Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.15
edited by Xiaoling
on 2022/07/09 11:51
Change comment: There is no comment for this version
To version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,690 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 20  
21 -(((
22 -
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 28  
29 -(((
30 30  
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1. Introduction =
33 33  
34 -(((
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
35 35  
36 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
37 -)))
38 -
39 39  (((
26 +
40 40  
41 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
42 -)))
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
43 43  
44 -(((
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
45 45  
46 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
47 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
48 48  
49 -(((
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
50 50  
51 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
52 -)))
53 -)))
54 -
55 55  
56 56  )))
57 57  
58 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
59 59  
60 60  
42 +[[image:1657245163077-232.png]]
61 61  
62 -== 1.2 ​ Features ==
63 63  
64 64  
65 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
66 66  * Ultra low power consumption
67 -* Distance Detection by Ultrasonic technology
68 -* Flat object range 280mm - 7500mm
69 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
70 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
71 71  * AT Commands to change parameters
72 72  * Uplink on periodically
73 73  * Downlink to change configure
74 74  * IP66 Waterproof Enclosure
75 -* Micro SIM card slot for NB-IoT SIM
76 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
77 77  
60 +== 1.3 Specification ==
78 78  
79 -== 1.3  Specification ==
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
80 80  
64 +[[image:image-20220606162220-5.png]]
81 81  
82 -(% style="color:#037691" %)**Common DC Characteristics:**
83 83  
84 -* Supply Voltage: 2.1v ~~ 3.6v
85 -* Operating Temperature: -40 ~~ 85°C
86 86  
87 -(% style="color:#037691" %)**NB-IoT Spec:**
68 +== ​1.4 Applications ==
88 88  
89 -* - B1 @H-FDD: 2100MHz
90 -* - B3 @H-FDD: 1800MHz
91 -* - B8 @H-FDD: 900MHz
92 -* - B5 @H-FDD: 850MHz
93 -* - B20 @H-FDD: 800MHz
94 -* - B28 @H-FDD: 700MHz
70 +* Smart Agriculture
95 95  
96 -(% style="color:#037691" %)**Battery:**
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
97 97  
98 -* Li/SOCI2 un-chargeable battery
99 -* Capacity: 8500mAh
100 -* Self Discharge: <1% / Year @ 25°C
101 -* Max continuously current: 130mA
102 -* Max boost current: 2A, 1 second
75 +== 1.5 Firmware Change log ==
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
105 105  
106 -* STOP Mode: 10uA @ 3.3v
107 -* Max transmit power: 350mA@3.3v
78 +**LSE01 v1.0 :**  Release
108 108  
109 109  
110 -== ​1.4  Applications ==
111 111  
112 -* Smart Buildings & Home Automation
113 -* Logistics and Supply Chain Management
114 -* Smart Metering
115 -* Smart Agriculture
116 -* Smart Cities
117 -* Smart Factory
82 += 2. Configure LSE01 to connect to LoRaWAN network =
118 118  
119 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
120 -​
84 +== 2.1 How it works ==
121 121  
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
122 122  
123 -== 1.5  Pin Definitions ==
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
124 124  
125 125  
126 -[[image:1657328609906-564.png]]
127 127  
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 128  
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 129  
130 -= 2.  Use NDDS75 to communicate with IoT Server =
131 131  
132 -== 2.1  How it works ==
101 +[[image:1654503992078-669.png]]
133 133  
103 +
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 +
106 +
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 +
111 +[[image:image-20220606163732-6.jpeg]]
112 +
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +
115 +**Add APP EUI in the application**
116 +
117 +
118 +[[image:1654504596150-405.png]]
119 +
120 +
121 +
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
134 134  (((
135 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
136 136  )))
137 137  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
138 138  
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
187 +)))
188 +
189 +=== 2.3.3 Battery Info ===
190 +
139 139  (((
140 -The diagram below shows the working flow in default firmware of NDDS75:
192 +Check the battery voltage for LSE01.
