Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.17
edited by Xiaoling
on 2022/07/09 11:53
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,75 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
59 59  
60 60  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 -* Ultra low power consumption
62 -* Distance Detection by Ultrasonic technology
63 -* Flat object range 280mm - 7500mm
64 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
65 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
66 66  * AT Commands to change parameters
67 67  * Uplink on periodically
68 68  * Downlink to change configure
69 69  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
70 70  * Micro SIM card slot for NB-IoT SIM
71 71  * 8500mAh Battery for long term use
72 72  
62 +
63 +
73 73  == 1.3  Specification ==
74 74  
75 75  
... ... @@ -78,6 +78,7 @@
78 78  * Supply Voltage: 2.1v ~~ 3.6v
79 79  * Operating Temperature: -40 ~~ 85°C
80 80  
72 +
81 81  (% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 83  * - B1 @H-FDD: 2100MHz
... ... @@ -87,599 +87,719 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -(% style="color:#037691" %)**Battery:**
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
99 99  
100 -* STOP Mode: 10uA @ 3.3v
101 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
102 102  
89 +
90 +
103 103  == ​1.4  Applications ==
104 104  
105 -* Smart Buildings & Home Automation
106 -* Logistics and Supply Chain Management
107 -* Smart Metering
108 108  * Smart Agriculture
109 -* Smart Cities
110 -* Smart Factory
111 111  
112 112  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
113 113  ​
114 114  
115 -
116 116  == 1.5  Pin Definitions ==
117 117  
118 118  
119 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
120 120  
121 121  
122 122  
123 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
124 124  
125 -== 2.1  How it works ==
107 +== 2.1 How it works ==
126 126  
127 127  (((
128 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
129 129  )))
130 130  
131 -
132 132  (((
133 -The diagram below shows the working flow in default firmware of NDDS75:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
134 134  )))
135 135  
136 -(((
137 -
138 -)))
139 139  
140 -[[image:1657328659945-416.png]]
141 141  
142 -(((
143 -
144 -)))
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
145 145  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
146 146  
147 -== 2.2 ​ Configure the NDDS75 ==
148 148  
124 +[[image:1654503992078-669.png]]
149 149  
150 -=== 2.2.1 Test Requirement ===
151 151  
152 -(((
153 -To use NDDS75 in your city, make sure meet below requirements:
154 -)))
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
155 155  
156 -* Your local operator has already distributed a NB-IoT Network there.
157 -* The local NB-IoT network used the band that NSE01 supports.
158 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
159 159  
160 -(((
161 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
162 -)))
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
163 163  
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
164 164  
165 -[[image:1657328756309-230.png]]
134 +[[image:image-20220606163732-6.jpeg]]
166 166  
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
167 167  
138 +**Add APP EUI in the application**
168 168  
169 -=== 2.2.2 Insert SIM card ===
170 170  
171 -(((
172 -Insert the NB-IoT Card get from your provider.
173 -)))
141 +[[image:1654504596150-405.png]]
174 174  
175 -(((
176 -User need to take out the NB-IoT module and insert the SIM card like below:
177 -)))
178 178  
179 179  
180 -[[image:1657328884227-504.png]]
145 +**Add APP KEY and DEV EUI**
181 181  
147 +[[image:1654504683289-357.png]]
182 182  
183 183  
184 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
185 185  
186 -(((
187 -(((
188 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
189 -)))
190 -)))
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
191 191  
192 -[[image:image-20220709092052-2.png]]
193 193  
194 -**Connection:**
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
195 195  
196 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
156 +[[image:image-20220606163915-7.png]]
197 197  
198 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
199 199  
200 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 201  
161 +[[image:1654504778294-788.png]]
202 202  
203 -In the PC, use below serial tool settings:
204 204  
205 -* Baud:  (% style="color:green" %)**9600**
206 -* Data bits:** (% style="color:green" %)8(%%)**
207 -* Stop bits: (% style="color:green" %)**1**
208 -* Parity:  (% style="color:green" %)**None**
209 -* Flow Control: (% style="color:green" %)**None**
210 210  
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
211 211  (((
212 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
173 +Uplink payload includes in total 11 bytes.
