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 761 761 762 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 763 763 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 764 764 765 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 766 766 767 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 768 768 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 769 769 770 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 771 771 772 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 773 773 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 774 774 775 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 776 776 777 -AT+CLIENT : Get or Set MQTT client 778 778 779 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 780 780 781 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 782 782 783 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 784 784 785 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 786 786 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 787 787 788 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 789 789 790 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 791 791 792 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 793 793 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 794 794 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 795 795 796 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 797 797 798 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 799 799 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 800 800 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 801 801 ((( 802 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 803 803 ))) 804 804 805 805 ((( 806 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 807 807 ))) 808 808 809 809 ((( 810 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 811 811 ))) 812 812 942 +((( 943 + 944 +))) 813 813 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 814 814 815 -= 6. Trouble Shooting = 950 +((( 951 + 952 +))) 816 816 817 -== 6.1 Connection problem when uploading firmware == 954 +((( 955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 +))) 818 818 958 +[[image:image-20220606154726-3.png]] 819 819 960 + 961 +When you use the TTN network, the US915 frequency bands use are: 962 + 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 972 + 820 820 ((( 821 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 822 822 ))) 823 823 824 -(% class="wikigeneratedid" %) 825 825 ((( 826 826 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 827 827 ))) 828 828 986 +((( 987 + 988 +))) 829 829 830 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 831 831 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 832 832 ((( 833 833 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 834 834 835 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 836 836 ))) 837 837 838 838 839 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 840 840 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 841 841 842 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 843 843 844 844 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 845 845 (% class="wikigeneratedid" %) 846 846 ((( 847 847 848 848 ))) 849 849 850 -= 8.1064 += 7. Packing Info = 851 851 852 852 ((( 853 853 854 854 855 855 (% style="color:#037691" %)**Package Includes**: 1070 +))) 856 856 857 -* NSE01 NB-IoT Distance Detect Sensor Node x 1858 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 859 859 ))) 860 860 861 861 ((( ... ... @@ -862,22 +862,24 @@ 862 862 863 863 864 864 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 865 865 866 - 867 -* Device Size: 13.0 x 5 x 4.5 cm 868 -* Device Weight: 150g 869 -* Package Size / pcs : 15 x 12x 5.5 cm 870 -* Weight / pcs : 220g 1082 +* ((( 1083 +Device Size: cm 871 871 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 872 872 873 -((( 874 874 875 - 876 - 877 - 878 878 ))) 879 879 880 -= 9.1097 += 8. Support = 881 881 882 882 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 883 883 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content