Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.19
edited by Xiaoling
on 2022/07/09 13:53
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,679 +14,782 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 27  )))
28 28  
29 29  (((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
31 31  )))
32 32  
33 33  (((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
35 35  )))
36 36  
37 37  (((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
39 39  )))
40 40  
41 41  (((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
49 49  
50 -
51 -)))
50 +[[image:1654503236291-817.png]]
52 52  
53 -[[image:1657327959271-447.png]]
54 54  
53 +[[image:1654503265560-120.png]]
55 55  
56 56  
57 -== 1.2 ​ Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
60 60  * Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 72  
73 73  
74 -== 1.3  Specification ==
75 75  
76 76  
77 -(% style="color:#037691" %)**Common DC Characteristics:**
75 +== 1.3 Specification ==
78 78  
79 -* Supply Voltage: 2.1v ~~ 3.6v
80 -* Operating Temperature: -40 ~~ 85°C
77 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
81 81  
82 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +[[image:image-20220606162220-5.png]]
83 83  
84 -* - B1 @H-FDD: 2100MHz
85 -* - B3 @H-FDD: 1800MHz
86 -* - B8 @H-FDD: 900MHz
87 -* - B5 @H-FDD: 850MHz
88 -* - B20 @H-FDD: 800MHz
89 -* - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
83 +== ​1.4 Applications ==
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
100 -
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 -
104 -
105 -
106 -== ​1.4  Applications ==
107 -
108 -* Smart Buildings & Home Automation
109 -* Logistics and Supply Chain Management
110 -* Smart Metering
111 111  * Smart Agriculture
112 -* Smart Cities
113 -* Smart Factory
114 114  
115 115  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
116 116  ​
117 117  
90 +== 1.5 Firmware Change log ==
118 118  
119 -== 1.5  Pin Definitions ==
120 120  
93 +**LSE01 v1.0 :**  Release
121 121  
122 -[[image:1657328609906-564.png]]
123 123  
124 124  
97 += 2. Configure LSE01 to connect to LoRaWAN network =
125 125  
126 -= 2.  Use NDDS75 to communicate with IoT Server =
99 +== 2.1 How it works ==
127 127  
128 -== 2.1  How it works ==
129 -
130 130  (((
131 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
132 132  )))
133 133  
134 -
135 135  (((
136 -The diagram below shows the working flow in default firmware of NDDS75:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
137 137  )))
138 138  
139 -(((
140 -
141 -)))
142 142  
143 -[[image:1657328659945-416.png]]
144 144  
145 -(((
146 -
147 -)))
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
148 148  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
149 149  
150 -== 2.2 ​ Configure the NDDS75 ==
151 151  
116 +[[image:1654503992078-669.png]]
152 152  
153 -=== 2.2.1 Test Requirement ===
154 154  
155 -(((
156 -To use NDDS75 in your city, make sure meet below requirements:
157 -)))
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
158 158  
159 -* Your local operator has already distributed a NB-IoT Network there.
160 -* The local NB-IoT network used the band that NSE01 supports.
161 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
162 162  
163 -(((
164 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
165 -)))
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
166 166  
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
167 167  
168 -[[image:1657328756309-230.png]]
126 +[[image:image-20220606163732-6.jpeg]]
169 169  
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
170 170  
130 +**Add APP EUI in the application**
171 171  
172 -=== 2.2.2 Insert SIM card ===
173 173  
174 -(((
175 -Insert the NB-IoT Card get from your provider.
176 -)))
133 +[[image:1654504596150-405.png]]
177 177  
178 -(((
179 -User need to take out the NB-IoT module and insert the SIM card like below:
180 -)))
181 181  
182 182  
183 -[[image:1657328884227-504.png]]
137 +**Add APP KEY and DEV EUI**
184 184  
139 +[[image:1654504683289-357.png]]
185 185  
186 186  
187 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
188 188  
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
144 +
145 +
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 +
148 +[[image:image-20220606163915-7.png]]
149 +
150 +
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
152 +
153 +[[image:1654504778294-788.png]]
154 +
155 +
156 +
157 +== 2.3 Uplink Payload ==
158 +
159 +
160 +=== 2.3.1 MOD~=0(Default Mode) ===
161 +
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
189 189  (((
190 -(((
191 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
165 +Uplink payload includes in total 11 bytes.