213 213  )))
214 214  
215 -[[image:1657329814315-101.png]]
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
216 216  
217 -(((
218 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
219 219  )))
220 220  
192 +=== 2.3.2 MOD~=1(Original value) ===
221 221  
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
222 222  
223 -=== 2.2.4 Use CoAP protocol to uplink data ===
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
224 224  
225 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
226 226  
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
227 227  
209 +(Optional)
210 +)))
211 +
212 +=== 2.3.3 Battery Info ===
213 +
228 228  (((
229 -**Use below commands:**
215 +Check the battery voltage for LSE01.
230 230  )))
231 231  
232 -* (((
233 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +(((
219 +Ex1: 0x0B45 = 2885mV
234 234  )))
235 -* (((
236 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
237 -)))
238 -* (((
239 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
240 -)))
241 241  
242 242  (((
243 -For parameter description, please refer to AT command set
223 +Ex2: 0x0B49 = 2889mV
244 244  )))
245 245  
246 -[[image:1657330452568-615.png]]
247 247  
248 248  
228 +=== 2.3.4 Soil Moisture ===
229 +
249 249  (((
250 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
251 251  )))
252 252  
253 -[[image:1657330472797-498.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
254 254  
238 +(((
239 +
240 +)))
255 255  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
256 256  
257 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
258 258  
259 259  
260 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
261 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
262 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
248 +=== 2.3.5 Soil Temperature ===
263 263  
264 -[[image:1657330501006-241.png]]
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
265 265  
254 +(((
255 +**Example**:
256 +)))
266 266  
267 -[[image:1657330533775-472.png]]
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
268 268  
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
269 269  
270 270  
271 -=== 2.2.6 Use MQTT protocol to uplink data ===
272 272  
268 +=== 2.3.6 Soil Conductivity (EC) ===
273 273  
274 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
276 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
277 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
278 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
279 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
280 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
281 281  
282 -[[image:1657249978444-674.png]]
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
283 283  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
284 284  
285 -[[image:1657330723006-866.png]]
282 +(((
283 +
284 +)))
286 286  
287 -
288 288  (((
289 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
287 +
290 290  )))
291 291  
290 +=== 2.3.7 MOD ===
292 292  
292 +Firmware version at least v2.1 supports changing mode.
293 293  
294 -=== 2.2.7 Use TCP protocol to uplink data ===
294 +For example, bytes[10]=90
295 295  
296 +mod=(bytes[10]>>7)&0x01=1.
296 296  
297 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
298 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
299 299  
300 -[[image:image-20220709093918-1.png]]
299 +**Downlink Command:**
301 301  
301 +If payload = 0x0A00, workmode=0
302 302  
303 -[[image:image-20220709093918-2.png]]
303 +If** **payload =** **0x0A01, workmode=1
304 304  
305 305  
306 306  
307 -=== 2.2.8 Change Update Interval ===
307 +=== 2.3.8 ​Decode payload in The Things Network ===
308 308  
309 -User can use below command to change the (% style="color:green" %)**uplink interval**.
309 +While using TTN network, you can add the payload format to decode the payload.
310 310  
311 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
312 312  
312 +[[image:1654505570700-128.png]]
313 +
313 313  (((
314 -(% style="color:red" %)**NOTE:**
315 +The payload decoder function for TTN is here:
315 315  )))
316 316  
317 317  (((
318 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
319 319  )))
320 320  
321 321  
323 +== 2.4 Uplink Interval ==
322 322  
323 -== 2. Uplink Payload ==
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
324 324  
325 -In this mode, uplink payload includes in total 14 bytes
326 326  
327 327  
328 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
329 -|=(% style="width: 60px;" %)(((
330 -**Size(bytes)**
331 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
332 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
329 +== 2.5 Downlink Payload ==
333 333  
334 -(((
335 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
336 -)))
331 +By default, LSE50 prints the downlink payload to console port.
