Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.13
edited by Xiaoling
on 2022/07/09 11:36
Change comment: There is no comment for this version
To version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,678 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 20  
21 -(((
22 -
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 26  
27 27  
28 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
21 += 1. Introduction =
29 29  
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
30 30  
31 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
25 +(((
26 +
32 32  
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
33 33  
34 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
35 35  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
38 38  
39 -
40 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
41 -)))
42 -
43 43  
44 44  )))
45 45  
46 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
47 47  
48 48  
42 +[[image:1657245163077-232.png]]
49 49  
50 -== 1.2 ​ Features ==
51 51  
52 52  
53 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
54 54  * Ultra low power consumption
55 -* Distance Detection by Ultrasonic technology
56 -* Flat object range 280mm - 7500mm
57 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
58 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
59 59  * AT Commands to change parameters
60 60  * Uplink on periodically
61 61  * Downlink to change configure
62 62  * IP66 Waterproof Enclosure
63 -* Micro SIM card slot for NB-IoT SIM
64 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
60 +== 1.3 Specification ==
66 66  
67 -== 1.3  Specification ==
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
64 +[[image:image-20220606162220-5.png]]
69 69  
70 -(% style="color:#037691" %)**Common DC Characteristics:**
71 71  
72 -* Supply Voltage: 2.1v ~~ 3.6v
73 -* Operating Temperature: -40 ~~ 85°C
74 74  
75 -(% style="color:#037691" %)**NB-IoT Spec:**
68 +== ​1.4 Applications ==
76 76  
77 -* - B1 @H-FDD: 2100MHz
78 -* - B3 @H-FDD: 1800MHz
79 -* - B8 @H-FDD: 900MHz
80 -* - B5 @H-FDD: 850MHz
81 -* - B20 @H-FDD: 800MHz
82 -* - B28 @H-FDD: 700MHz
70 +* Smart Agriculture
83 83  
84 -(% style="color:#037691" %)**Battery:**
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
85 85  
86 -* Li/SOCI2 un-chargeable battery
87 -* Capacity: 8500mAh
88 -* Self Discharge: <1% / Year @ 25°C
89 -* Max continuously current: 130mA
90 -* Max boost current: 2A, 1 second
75 +== 1.5 Firmware Change log ==
91 91  
92 -(% style="color:#037691" %)**Power Consumption**
93 93  
94 -* STOP Mode: 10uA @ 3.3v
95 -* Max transmit power: 350mA@3.3v
78 +**LSE01 v1.0 :**  Release
96 96  
97 97  
98 -== ​1.4  Applications ==
99 99  
100 -* Smart Buildings & Home Automation
101 -* Logistics and Supply Chain Management
102 -* Smart Metering
103 -* Smart Agriculture
104 -* Smart Cities
105 -* Smart Factory
82 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
108 -​
84 +== 2.1 How it works ==
109 109  
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
110 110  
111 -== 1.5  Pin Definitions ==
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
112 112  
113 113  
114 -[[image:1657328609906-564.png]]
115 115  
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
116 116  
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
117 117  
118 -= 2.  Use NDDS75 to communicate with IoT Server =
119 119  
120 -== 2.1  How it works ==
101 +[[image:1654503992078-669.png]]
121 121  
103 +
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 +
106 +
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 +
111 +[[image:image-20220606163732-6.jpeg]]
112 +
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +
115 +**Add APP EUI in the application**
116 +
117 +
118 +[[image:1654504596150-405.png]]
119 +
120 +
121 +
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
122 122  (((
123 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
124 124  )))
125 125  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
126 126  
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
187 +)))
188 +
189 +=== 2.3.3 Battery Info ===
190 +
127 127  (((
128 -The diagram below shows the working flow in default firmware of NDDS75:
192 +Check the battery voltage for LSE01.