141 141  )))
142 142  
143 143  (((
144 -
196 +Ex1: 0x0B45 = 2885mV
145 145  )))
146 146  
147 -[[image:1657328659945-416.png]]
148 -
149 149  (((
150 -
200 +Ex2: 0x0B49 = 2889mV
151 151  )))
152 152  
153 153  
154 -== 2.2 ​ Configure the NDDS75 ==
155 155  
205 +=== 2.3.4 Soil Moisture ===
156 156  
157 -=== 2.2.1 Test Requirement ===
207 +(((
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +)))
158 158  
159 159  (((
160 -To use NDDS75 in your city, make sure meet below requirements:
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
161 161  )))
162 162  
163 -* Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NSE01 supports.
165 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
215 +(((
216 +
217 +)))
166 166  
167 167  (((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
169 169  )))
170 170  
171 171  
172 -[[image:1657328756309-230.png]]
173 173  
225 +=== 2.3.5 Soil Temperature ===
174 174  
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
175 175  
176 -=== 2.2.2 Insert SIM card ===
231 +(((
232 +**Example**:
233 +)))
177 177  
178 178  (((
179 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
180 180  )))
181 181  
182 182  (((
183 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
184 184  )))
185 185  
186 186  
187 -[[image:1657328884227-504.png]]
188 188  
245 +=== 2.3.6 Soil Conductivity (EC) ===
189 189  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
190 190  
191 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
192 192  
193 193  (((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
258 +
194 194  (((
195 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
260 +
196 196  )))
262 +
263 +(((
264 +
197 197  )))
198 198  
199 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
200 200  
201 -**Connection:**
269 +Firmware version at least v2.1 supports changing mode.
202 202  
203 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 +For example, bytes[10]=90
204 204  
205 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 +mod=(bytes[10]>>7)&0x01=1.
206 206  
207 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
208 208  
276 +**Downlink Command:**
209 209  
210 -In the PC, use below serial tool settings:
278 +If payload = 0x0A00, workmode=0
211 211  
212 -* Baud:  (% style="color:green" %)**9600**
213 -* Data bits:** (% style="color:green" %)8(%%)**
214 -* Stop bits: (% style="color:green" %)**1**
215 -* Parity:  (% style="color:green" %)**None**
216 -* Flow Control: (% style="color:green" %)**None**
280 +If** **payload =** **0x0A01, workmode=1
217 217  
282 +
283 +
284 +=== 2.3.8 ​Decode payload in The Things Network ===
285 +
286 +While using TTN network, you can add the payload format to decode the payload.
287 +
288 +
289 +[[image:1654505570700-128.png]]
290 +
218 218  (((
219 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
292 +The payload decoder function for TTN is here:
220 220  )))
221 221  
222 -[[image:1657329814315-101.png]]
223 -
224 224  (((
225 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
226 226  )))
227 227  
228 228  
300 +== 2.4 Uplink Interval ==
229 229  
230 -=== 2.2.4 Use CoAP protocol to uplink data ===
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
231 231  
232 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
233 233  
234 234  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
235 235  (((
236 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
237 237  )))
238 238  
239 -* (((
240 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
241 241  )))
320 +
242 242  * (((
243 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
244 244  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
245 245  * (((
246 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
247 247  )))
248 248  
249 249  (((
250 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
251 251  )))
252 252  
253 -[[image:1657330452568-615.png]]
254 254  
350 +* (% style="color:blue" %)**CFM**
255 255  
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 +
354 +
355 +
356 +== 2.6 ​Show Data in DataCake IoT Server ==
357 +
256 256  (((
257 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
258 258  )))
259 259  
260 -[[image:1657330472797-498.png]]
362 +(((
363 +
364 +)))
261 261  
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
262 262  
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
263 263  