337 337  
333 +[[image:image-20220606165544-8.png]]
338 338  
339 -[[image:1657331036973-987.png]]
340 340  
341 341  (((
342 -The payload is ASCII string, representative same HEX:
337 +(% style="color:blue" %)**Examples:**
343 343  )))
344 344  
345 345  (((
346 -0x72403155615900640c6c19029200 where:
341 +
347 347  )))
348 348  
349 349  * (((
350 -Device ID: 0x724031556159 = 724031556159
345 +(% style="color:blue" %)**Set TDC**
351 351  )))
352 -* (((
353 -Version: 0x0064=100=1.0.0
347 +
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
354 354  )))
355 355  
356 -* (((
357 -BAT: 0x0c6c = 3180 mV = 3.180V
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
358 358  )))
359 -* (((
360 -Signal: 0x19 = 25
355 +
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
361 361  )))
362 -* (((
363 -Distance: 0x0292= 658 mm
359 +
360 +(((
361 +
364 364  )))
363 +
365 365  * (((
366 -Interrupt: 0x00 = 0
365 +(% style="color:blue" %)**Reset**
366 +)))
367 367  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
368 368  
369 369  
370 -
371 -)))
373 +* (% style="color:blue" %)**CFM**
372 372  
373 -== 2.4  Payload Explanation and Sensor Interface ==
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
374 374  
375 375  
376 -=== 2.4.1  Device ID ===
377 377  
378 -(((
379 -By default, the Device ID equal to the last 6 bytes of IMEI.
380 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
381 381  
382 382  (((
383 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
384 384  )))
385 385  
386 386  (((
387 -**Example:**
386 +
388 388  )))
389 389  
390 390  (((
391 -AT+DEUI=A84041F15612
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
392 392  )))
393 393  
394 394  (((
395 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
396 396  )))
397 397  
398 398  
398 +[[image:1654505857935-743.png]]
399 399  
400 -=== 2.4.2  Version Info ===
401 401  
402 -(((
403 -Specify the software version: 0x64=100, means firmware version 1.00.
404 -)))
401 +[[image:1654505874829-548.png]]
405 405  
406 -(((
407 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
408 -)))
409 409  
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
410 410  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
411 411  
412 -=== 2.4.3  Battery Info ===
413 413  
414 -(((
415 -Ex1: 0x0B45 = 2885mV
416 -)))
409 +[[image:1654505905236-553.png]]
417 417  
418 -(((
419 -Ex2: 0x0B49 = 2889mV
420 -)))
421 421  
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
422 422  
414 +[[image:1654505925508-181.png]]
423 423  
424 -=== 2.4.4  Signal Strength ===
425 425  
426 -(((
427 -NB-IoT Network signal Strength.
428 -)))
429 429  
430 -(((
431 -**Ex1: 0x1d = 29**
432 -)))
418 +== 2.7 Frequency Plans ==
433 433  
434 -(((
435 -(% style="color:blue" %)**0**(%%)  -113dBm or less
436 -)))
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
437 437  
438 -(((
439 -(% style="color:blue" %)**1**(%%)  -111dBm
440 -)))
441 441  
442 -(((
443 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
444 -)))
423 +=== 2.7.1 EU863-870 (EU868) ===
445 445  
446 -(((
447 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
448 -)))
425 +(% style="color:#037691" %)** Uplink:**
449 449  
450 -(((
451 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
452 -)))
427 +868.1 - SF7BW125 to SF12BW125
453 453  
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
454 454  
431 +868.5 - SF7BW125 to SF12BW125
455 455  
456 -=== 2.4.5  Distance ===
433 +867.1 - SF7BW125 to SF12BW125
457 457  
458 -Get the distance. Flat object range 280mm - 7500mm.