129 129  )))
130 130  
131 131  (((
132 -
196 +Ex1: 0x0B45 = 2885mV
133 133  )))
134 134  
135 -[[image:1657328659945-416.png]]
136 -
137 137  (((
138 -
200 +Ex2: 0x0B49 = 2889mV
139 139  )))
140 140  
141 141  
142 -== 2.2 ​ Configure the NDDS75 ==
143 143  
205 +=== 2.3.4 Soil Moisture ===
144 144  
145 -=== 2.2.1 Test Requirement ===
207 +(((
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +)))
146 146  
147 147  (((
148 -To use NDDS75 in your city, make sure meet below requirements:
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
149 149  )))
150 150  
151 -* Your local operator has already distributed a NB-IoT Network there.
152 -* The local NB-IoT network used the band that NSE01 supports.
153 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
215 +(((
216 +
217 +)))
154 154  
155 155  (((
156 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
157 157  )))
158 158  
159 159  
160 -[[image:1657328756309-230.png]]
161 161  
225 +=== 2.3.5 Soil Temperature ===
162 162  
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
163 163  
164 -=== 2.2.2 Insert SIM card ===
231 +(((
232 +**Example**:
233 +)))
165 165  
166 166  (((
167 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
168 168  )))
169 169  
170 170  (((
171 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
172 172  )))
173 173  
174 174  
175 -[[image:1657328884227-504.png]]
176 176  
245 +=== 2.3.6 Soil Conductivity (EC) ===
177 177  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
178 178  
179 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
180 180  
181 181  (((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
258 +
182 182  (((
183 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
260 +
184 184  )))
262 +
263 +(((
264 +
185 185  )))
186 186  
187 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
188 188  
189 -**Connection:**
269 +Firmware version at least v2.1 supports changing mode.
190 190  
191 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 +For example, bytes[10]=90
192 192  
193 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 +mod=(bytes[10]>>7)&0x01=1.
194 194  
195 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
196 196  
276 +**Downlink Command:**
197 197  
198 -In the PC, use below serial tool settings:
278 +If payload = 0x0A00, workmode=0
199 199  
200 -* Baud:  (% style="color:green" %)**9600**
201 -* Data bits:** (% style="color:green" %)8(%%)**
202 -* Stop bits: (% style="color:green" %)**1**
203 -* Parity:  (% style="color:green" %)**None**
204 -* Flow Control: (% style="color:green" %)**None**
280 +If** **payload =** **0x0A01, workmode=1
205 205  
282 +
283 +
284 +=== 2.3.8 ​Decode payload in The Things Network ===
285 +
286 +While using TTN network, you can add the payload format to decode the payload.
287 +
288 +
289 +[[image:1654505570700-128.png]]
290 +
206 206  (((
207 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
292 +The payload decoder function for TTN is here:
208 208  )))
209 209  
210 -[[image:1657329814315-101.png]]
211 -
212 212  (((
213 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
214 214  )))
215 215  
216 216  
300 +== 2.4 Uplink Interval ==
217 217  
218 -=== 2.2.4 Use CoAP protocol to uplink data ===
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
219 219  
220 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
221 221  
222 222  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
223 223  (((
224 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
225 225  )))
226 226  
227 -* (((
228 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
229 229  )))
320 +
230 230  * (((
231 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
232 232  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
233 233  * (((
234 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
235 235  )))
236 236  
237 237  (((
238 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
239 239  )))
240 240  
241 -[[image:1657330452568-615.png]]
242 242  
350 +* (% style="color:blue" %)**CFM**
243 243  
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 +
354 +
355 +
356 +== 2.6 ​Show Data in DataCake IoT Server ==
357 +
244 244  (((
245 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
246 246  )))
247 247  
248 -[[image:1657330472797-498.png]]
362 +(((
363 +
364 +)))
249 249  
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
250 250  