264 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
265 265  
375 +[[image:1654505857935-743.png]]
266 266  
267 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
268 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
269 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
270 270  
271 -[[image:1657330501006-241.png]]
378 +[[image:1654505874829-548.png]]
272 272  
273 273  
274 -[[image:1657330533775-472.png]]
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
275 275  
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
276 276  
277 277  
278 -=== 2.2.6 Use MQTT protocol to uplink data ===
386 +[[image:1654505905236-553.png]]
279 279  
280 280  
281 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
282 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
283 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
284 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
285 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
286 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
287 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
288 288  
289 -[[image:1657249978444-674.png]]
391 +[[image:1654505925508-181.png]]
290 290  
291 291  
292 -[[image:1657330723006-866.png]]
293 293  
395 +== 2.7 Frequency Plans ==
294 294  
295 -(((
296 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
297 -)))
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
298 298  
299 299  
400 +=== 2.7.1 EU863-870 (EU868) ===
300 300  
301 -=== 2.2.7 Use TCP protocol to uplink data ===
402 +(% style="color:#037691" %)** Uplink:**
302 302  
404 +868.1 - SF7BW125 to SF12BW125
303 303  
304 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
305 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
306 306  
307 -[[image:image-20220709093918-1.png]]
408 +868.5 - SF7BW125 to SF12BW125
308 308  
410 +867.1 - SF7BW125 to SF12BW125
309 309  
310 -[[image:image-20220709093918-2.png]]
412 +867.3 - SF7BW125 to SF12BW125
311 311  
414 +867.5 - SF7BW125 to SF12BW125
312 312  
416 +867.7 - SF7BW125 to SF12BW125
313 313  
314 -=== 2.2.8 Change Update Interval ===
418 +867.9 - SF7BW125 to SF12BW125
315 315  
316 -User can use below command to change the (% style="color:green" %)**uplink interval**.
420 +868.8 - FSK
317 317  
318 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
319 319  
320 -(((
321 -(% style="color:red" %)**NOTE:**
322 -)))
423 +(% style="color:#037691" %)** Downlink:**
323 323  
324 -(((
325 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
326 -)))
425 +Uplink channels 1-9 (RX1)
327 327  
427 +869.525 - SF9BW125 (RX2 downlink only)
328 328  
329 329  
330 -== 2.3  Uplink Payload ==
331 331  
332 -In this mode, uplink payload includes in total 14 bytes
431 +=== 2.7.2 US902-928(US915) ===
333 333  
433 +Used in USA, Canada and South America. Default use CHE=2
334 334  
335 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:450px" %)
336 -|=(% style="width: 60px;" %)(((
337 -**Size(bytes)**
338 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
339 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
435 +(% style="color:#037691" %)**Uplink:**
340 340  
341 -(((
342 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
343 -)))
437 +903.9 - SF7BW125 to SF10BW125
344 344  
439 +904.1 - SF7BW125 to SF10BW125
345 345  
346 -[[image:1657331036973-987.png]]
441 +904.3 - SF7BW125 to SF10BW125
347 347  
348 -(((
349 -The payload is ASCII string, representative same HEX:
350 -)))
443 +904.5 - SF7BW125 to SF10BW125
351 351  
352 -(((
353 -0x72403155615900640c6c19029200 where:
354 -)))
445 +904.7 - SF7BW125 to SF10BW125
355 355  
356 -* (((
357 -Device ID: 0x724031556159 = 724031556159
358 -)))
359 -* (((
360 -Version: 0x0064=100=1.0.0
361 -)))
447 +904.9 - SF7BW125 to SF10BW125
362 362  
363 -* (((
364 -BAT: 0x0c6c = 3180 mV = 3.180V
365 -)))
366 -* (((
367 -Signal: 0x19 = 25
368 -)))
369 -* (((
370 -Distance: 0x0292= 658 mm
371 -)))
372 -* (((
373 -Interrupt: 0x00 = 0
449 +905.1 - SF7BW125 to SF10BW125
374 374  
451 +905.3 - SF7BW125 to SF10BW125
375 375  
376 376  
377 -
378 -)))
454 +(% style="color:#037691" %)**Downlink:**
379 379  
380 -== 2. Payload Explanation and Sensor Interface ==
456 +923.3 - SF7BW500 to SF12BW500
381 381  
458 +923.9 - SF7BW500 to SF12BW500
382 382  
383 -=== 2.4.1  Device ID ===
460 +924.5 - SF7BW500 to SF12BW500
384 384  
385 -(((
386 -By default, the Device ID equal to the last 6 bytes of IMEI.