192 192  )))
167 +
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
171 +
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
176 +
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
180 +
181 +(Optional)
193 193  )))
194 194  
195 -[[image:image-20220709092052-2.png]]
196 196  
197 -**Connection:**
198 198  
199 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
200 200  
201 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
202 202  
203 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
204 204  
205 205  
206 -In the PC, use below serial tool settings:
190 +=== 2.3.2 MOD~=1(Original value) ===
207 207  
208 -* Baud:  (% style="color:green" %)**9600**
209 -* Data bits:** (% style="color:green" %)8(%%)**
210 -* Stop bits: (% style="color:green" %)**1**
211 -* Parity:  (% style="color:green" %)**None**
212 -* Flow Control: (% style="color:green" %)**None**
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
213 213  
214 -(((
215 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
216 -)))
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
217 217  
218 -[[image:1657329814315-101.png]]
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
219 219  
220 -(((
221 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
206 +
207 +(Optional)
222 222  )))
223 223  
224 224  
225 225  
226 -=== 2.2.4 Use CoAP protocol to uplink data ===
227 227  
228 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
229 229  
230 230  
215 +
216 +=== 2.3.3 Battery Info ===
217 +
231 231  (((
232 -**Use below commands:**
219 +Check the battery voltage for LSE01.
233 233  )))
234 234  
235 -* (((
236 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 +(((
223 +Ex1: 0x0B45 = 2885mV
237 237  )))
238 -* (((
239 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
240 -)))
241 -* (((
242 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
243 -)))
244 244  
245 245  (((
246 -For parameter description, please refer to AT command set
227 +Ex2: 0x0B49 = 2889mV
247 247  )))
248 248  
249 -[[image:1657330452568-615.png]]
250 250  
251 251  
232 +=== 2.3.4 Soil Moisture ===
233 +
252 252  (((
253 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
254 254  )))
255 255  
256 -[[image:1657330472797-498.png]]
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
257 257  
242 +(((
243 +
244 +)))
258 258  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
259 259  
260 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
262 262  
263 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
264 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
265 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
252 +=== 2.3.5 Soil Temperature ===
266 266  
267 -[[image:1657330501006-241.png]]
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
268 268  
258 +(((
259 +**Example**:
260 +)))
269 269  
270 -[[image:1657330533775-472.png]]
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
271 271  
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
272 272  
273 273  
274 -=== 2.2.6 Use MQTT protocol to uplink data ===
275 275  
272 +=== 2.3.6 Soil Conductivity (EC) ===
276 276  
277 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
279 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
280 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
281 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
282 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
283 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
284 284  
285 -[[image:1657249978444-674.png]]
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
286 286  
282 +(((
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
284 +)))
287 287  
288 -[[image:1657330723006-866.png]]
286 +(((
287 +
288 +)))
289 289  
290 -
291 291  (((
292 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
291 +
293 293  )))
294 294  
294 +=== 2.3.7 MOD ===
295 295  
296 +Firmware version at least v2.1 supports changing mode.
296 296  
297 -=== 2.2.7 Use TCP protocol to uplink data ===
298 +For example, bytes[10]=90
298 298  
300 +mod=(bytes[10]>>7)&0x01=1.
299 299  
300 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
301 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
302 302  
303 -[[image:image-20220709093918-1.png]]
303 +**Downlink Command:**
304 304  
305 +If payload = 0x0A00, workmode=0
305 305  
306 -[[image:image-20220709093918-2.png]]
307 +If** **payload =** **0x0A01, workmode=1
307 307  
308 308  
309 309  
310 -=== 2.2.8 Change Update Interval ===
311 +=== 2.3.8 ​Decode payload in The Things Network ===
311 311  
312 -User can use below command to change the (% style="color:green" %)**uplink interval**.
313 +While using TTN network, you can add the payload format to decode the payload.