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
251 251  
252 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
253 253  
375 +[[image:1654505857935-743.png]]
254 254  
255 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
257 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
258 258  
259 -[[image:1657330501006-241.png]]
378 +[[image:1654505874829-548.png]]
260 260  
261 261  
262 -[[image:1657330533775-472.png]]
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
263 263  
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
264 264  
265 265  
266 -=== 2.2.6 Use MQTT protocol to uplink data ===
386 +[[image:1654505905236-553.png]]
267 267  
268 268  
269 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
270 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
271 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
272 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
273 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
274 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
275 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
276 276  
277 -[[image:1657249978444-674.png]]
391 +[[image:1654505925508-181.png]]
278 278  
279 279  
280 -[[image:1657330723006-866.png]]
281 281  
395 +== 2.7 Frequency Plans ==
282 282  
283 -(((
284 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
285 -)))
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
286 286  
287 287  
400 +=== 2.7.1 EU863-870 (EU868) ===
288 288  
289 -=== 2.2.7 Use TCP protocol to uplink data ===
402 +(% style="color:#037691" %)** Uplink:**
290 290  
404 +868.1 - SF7BW125 to SF12BW125
291 291  
292 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
293 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
294 294  
295 -[[image:image-20220709093918-1.png]]
408 +868.5 - SF7BW125 to SF12BW125
296 296  
410 +867.1 - SF7BW125 to SF12BW125
297 297  
298 -[[image:image-20220709093918-2.png]]
412 +867.3 - SF7BW125 to SF12BW125
299 299  
414 +867.5 - SF7BW125 to SF12BW125
300 300  
416 +867.7 - SF7BW125 to SF12BW125
301 301  
302 -=== 2.2.8 Change Update Interval ===
418 +867.9 - SF7BW125 to SF12BW125
303 303  
304 -User can use below command to change the (% style="color:green" %)**uplink interval**.
420 +868.8 - FSK
305 305  
306 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
307 307  
308 -(((
309 -(% style="color:red" %)**NOTE:**
310 -)))
423 +(% style="color:#037691" %)** Downlink:**
311 311  
312 -(((
313 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
314 -)))
425 +Uplink channels 1-9 (RX1)
315 315  
427 +869.525 - SF9BW125 (RX2 downlink only)
316 316  
317 317  
318 -== 2.3  Uplink Payload ==
319 319  
320 -In this mode, uplink payload includes in total 14 bytes
431 +=== 2.7.2 US902-928(US915) ===
321 321  
433 +Used in USA, Canada and South America. Default use CHE=2
322 322  
323 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
324 -|=(% style="width: 60px;" %)(((
325 -**Size(bytes)**
326 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 60px;" %)**1**
327 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
435 +(% style="color:#037691" %)**Uplink:**
328 328  
329 -(((
330 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
331 -)))
437 +903.9 - SF7BW125 to SF10BW125
332 332  
439 +904.1 - SF7BW125 to SF10BW125
333 333  
334 -[[image:1657331036973-987.png]]
441 +904.3 - SF7BW125 to SF10BW125
335 335  
336 -(((
337 -The payload is ASCII string, representative same HEX:
338 -)))
443 +904.5 - SF7BW125 to SF10BW125
339 339  
340 -(((
341 -0x72403155615900640c6c19029200 where:
342 -)))
445 +904.7 - SF7BW125 to SF10BW125
343 343  
344 -* (((
345 -Device ID: 0x724031556159 = 724031556159
346 -)))
347 -* (((
348 -Version: 0x0064=100=1.0.0
349 -)))
447 +904.9 - SF7BW125 to SF10BW125
350 350  
351 -* (((
352 -BAT: 0x0c6c = 3180 mV = 3.180V
353 -)))
354 -* (((
355 -Signal: 0x19 = 25
356 -)))
357 -* (((
358 -Distance: 0x0292= 658 mm
359 -)))
360 -* (((
361 -Interrupt: 0x00 = 0
449 +905.1 - SF7BW125 to SF10BW125
362 362  
451 +905.3 - SF7BW125 to SF10BW125
363 363  
364 364  
365 -
366 -)))
454 +(% style="color:#037691" %)**Downlink:**
367 367  
368 -== 2. Payload Explanation and Sensor Interface ==
456 +923.3 - SF7BW500 to SF12BW500
369 369  
458 +923.9 - SF7BW500 to SF12BW500
370 370  
371 -=== 2.4.1  Device ID ===
460 +924.5 - SF7BW500 to SF12BW500
372 372  
373 -(((
374 -By default, the Device ID equal to the last 6 bytes of IMEI.