387 -)))
462 +925.1 - SF7BW500 to SF12BW500
388 388  
389 -(((
390 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
391 -)))
464 +925.7 - SF7BW500 to SF12BW500
392 392  
393 -(((
394 -**Example:**
395 -)))
466 +926.3 - SF7BW500 to SF12BW500
396 396  
397 -(((
398 -AT+DEUI=A84041F15612
399 -)))
468 +926.9 - SF7BW500 to SF12BW500
400 400  
401 -(((
402 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
403 -)))
470 +927.5 - SF7BW500 to SF12BW500
404 404  
472 +923.3 - SF12BW500(RX2 downlink only)
405 405  
406 406  
407 -=== 2.4.2  Version Info ===
408 408  
409 -(((
410 -Specify the software version: 0x64=100, means firmware version 1.00.
411 -)))
476 +=== 2.7.3 CN470-510 (CN470) ===
412 412  
413 -(((
414 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
415 -)))
478 +Used in China, Default use CHE=1
416 416  
480 +(% style="color:#037691" %)**Uplink:**
417 417  
482 +486.3 - SF7BW125 to SF12BW125
418 418  
419 -=== 2.4. Battery Info ===
484 +486.5 - SF7BW125 to SF12BW125
420 420  
421 -(((
422 -Ex1: 0x0B45 = 2885mV
423 -)))
486 +486.7 - SF7BW125 to SF12BW125
424 424  
425 -(((
426 -Ex2: 0x0B49 = 2889mV
427 -)))
488 +486.9 - SF7BW125 to SF12BW125
428 428  
490 +487.1 - SF7BW125 to SF12BW125
429 429  
492 +487.3 - SF7BW125 to SF12BW125
430 430  
431 -=== 2.4. Signal Strength ===
494 +487.5 - SF7BW125 to SF12BW125
432 432  
433 -(((
434 -NB-IoT Network signal Strength.
435 -)))
496 +487.7 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -**Ex1: 0x1d = 29**
439 -)))
440 440  
441 -(((
442 -(% style="color:blue" %)**0**(%%)  -113dBm or less
443 -)))
499 +(% style="color:#037691" %)**Downlink:**
444 444  
445 -(((
446 -(% style="color:blue" %)**1**(%%)  -111dBm
447 -)))
501 +506.7 - SF7BW125 to SF12BW125
448 448  
449 -(((
450 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
451 -)))
503 +506.9 - SF7BW125 to SF12BW125
452 452  
453 -(((
454 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
455 -)))
505 +507.1 - SF7BW125 to SF12BW125
456 456  
457 -(((
458 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
459 -)))
507 +507.3 - SF7BW125 to SF12BW125
460 460  
509 +507.5 - SF7BW125 to SF12BW125
461 461  
511 +507.7 - SF7BW125 to SF12BW125
462 462  
463 -=== 2.4.5  Distance ===
513 +507.9 - SF7BW125 to SF12BW125
464 464  
465 -Get the distance. Flat object range 280mm - 7500mm.