313 313  
314 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
315 315  
316 +[[image:1654505570700-128.png]]
317 +
316 316  (((
317 -(% style="color:red" %)**NOTE:**
319 +The payload decoder function for TTN is here:
318 318  )))
319 319  
320 320  (((
321 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
322 322  )))
323 323  
324 324  
327 +== 2.4 Uplink Interval ==
325 325  
326 -== 2. Uplink Payload ==
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
327 327  
328 -In this mode, uplink payload includes in total 14 bytes
329 329  
330 330  
331 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
332 -|=(% style="width: 60px;" %)(((
333 -**Size(bytes)**
334 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
335 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
333 +== 2.5 Downlink Payload ==
336 336  
337 -(((
338 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
339 -)))
335 +By default, LSE50 prints the downlink payload to console port.
340 340  
337 +[[image:image-20220606165544-8.png]]
341 341  
342 -[[image:1657331036973-987.png]]
343 343  
344 344  (((
345 -The payload is ASCII string, representative same HEX:
341 +**Examples:**
346 346  )))
347 347  
348 348  (((
349 -0x72403155615900640c6c19029200 where:
345 +
350 350  )))
351 351  
352 352  * (((
353 -Device ID: 0x724031556159 = 724031556159
349 +**Set TDC**
354 354  )))
355 -* (((
356 -Version: 0x0064=100=1.0.0
351 +
352 +(((
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
357 357  )))
358 358  
359 -* (((
360 -BAT: 0x0c6c = 3180 mV = 3.180V
356 +(((
357 +Payload:    01 00 00 1E    TDC=30S
361 361  )))
362 -* (((
363 -Signal: 0x19 = 25
359 +
360 +(((
361 +Payload:    01 00 00 3C    TDC=60S
364 364  )))
365 -* (((
366 -Distance: 0x0292= 658 mm
363 +
364 +(((
365 +
367 367  )))
367 +
368 368  * (((
369 -Interrupt: 0x00 = 0
369 +**Reset**
370 +)))
370 370  
372 +(((
373 +If payload = 0x04FF, it will reset the LSE01
374 +)))
371 371  
372 372  
373 -
374 -)))
377 +* **CFM**
375 375  
376 -== 2.4  Payload Explanation and Sensor Interface ==
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
377 377  
378 378  
379 -=== 2.4.1  Device ID ===
380 380  
381 -(((
382 -By default, the Device ID equal to the last 6 bytes of IMEI.
383 -)))
383 +== 2.6 ​Show Data in DataCake IoT Server ==
384 384  
385 385  (((
386 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
387 387  )))
388 388  
389 389  (((
390 -**Example:**
390 +
391 391  )))
392 392  
393 393  (((
394 -AT+DEUI=A84041F15612
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
395 395  )))
396 396  
397 397  (((
398 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
398 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 399  )))
400 400  
401 401  
402 +[[image:1654505857935-743.png]]
402 402  
403 -=== 2.4.2  Version Info ===
404 404  
405 -(((
406 -Specify the software version: 0x64=100, means firmware version 1.00.
407 -)))
405 +[[image:1654505874829-548.png]]
408 408  
409 -(((
410 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
411 -)))
412 412  
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
413 413  
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
414 414  
415 -=== 2.4.3  Battery Info ===
416 416  
417 -(((
418 -Ex1: 0x0B45 = 2885mV
419 -)))
413 +[[image:1654505905236-553.png]]
420 420  
421 -(((
422 -Ex2: 0x0B49 = 2889mV
423 -)))
424 424  
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
425 425  
418 +[[image:1654505925508-181.png]]
426 426  
427 -=== 2.4.4  Signal Strength ===
428 428  
429 -(((
430 -NB-IoT Network signal Strength.