375 -)))
462 +925.1 - SF7BW500 to SF12BW500
376 376  
377 -(((
378 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
379 -)))
464 +925.7 - SF7BW500 to SF12BW500
380 380  
381 -(((
382 -**Example:**
383 -)))
466 +926.3 - SF7BW500 to SF12BW500
384 384  
385 -(((
386 -AT+DEUI=A84041F15612
387 -)))
468 +926.9 - SF7BW500 to SF12BW500
388 388  
389 -(((
390 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
391 -)))
470 +927.5 - SF7BW500 to SF12BW500
392 392  
472 +923.3 - SF12BW500(RX2 downlink only)
393 393  
394 394  
395 -=== 2.4.2  Version Info ===
396 396  
397 -(((
398 -Specify the software version: 0x64=100, means firmware version 1.00.
399 -)))
476 +=== 2.7.3 CN470-510 (CN470) ===
400 400  
401 -(((
402 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
403 -)))
478 +Used in China, Default use CHE=1
404 404  
480 +(% style="color:#037691" %)**Uplink:**
405 405  
482 +486.3 - SF7BW125 to SF12BW125
406 406  
407 -=== 2.4. Battery Info ===
484 +486.5 - SF7BW125 to SF12BW125
408 408  
409 -(((
410 -Ex1: 0x0B45 = 2885mV
411 -)))
486 +486.7 - SF7BW125 to SF12BW125
412 412  
413 -(((
414 -Ex2: 0x0B49 = 2889mV
415 -)))
488 +486.9 - SF7BW125 to SF12BW125
416 416  
490 +487.1 - SF7BW125 to SF12BW125
417 417  
492 +487.3 - SF7BW125 to SF12BW125
418 418  
419 -=== 2.4. Signal Strength ===
494 +487.5 - SF7BW125 to SF12BW125
420 420  
421 -(((
422 -NB-IoT Network signal Strength.
423 -)))
496 +487.7 - SF7BW125 to SF12BW125
424 424  
425 -(((
426 -**Ex1: 0x1d = 29**
427 -)))
428 428  
429 -(((
430 -(% style="color:blue" %)**0**(%%)  -113dBm or less
431 -)))
499 +(% style="color:#037691" %)**Downlink:**
432 432  
433 -(((
434 -(% style="color:blue" %)**1**(%%)  -111dBm
435 -)))
501 +506.7 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
439 -)))
503 +506.9 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
443 -)))
505 +507.1 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
447 -)))
507 +507.3 - SF7BW125 to SF12BW125
448 448  
509 +507.5 - SF7BW125 to SF12BW125
449 449  
511 +507.7 - SF7BW125 to SF12BW125
450 450  
451 -=== 2.4.5  Distance ===
513 +507.9 - SF7BW125 to SF12BW125
452 452  
453 -Get the distance. Flat object range 280mm - 7500mm.
515 +508.1 - SF7BW125 to SF12BW125
454 454  
455 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
517 +505.3 - SF12BW125 (RX2 downlink only)
456 456  
457 -(((
458 -(((
459 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
460 -)))
461 -)))
462 462  
463 -(((
464 -
465 -)))
466 466  
467 -(((
468 -
469 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
470 470  
471 -=== 2.4.6  Digital Interrupt ===
523 +Default use CHE=2
472 472  
473 -(((
474 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
475 -)))
525 +(% style="color:#037691" %)**Uplink:**
476 476  
477 -(((
478 -The command is:
479 -)))
527 +916.8 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
483 -)))
529 +917.0 - SF7BW125 to SF12BW125
484 484  
531 +917.2 - SF7BW125 to SF12BW125
485 485  
486 -(((
487 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
488 -)))
533 +917.4 - SF7BW125 to SF12BW125
489 489  
535 +917.6 - SF7BW125 to SF12BW125
490 490  
491 -(((
492 -Example:
493 -)))
537 +917.8 - SF7BW125 to SF12BW125
494 494  
495 -(((
496 -0x(00): Normal uplink packet.