515 +508.1 - SF7BW125 to SF12BW125
466 466  
467 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
517 +505.3 - SF12BW125 (RX2 downlink only)
468 468  
469 -(((
470 -(((
471 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
472 -)))
473 -)))
474 474  
475 -(((
476 -
477 -)))
478 478  
479 -(((
480 -
481 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
482 482  
483 -=== 2.4.6  Digital Interrupt ===
523 +Default use CHE=2
484 484  
485 -(((
486 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
487 -)))
525 +(% style="color:#037691" %)**Uplink:**
488 488  
489 -(((
490 -The command is:
491 -)))
527 +916.8 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
495 -)))
529 +917.0 - SF7BW125 to SF12BW125
496 496  
531 +917.2 - SF7BW125 to SF12BW125
497 497  
498 -(((
499 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
500 -)))
533 +917.4 - SF7BW125 to SF12BW125
501 501  
535 +917.6 - SF7BW125 to SF12BW125
502 502  
503 -(((
504 -Example:
505 -)))
537 +917.8 - SF7BW125 to SF12BW125
506 506  
507 -(((
508 -0x(00): Normal uplink packet.
509 -)))
539 +918.0 - SF7BW125 to SF12BW125
510 510  
511 -(((
512 -0x(01): Interrupt Uplink Packet.
513 -)))
541 +918.2 - SF7BW125 to SF12BW125
514 514  
515 515  
544 +(% style="color:#037691" %)**Downlink:**
516 516  
517 -=== 2.4.7  ​+5V Output ===
546 +923.3 - SF7BW500 to SF12BW500
518 518  
519 -(((
520 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
521 -)))
548 +923.9 - SF7BW500 to SF12BW500
522 522  
550 +924.5 - SF7BW500 to SF12BW500
523 523  
524 -(((
525 -The 5V output time can be controlled by AT Command.
526 -)))
552 +925.1 - SF7BW500 to SF12BW500
527 527  
528 -(((
529 -(% style="color:blue" %)**AT+5VT=1000**
530 -)))
554 +925.7 - SF7BW500 to SF12BW500
531 531  
532 -(((
533 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
534 -)))
556 +926.3 - SF7BW500 to SF12BW500
535 535  
558 +926.9 - SF7BW500 to SF12BW500
536 536  
560 +927.5 - SF7BW500 to SF12BW500
537 537  
538 -== 2.5  Downlink Payload ==
562 +923.3 - SF12BW500(RX2 downlink only)
539 539  
540 -By default, NDDS75 prints the downlink payload to console port.
541 541  
542 -[[image:image-20220709100028-1.png]]
543 543  
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
544 544  
545 -(((
546 -(% style="color:blue" %)**Examples:**
547 -)))
568 +(% style="color:#037691" %)**Default Uplink channel:**
548 548  
549 -(((
550 -
551 -)))
570 +923.2 - SF7BW125 to SF10BW125
552 552  
553 -* (((
554 -(% style="color:blue" %)**Set TDC**
555 -)))
572 +923.4 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
559 -)))
560 560  
561 -(((
562 -Payload:    01 00 00 1E    TDC=30S
563 -)))
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
564 564  
565 -(((
566 -Payload:    01 00 00 3C    TDC=60S
567 -)))
577 +(OTAA mode, channel added by JoinAccept message)
568 568  
569 -(((
570 -
571 -)))
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
572 572  
573 -* (((
574 -(% style="color:blue" %)**Reset**
575 -)))
581 +922.2 - SF7BW125 to SF10BW125
576 576  
577 -(((
578 -If payload = 0x04FF, it will reset the NDDS75
579 -)))
583 +922.4 - SF7BW125 to SF10BW125
580 580  
585 +922.6 - SF7BW125 to SF10BW125
581 581  
582 -* (% style="color:blue" %)**INTMOD**
587 +922.8 - SF7BW125 to SF10BW125
583 583  
584 -(((
585 -Downlink Payload: 06000003, Set AT+INTMOD=3
586 -)))
589 +923.0 - SF7BW125 to SF10BW125
587 587  
591 +922.0 - SF7BW125 to SF10BW125
588 588  
589 589  
590 -== 2.6  ​LED Indicator ==
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
591 591  
596 +923.6 - SF7BW125 to SF10BW125
592 592  
593 -The NDDS75 has an internal LED which is to show the status of different state.