431 -)))
432 432  
433 -(((
434 -**Ex1: 0x1d = 29**
435 -)))
422 +== 2.7 Frequency Plans ==
436 436  
437 -(((
438 -(% style="color:blue" %)**0**(%%)  -113dBm or less
439 -)))
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
440 440  
441 -(((
442 -(% style="color:blue" %)**1**(%%)  -111dBm
443 -)))
444 444  
445 -(((
446 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
447 -)))
427 +=== 2.7.1 EU863-870 (EU868) ===
448 448  
449 -(((
450 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 -)))
429 +(% style="color:#037691" %)** Uplink:**
452 452  
453 -(((
454 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
455 -)))
431 +868.1 - SF7BW125 to SF12BW125
456 456  
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
457 457  
435 +868.5 - SF7BW125 to SF12BW125
458 458  
459 -=== 2.4.5  Distance ===
437 +867.1 - SF7BW125 to SF12BW125
460 460  
461 -Get the distance. Flat object range 280mm - 7500mm.
439 +867.3 - SF7BW125 to SF12BW125
462 462  
463 -(((
464 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
465 -)))
441 +867.5 - SF7BW125 to SF12BW125
466 466  
467 -(((
468 -(((
469 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
470 -)))
471 -)))
443 +867.7 - SF7BW125 to SF12BW125
472 472  
473 -(((
474 -
475 -)))
445 +867.9 - SF7BW125 to SF12BW125
476 476  
477 -(((
478 -
479 -)))
447 +868.8 - FSK
480 480  
481 -=== 2.4.6  Digital Interrupt ===
482 482  
483 -(((
484 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
485 -)))
450 +(% style="color:#037691" %)** Downlink:**
486 486  
487 -(((
488 -The command is:
489 -)))
452 +Uplink channels 1-9 (RX1)
490 490  
491 -(((
492 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
493 -)))
454 +869.525 - SF9BW125 (RX2 downlink only)
494 494  
495 495  
496 -(((
497 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
498 -)))
499 499  
458 +=== 2.7.2 US902-928(US915) ===
500 500  
501 -(((
502 -Example:
503 -)))
460 +Used in USA, Canada and South America. Default use CHE=2
504 504  
505 -(((
506 -0x(00): Normal uplink packet.
507 -)))
462 +(% style="color:#037691" %)**Uplink:**
508 508  
509 -(((
510 -0x(01): Interrupt Uplink Packet.
511 -)))
464 +903.9 - SF7BW125 to SF10BW125
512 512  
466 +904.1 - SF7BW125 to SF10BW125
513 513  
468 +904.3 - SF7BW125 to SF10BW125
514 514  
515 -=== 2.4. ​+5V Output ===
470 +904.5 - SF7BW125 to SF10BW125
516 516  
517 -(((
518 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
519 -)))
472 +904.7 - SF7BW125 to SF10BW125
520 520  
474 +904.9 - SF7BW125 to SF10BW125
521 521  
522 -(((
523 -The 5V output time can be controlled by AT Command.
524 -)))
476 +905.1 - SF7BW125 to SF10BW125
525 525  
526 -(((
527 -(% style="color:blue" %)**AT+5VT=1000**
528 -)))
478 +905.3 - SF7BW125 to SF10BW125
529 529  
530 -(((
531 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
532 -)))
533 533  
481 +(% style="color:#037691" %)**Downlink:**
534 534  
483 +923.3 - SF7BW500 to SF12BW500
535 535  
536 -== 2.5  Downlink Payload ==
485 +923.9 - SF7BW500 to SF12BW500
537 537  
538 -By default, NDDS75 prints the downlink payload to console port.