435 +867.3 - SF7BW125 to SF12BW125
459 459  
460 -(((
461 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
462 -)))
437 +867.5 - SF7BW125 to SF12BW125
463 463  
464 -(((
465 -(((
466 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
467 -)))
468 -)))
439 +867.7 - SF7BW125 to SF12BW125
469 469  
470 -(((
471 -
472 -)))
441 +867.9 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -
476 -)))
443 +868.8 - FSK
477 477  
478 -=== 2.4.6  Digital Interrupt ===
479 479  
480 -(((
481 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
482 -)))
446 +(% style="color:#037691" %)** Downlink:**
483 483  
484 -(((
485 -The command is:
486 -)))
448 +Uplink channels 1-9 (RX1)
487 487  
488 -(((
489 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
490 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
491 491  
492 492  
493 -(((
494 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
495 -)))
496 496  
454 +=== 2.7.2 US902-928(US915) ===
497 497  
498 -(((
499 -Example:
500 -)))
456 +Used in USA, Canada and South America. Default use CHE=2
501 501  
502 -(((
503 -0x(00): Normal uplink packet.
504 -)))
458 +(% style="color:#037691" %)**Uplink:**
505 505  
506 -(((
507 -0x(01): Interrupt Uplink Packet.
508 -)))
460 +903.9 - SF7BW125 to SF10BW125
509 509  
462 +904.1 - SF7BW125 to SF10BW125
510 510  
464 +904.3 - SF7BW125 to SF10BW125
511 511  
512 -=== 2.4. ​+5V Output ===
466 +904.5 - SF7BW125 to SF10BW125
513 513  
514 -(((
515 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
516 -)))
468 +904.7 - SF7BW125 to SF10BW125
517 517  
470 +904.9 - SF7BW125 to SF10BW125
518 518  
519 -(((
520 -The 5V output time can be controlled by AT Command.
521 -)))
472 +905.1 - SF7BW125 to SF10BW125
522 522  
523 -(((
524 -(% style="color:blue" %)**AT+5VT=1000**
525 -)))
474 +905.3 - SF7BW125 to SF10BW125
526 526  
527 -(((
528 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
529 -)))
530 530  
477 +(% style="color:#037691" %)**Downlink:**
531 531  
479 +923.3 - SF7BW500 to SF12BW500
532 532  
533 -== 2.5  Downlink Payload ==
481 +923.9 - SF7BW500 to SF12BW500
534 534  
535 -By default, NDDS75 prints the downlink payload to console port.
483 +924.5 - SF7BW500 to SF12BW500
536 536  
537 -[[image:image-20220709100028-1.png]]
485 +925.1 - SF7BW500 to SF12BW500
538 538  
487 +925.7 - SF7BW500 to SF12BW500
539 539  
540 -(((
541 -(% style="color:blue" %)**Examples:**
542 -)))
489 +926.3 - SF7BW500 to SF12BW500
543 543  
544 -(((
545 -
546 -)))
491 +926.9 - SF7BW500 to SF12BW500
547 547  
548 -* (((
549 -(% style="color:blue" %)**Set TDC**
550 -)))
493 +927.5 - SF7BW500 to SF12BW500
551 551  
552 -(((
553 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
554 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
555 555  
556 -(((
557 -Payload:    01 00 00 1E    TDC=30S
558 -)))
559 559  
560 -(((
561 -Payload:    01 00 00 3C    TDC=60S
562 -)))
563 563  
564 -(((
565 -
566 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
567 567  
568 -* (((
569 -(% style="color:blue" %)**Reset**
570 -)))
501 +Used in China, Default use CHE=1
571 571  
572 -(((
573 -If payload = 0x04FF, it will reset the NDDS75
574 -)))
503 +(% style="color:#037691" %)**Uplink:**
575 575  
505 +486.3 - SF7BW125 to SF12BW125
576 576  
577 -* (% style="color:blue" %)**INTMOD**
507 +486.5 - SF7BW125 to SF12BW125
578 578  
579 -(((
580 -Downlink Payload: 06000003, Set AT+INTMOD=3
581 -)))
509 +486.7 - SF7BW125 to SF12BW125
582 582  
511 +486.9 - SF7BW125 to SF12BW125
583 583  
513 +487.1 - SF7BW125 to SF12BW125
584 584  
585 -== 2. ​LED Indicator ==
515 +487.3 - SF7BW125 to SF12BW125
586 586  
517 +487.5 - SF7BW125 to SF12BW125
587 587  
588 -The NDDS75 has an internal LED which is to show the status of different state.