598 +923.8 - SF7BW125 to SF10BW125
594 594  
600 +924.0 - SF7BW125 to SF10BW125
595 595  
596 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
597 -* Then the LED will be on for 1 second means device is boot normally.
598 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
599 -* For each uplink probe, LED will be on for 500ms.
602 +924.2 - SF7BW125 to SF10BW125
600 600  
601 -(((
602 -
603 -)))
604 +924.4 - SF7BW125 to SF10BW125
604 604  
606 +924.6 - SF7BW125 to SF10BW125
605 605  
606 606  
607 -== 2.7  ​Firmware Change Log ==
609 +(% style="color:#037691" %)** Downlink:**
608 608  
611 +Uplink channels 1-8 (RX1)
609 609  
610 -Download URL & Firmware Change log
613 +923.2 - SF10BW125 (RX2)
611 611  
612 -(((
613 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
614 -)))
615 615  
616 616  
617 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
617 +=== 2.7.6 KR920-923 (KR920) ===
618 618  
619 +Default channel:
619 619  
621 +922.1 - SF7BW125 to SF12BW125
620 620  
621 -== 2. Battery Analysis ==
623 +922.3 - SF7BW125 to SF12BW125
622 622  
623 -=== 2.8.1  Battery Type ===
625 +922.5 - SF7BW125 to SF12BW125
624 624  
625 625  
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +922.7 - SF7BW125 to SF12BW125
637 +
638 +922.9 - SF7BW125 to SF12BW125
639 +
640 +923.1 - SF7BW125 to SF12BW125
641 +
642 +923.3 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +Uplink channels 1-7(RX1)
648 +
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 +
651 +
652 +
653 +=== 2.7.7 IN865-867 (IN865) ===
654 +
655 +(% style="color:#037691" %)** Uplink:**
656 +
657 +865.0625 - SF7BW125 to SF12BW125
658 +
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
626 626  (((
627 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
628 628  )))
692 +)))
629 629  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
630 630  (((
631 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
632 632  )))
633 633  
634 634  (((
635 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 636  )))
637 637  
638 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 641  
707 +== 2.10 ​Firmware Change Log ==
708 +
642 642  (((
643 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
644 644  )))
645 645  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
646 646  
717 +(((
718 +
719 +)))
647 647  
648 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
649 649  
650 650  (((
651 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +
652 652  )))
653 653  
729 +(((
730 +**V1.0.**
731 +)))
654 654  
655 655  (((
656 -Instruction to use as below:
734 +Release
657 657  )))
658 658  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
659 659  (((
660 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
661 661  )))
662 662  
746 +(((
747 +The battery is designed to last for more than 5 years for the LSN50.
748 +)))
663 663  
664 664  (((
665 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
666 666  )))
754 +)))
667 667  
668 668  * (((
669 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
670 670  )))
671 671  * (((
672 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
673 673  )))
674 674  * (((
675 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
676 676  )))
677 677  
678 -(((
679 -And the Life expectation in difference case will be shown on the right.
680 -)))
766 + [[image:image-20220610172436-1.png]]
681 681  
682 -[[image:image-20220709110451-3.png]]
683 683  
684 684  
770 +=== 2.11.2 ​Battery Note ===
685 685  
686 -=== 2.8.3  ​Battery Note ===
687 -
688 688  (((
689 689  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
690 690  )))
... ... @@ -691,169 +691,302 @@
691 691  
692 692  
693 693  
694 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
695 695  
696 696  (((
697 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
698 698  )))
699 699  
700 -
701 -
702 -= 3. ​ Access NB-IoT Module =
703 -
704 704  (((
705 -Users can directly access the AT command set of the NB-IoT module.