487 +924.5 - SF7BW500 to SF12BW500
539 539  
540 -[[image:image-20220709100028-1.png]]
489 +925.1 - SF7BW500 to SF12BW500
541 541  
491 +925.7 - SF7BW500 to SF12BW500
542 542  
543 -(((
544 -(% style="color:blue" %)**Examples:**
545 -)))
493 +926.3 - SF7BW500 to SF12BW500
546 546  
547 -(((
548 -
549 -)))
495 +926.9 - SF7BW500 to SF12BW500
550 550  
551 -* (((
552 -(% style="color:blue" %)**Set TDC**
553 -)))
497 +927.5 - SF7BW500 to SF12BW500
554 554  
555 -(((
556 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
557 -)))
499 +923.3 - SF12BW500(RX2 downlink only)
558 558  
559 -(((
560 -Payload:    01 00 00 1E    TDC=30S
561 -)))
562 562  
563 -(((
564 -Payload:    01 00 00 3C    TDC=60S
565 -)))
566 566  
567 -(((
568 -
569 -)))
503 +=== 2.7.3 CN470-510 (CN470) ===
570 570  
571 -* (((
572 -(% style="color:blue" %)**Reset**
573 -)))
505 +Used in China, Default use CHE=1
574 574  
575 -(((
576 -If payload = 0x04FF, it will reset the NDDS75
577 -)))
507 +(% style="color:#037691" %)**Uplink:**
578 578  
509 +486.3 - SF7BW125 to SF12BW125
579 579  
580 -* (% style="color:blue" %)**INTMOD**
511 +486.5 - SF7BW125 to SF12BW125
581 581  
582 -(((
583 -Downlink Payload: 06000003, Set AT+INTMOD=3
584 -)))
513 +486.7 - SF7BW125 to SF12BW125
585 585  
515 +486.9 - SF7BW125 to SF12BW125
586 586  
517 +487.1 - SF7BW125 to SF12BW125
587 587  
588 -== 2. ​LED Indicator ==
519 +487.3 - SF7BW125 to SF12BW125
589 589  
521 +487.5 - SF7BW125 to SF12BW125
590 590  
591 -The NDDS75 has an internal LED which is to show the status of different state.
523 +487.7 - SF7BW125 to SF12BW125
592 592  
593 593  
594 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
595 -* Then the LED will be on for 1 second means device is boot normally.
596 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
597 -* For each uplink probe, LED will be on for 500ms.
526 +(% style="color:#037691" %)**Downlink:**
598 598  
599 -(((
600 -
601 -)))
528 +506.7 - SF7BW125 to SF12BW125
602 602  
530 +506.9 - SF7BW125 to SF12BW125
603 603  
532 +507.1 - SF7BW125 to SF12BW125
604 604  
605 -== 2.7  Firmware Change Log ==
534 +507.3 - SF7BW125 to SF12BW125
606 606  
536 +507.5 - SF7BW125 to SF12BW125
607 607  
608 -(((
609 -Download URL & Firmware Change log
610 -)))
538 +507.7 - SF7BW125 to SF12BW125
611 611  
612 -(((
613 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
614 -)))
540 +507.9 - SF7BW125 to SF12BW125
615 615  
542 +508.1 - SF7BW125 to SF12BW125
616 616  
617 -(((
618 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
619 -)))
544 +505.3 - SF12BW125 (RX2 downlink only)
620 620  
621 621  
622 622  
623 -== 2. ​Battery Analysis ==
548 +=== 2.7.4 AU915-928(AU915) ===
624 624  
625 -=== 2.8.1  ​Battery Type ===
550 +Default use CHE=2
626 626  
552 +(% style="color:#037691" %)**Uplink:**
627 627  
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
628 628  (((
629 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
630 630  )))
719 +)))
631 631  
721 +
722 +
723 +[[image:1654506665940-119.png]]
724 +
632 632  (((
633 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
634 634  )))
635 635  
636 636  (((
637 -The battery related documents as below:
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 638  )))
639 639  
640 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 643  
734 +== 2.10 ​Firmware Change Log ==
735 +
644 644  (((
645 -[[image:image-20220709101450-2.png]]
737 +**Firmware download link:**
646 646  )))
647 647  
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
648 648  
744 +(((
745 +
746 +)))
649 649  
650 -=== 2.8.2  Power consumption Analyze ===
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
651 651  
652 652  (((
653 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
753 +
654 654  )))
655 655  
756 +(((
757 +**V1.0.**
758 +)))
656 656  
657 657  (((
658 -Instruction to use as below:
761 +Release
659 659  )))
660 660  
764 +
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
661 661  (((
662 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
663 663  )))
664 664  
773 +(((
774 +The battery is designed to last for more than 5 years for the LSN50.
775 +)))
665 665  
666 666  (((
667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
668 668  )))
781 +)))
669 669  
670 670  * (((
671 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
672 672  )))
673 673  * (((
674 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
675 675  )))
676 676  * (((
677 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
678 678  )))
679 679  
680 -(((
681 -And the Life expectation in difference case will be shown on the right.