519 +487.7 - SF7BW125 to SF12BW125
589 589  
590 590  
591 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
592 -* Then the LED will be on for 1 second means device is boot normally.
593 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
594 -* For each uplink probe, LED will be on for 500ms.
522 +(% style="color:#037691" %)**Downlink:**
595 595  
596 -(((
597 -
598 -)))
524 +506.7 - SF7BW125 to SF12BW125
599 599  
526 +506.9 - SF7BW125 to SF12BW125
600 600  
528 +507.1 - SF7BW125 to SF12BW125
601 601  
602 -== 2.7  Firmware Change Log ==
530 +507.3 - SF7BW125 to SF12BW125
603 603  
532 +507.5 - SF7BW125 to SF12BW125
604 604  
605 -Download URL & Firmware Change log
534 +507.7 - SF7BW125 to SF12BW125
606 606  
607 -(((
608 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
609 -)))
536 +507.9 - SF7BW125 to SF12BW125
610 610  
538 +508.1 - SF7BW125 to SF12BW125
611 611  
612 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
540 +505.3 - SF12BW125 (RX2 downlink only)
613 613  
614 614  
615 615  
616 -== 2. ​Battery Analysis ==
544 +=== 2.7.4 AU915-928(AU915) ===
617 617  
618 -=== 2.8.1  ​Battery Type ===
546 +Default use CHE=2
619 619  
548 +(% style="color:#037691" %)**Uplink:**
620 620  
550 +916.8 - SF7BW125 to SF12BW125
551 +
552 +917.0 - SF7BW125 to SF12BW125
553 +
554 +917.2 - SF7BW125 to SF12BW125
555 +
556 +917.4 - SF7BW125 to SF12BW125
557 +
558 +917.6 - SF7BW125 to SF12BW125
559 +
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
621 621  (((
622 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
623 623  )))
715 +)))
624 624  
717 +
718 +
719 +[[image:1654506665940-119.png]]
720 +
625 625  (((
626 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
627 627  )))
628 628  
629 629  (((
630 -The battery related documents as below:
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
631 631  )))
632 632  
633 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
634 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
635 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
636 636  
730 +== 2.10 ​Firmware Change Log ==
731 +
637 637  (((
638 -[[image:image-20220709101450-2.png]]
733 +**Firmware download link:**
639 639  )))
640 640  
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
641 641  
740 +(((
741 +
742 +)))
642 642  
643 -=== 2.8.2  Power consumption Analyze ===
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
644 644  
645 645  (((
646 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
749 +
647 647  )))
648 648  
752 +(((
753 +**V1.0.**
754 +)))
649 649  
650 650  (((
651 -Instruction to use as below:
757 +Release
652 652  )))
653 653  
760 +
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
654 654  (((
655 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
656 656  )))
657 657  
769 +(((
770 +The battery is designed to last for more than 5 years for the LSN50.
771 +)))
658 658  
659 659  (((
660 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
661 661  )))
777 +)))
662 662  
663 663  * (((
664 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
665 665  )))
666 666  * (((
667 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
668 668  )))
669 669  * (((
670 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
671 671  )))
672 672  
673 -(((
674 -And the Life expectation in difference case will be shown on the right.