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
706 706  )))
707 707  
708 708  (((
709 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
710 710  )))
711 711  
712 -[[image:1657333200519-600.png]]
713 713  
714 714  
794 += 3. ​Using the AT Commands =
715 715  
716 -= 4.  Using the AT Commands =
796 +== 3.1 Access AT Commands ==
717 717  
718 -== 4.1  Access AT Commands ==
719 719  
720 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
721 721  
801 +[[image:1654501986557-872.png||height="391" width="800"]]
722 722  
723 -AT+<CMD>?  : Help on <CMD>
724 724  
725 -AT+<CMD>         : Run <CMD>
804 +Or if you have below board, use below connection:
726 726  
727 -AT+<CMD>=<value> : Set the value
728 728  
729 -AT+<CMD>=?  : Get the value
807 +[[image:1654502005655-729.png||height="503" width="801"]]
730 730  
731 731  
810 +
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 +
813 +
814 + [[image:1654502050864-459.png||height="564" width="806"]]
815 +
816 +
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 +
819 +
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 +
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
732 732  (% style="color:#037691" %)**General Commands**(%%)      
733 733  
734 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
735 735  
736 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
737 737  
738 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
739 739  
740 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
741 741  
742 -AT+CFG  : Print all configurations
743 743  
744 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
745 745  
746 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
747 747  
748 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
749 749  
750 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
751 751  
752 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
753 753  
754 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
755 755  
756 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
757 757  
758 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
759 759  
760 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
761 761  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
762 762  
763 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
764 764  
765 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
766 766  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
767 767  
768 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
769 769  
770 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
771 771  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
772 772  
773 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
774 774  
775 -AT+CLIENT               : Get or Set MQTT client
776 776  
777 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
778 778  
779 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
780 780  
781 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
782 782  
783 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
784 784  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
785 785  
786 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
787 787  
788 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
789 789  
790 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
791 791  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
792 792  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
793 793  
794 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
795 795  
796 -== 5.1 How to Upgrade Firmware ==
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
797 797  
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
798 798  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 +
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
799 799  (((
800 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
801 801  )))
802 802  
803 803  (((
804 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
805 805  )))
806 806  
807 807  (((
808 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
809 809  )))
810 810  
942 +(((
943 +
944 +)))
811 811  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
812 812  
813 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
814 814  
815 -== 6.1  ​Connection problem when uploading firmware ==
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
816 816  
958 +[[image:image-20220606154726-3.png]]
817 817  
960 +
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
818 818  (((
819 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
820 820  )))
821 821  
822 -(% class="wikigeneratedid" %)
823 823  (((
824 824  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 825  )))
826 826  
986 +(((
987 +
988 +)))
827 827  
828 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
829 829  
994 +[[image:image-20220606154825-4.png]]
995 +
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
830 830  (((
831 831  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
832 832  
833 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
834 834  )))
835 835  
836 836  
837 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
838 838  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
839 839  
840 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
841 841  
842 842  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
843 843  (% class="wikigeneratedid" %)
844 844  (((
845 845  
846 846  )))
847 847  
848 -= 8.  Packing Info =
1064 += 7. Packing Info =
849 849  
850 850  (((
851 851  
852 852  
853 853  (% style="color:#037691" %)**Package Includes**:
1070 +)))
854 854  
855 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
856 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
857 857  )))
858 858  
859 859  (((
... ... @@ -860,22 +860,24 @@
860 860  
861 861  
862 862  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
863 863  
864 -
865 -* Device Size: 13.0 x 5 x 4.5 cm
866 -* Device Weight: 150g
867 -* Package Size / pcs : 15 x 12x 5.5 cm
868 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
869 869  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
870 870  
871 -(((
872 872  
873 -
874 -
875 -
876 876  )))
877 877  
878 -= 9.  Support =
1097 += 8. Support =
879 879  
880 880  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
881 881  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content