682 -)))
793 + [[image:image-20220610172436-1.png]]
683 683  
684 -[[image:image-20220709110451-3.png]]
685 685  
686 686  
797 +=== 2.11.2 ​Battery Note ===
687 687  
688 -=== 2.8.3  ​Battery Note ===
689 -
690 690  (((
691 691  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
692 692  )))
... ... @@ -693,169 +693,298 @@
693 693  
694 694  
695 695  
696 -=== 2.8. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
697 697  
698 698  (((
699 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
700 700  )))
701 701  
702 -
703 -
704 -= 3. ​ Access NB-IoT Module =
705 -
706 706  (((
707 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
708 708  )))
709 709  
710 710  (((
711 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
712 712  )))
713 713  
714 -[[image:1657333200519-600.png]]
715 715  
716 716  
821 += 3. ​Using the AT Commands =
717 717  
718 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
719 719  
720 -== 4.1  Access AT Commands ==
721 721  
722 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
723 723  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
724 724  
725 -AT+<CMD>?  : Help on <CMD>
726 726  
727 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
728 728  
729 -AT+<CMD>=<value> : Set the value
730 730  
731 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
732 732  
733 733  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
734 734  (% style="color:#037691" %)**General Commands**(%%)      
735 735  
736 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
737 737  
738 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
739 739  
740 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
741 741  
742 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
743 743  
744 -AT+CFG  : Print all configurations
745 745  
746 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
747 747  
748 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
749 749  
750 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
751 751  
752 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
753 753  
754 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
755 755  
756 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
757 757  
758 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
759 759  
760 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
761 761  
762 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
763 763  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
764 764  
765 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
766 766  
767 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
768 768  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
769 769  
770 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
771 771  
772 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
773 773  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
774 774  
775 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
776 776  
777 -AT+CLIENT               : Get or Set MQTT client
778 778  
779 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
780 780  
781 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
782 782  
783 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
784 784  
785 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
786 786  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
787 787  
788 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
789 789  
790 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
791 791  
792 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
793 793  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
794 794  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
795 795  
796 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
797 797  
798 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
799 799  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
800 800  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
801 801  (((
802 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
803 803  )))
804 804  
805 805  (((
806 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
807 807  )))
808 808  
809 809  (((
810 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
811 811  )))
812 812  
969 +(((
970 +
971 +)))
813 813  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
814 814  
815 -= 6.  Trouble Shooting =
977 +(((
978 +
979 +)))
816 816  
817 -== 6.1  ​Connection problem when uploading firmware ==
981 +(((
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
983 +)))
818 818  
985 +[[image:image-20220606154726-3.png]]
819 819  
987 +
988 +When you use the TTN network, the US915 frequency bands use are:
989 +
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
999 +
820 820  (((
821 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
822 822  )))
823 823  
824 -(% class="wikigeneratedid" %)
825 825  (((
826 826  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
827 827  )))
828 828  
1013 +(((
1014 +
1015 +)))
829 829  
830 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
831 831  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
832 832  (((
833 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
834 834  
835 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
836 836  )))
837 837  
838 838  
839 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
840 840  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
841 841  
842 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
843 843  
844 844  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
845 845  (% class="wikigeneratedid" %)
846 846  (((
847 847  
848 848  )))
849 849  
850 -= 8.  Packing Info =
1087 += 7. Packing Info =
851 851  
852 852  (((
853 853  
854 854  
855 855  (% style="color:#037691" %)**Package Includes**:
1093 +)))
856 856  
857 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
858 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
859 859  )))
860 860  
861 861  (((
... ... @@ -862,22 +862,24 @@
862 862  
863 863  
864 864  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
865 865  
866 -
867 -* Device Size: 13.0 x 5 x 4.5 cm
868 -* Device Weight: 150g
869 -* Package Size / pcs : 15 x 12x 5.5 cm
870 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
871 871  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
872 872  
873 -(((
874 874  
875 -
876 -
877 -
878 878  )))
879 879  
880 -= 9.  Support =
1120 += 8. Support =
881 881  
882 882  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
883 883  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content