675 -)))
789 + [[image:image-20220610172436-1.png]]
676 676  
677 -[[image:image-20220709110451-3.png]]
678 678  
679 679  
793 +=== 2.11.2 ​Battery Note ===
680 680  
681 -=== 2.8.3  ​Battery Note ===
682 -
683 683  (((
684 684  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
685 685  )))
... ... @@ -686,169 +686,302 @@
686 686  
687 687  
688 688  
689 -=== 2.8. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
690 690  
691 691  (((
692 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
693 693  )))
694 694  
695 -
696 -
697 -= 3. ​ Access NB-IoT Module =
698 -
699 699  (((
700 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
701 701  )))
702 702  
703 703  (((
704 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
705 705  )))
706 706  
707 -[[image:1657333200519-600.png]]
708 708  
709 709  
817 += 3. ​Using the AT Commands =
710 710  
711 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
712 712  
713 -== 4.1  Access AT Commands ==
714 714  
715 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
716 716  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
717 717  
718 -AT+<CMD>?  : Help on <CMD>
719 719  
720 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
721 721  
722 -AT+<CMD>=<value> : Set the value
723 723  
724 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
725 725  
726 726  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
727 727  (% style="color:#037691" %)**General Commands**(%%)      
728 728  
729 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
730 730  
731 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
732 732  
733 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
734 734  
735 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
736 736  
737 -AT+CFG  : Print all configurations
738 738  
739 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
740 740  
741 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
742 742  
743 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
744 744  
745 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
746 746  
747 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
748 748  
749 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
750 750  
751 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
752 752  
753 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
754 754  
755 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
756 756  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
757 757  
758 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
759 759  
760 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
761 761  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
762 762  
763 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
764 764  
765 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
766 766  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
767 767  
768 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
769 769  
770 -AT+CLIENT               : Get or Set MQTT client
771 771  
772 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
773 773  
774 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
775 775  
776 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
777 777  
778 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
779 779  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
780 780  
781 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
782 782  
783 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
784 784  
785 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
786 786  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
787 787  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
788 788  
789 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
790 790  
791 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
792 792  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
793 793  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
794 794  (((
795 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
796 796  )))
797 797  
798 798  (((
799 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
800 800  )))
801 801  
802 802  (((
803 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
804 804  )))
805 805  
965 +(((
966 +
967 +)))
806 806  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
807 807  
808 -= 6.  Trouble Shooting =
973 +(((
974 +
975 +)))
809 809  
810 -== 6.1  ​Connection problem when uploading firmware ==
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
811 811  
981 +[[image:image-20220606154726-3.png]]
812 812  
983 +
984 +When you use the TTN network, the US915 frequency bands use are:
985 +
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
995 +
813 813  (((
814 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
815 815  )))
816 816  
817 -(% class="wikigeneratedid" %)
818 818  (((
819 819  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
820 820  )))
821 821  
1009 +(((
1010 +
1011 +)))
822 822  
823 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
824 824  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
825 825  (((
826 826  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
827 827  
828 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
829 829  )))
830 830  
831 831  
832 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
833 833  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
834 834  
835 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
836 836  
837 837  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
838 838  (% class="wikigeneratedid" %)
839 839  (((
840 840  
841 841  )))
842 842  
843 -= 8.  Packing Info =
1087 += 7. Packing Info =
844 844  
845 845  (((
846 846  
847 847  
848 848  (% style="color:#037691" %)**Package Includes**:
1093 +)))
849 849  
850 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
851 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
852 852  )))
853 853  
854 854  (((
... ... @@ -855,22 +855,24 @@
855 855  
856 856  
857 857  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
858 858  
859 -
860 -* Device Size: 13.0 x 5 x 4.5 cm
861 -* Device Weight: 150g
862 -* Package Size / pcs : 15 x 12x 5.5 cm
863 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
864 864  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
865 865  
866 -(((
867 867  
868 -
869 -
870 -
871 871  )))
872 872  
873 -= 9.  Support =
1120 += 8. Support =
874 874  
875 875  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
876 876  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content