497 -)))
539 +918.0 - SF7BW125 to SF12BW125
498 498  
499 -(((
500 -0x(01): Interrupt Uplink Packet.
501 -)))
541 +918.2 - SF7BW125 to SF12BW125
502 502  
503 503  
544 +(% style="color:#037691" %)**Downlink:**
504 504  
505 -=== 2.4.7  ​+5V Output ===
546 +923.3 - SF7BW500 to SF12BW500
506 506  
507 -(((
508 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
509 -)))
548 +923.9 - SF7BW500 to SF12BW500
510 510  
550 +924.5 - SF7BW500 to SF12BW500
511 511  
512 -(((
513 -The 5V output time can be controlled by AT Command.
514 -)))
552 +925.1 - SF7BW500 to SF12BW500
515 515  
516 -(((
517 -(% style="color:blue" %)**AT+5VT=1000**
518 -)))
554 +925.7 - SF7BW500 to SF12BW500
519 519  
520 -(((
521 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
522 -)))
556 +926.3 - SF7BW500 to SF12BW500
523 523  
558 +926.9 - SF7BW500 to SF12BW500
524 524  
560 +927.5 - SF7BW500 to SF12BW500
525 525  
526 -== 2.5  Downlink Payload ==
562 +923.3 - SF12BW500(RX2 downlink only)
527 527  
528 -By default, NDDS75 prints the downlink payload to console port.
529 529  
530 -[[image:image-20220709100028-1.png]]
531 531  
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
532 532  
533 -(((
534 -(% style="color:blue" %)**Examples:**
535 -)))
568 +(% style="color:#037691" %)**Default Uplink channel:**
536 536  
537 -(((
538 -
539 -)))
570 +923.2 - SF7BW125 to SF10BW125
540 540  
541 -* (((
542 -(% style="color:blue" %)**Set TDC**
543 -)))
572 +923.4 - SF7BW125 to SF10BW125
544 544  
545 -(((
546 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
547 -)))
548 548  
549 -(((
550 -Payload:    01 00 00 1E    TDC=30S
551 -)))
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
552 552  
553 -(((
554 -Payload:    01 00 00 3C    TDC=60S
555 -)))
577 +(OTAA mode, channel added by JoinAccept message)
556 556  
557 -(((
558 -
559 -)))
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
560 560  
561 -* (((
562 -(% style="color:blue" %)**Reset**
563 -)))
581 +922.2 - SF7BW125 to SF10BW125
564 564  
565 -(((
566 -If payload = 0x04FF, it will reset the NDDS75
567 -)))
583 +922.4 - SF7BW125 to SF10BW125
568 568  
585 +922.6 - SF7BW125 to SF10BW125
569 569  
570 -* (% style="color:blue" %)**INTMOD**
587 +922.8 - SF7BW125 to SF10BW125
571 571  
572 -(((
573 -Downlink Payload: 06000003, Set AT+INTMOD=3
574 -)))
589 +923.0 - SF7BW125 to SF10BW125
575 575  
591 +922.0 - SF7BW125 to SF10BW125
576 576  
577 577  
578 -== 2.6  ​LED Indicator ==
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
579 579  
596 +923.6 - SF7BW125 to SF10BW125
580 580  
581 -The NDDS75 has an internal LED which is to show the status of different state.
598 +923.8 - SF7BW125 to SF10BW125
582 582  
600 +924.0 - SF7BW125 to SF10BW125
583 583  
584 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
585 -* Then the LED will be on for 1 second means device is boot normally.
586 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
587 -* For each uplink probe, LED will be on for 500ms.
602 +924.2 - SF7BW125 to SF10BW125
588 588  
589 -(((
590 -
591 -)))
604 +924.4 - SF7BW125 to SF10BW125
592 592  
606 +924.6 - SF7BW125 to SF10BW125
593 593  
594 594  
595 -== 2.7  ​Firmware Change Log ==
609 +(% style="color:#037691" %)** Downlink:**
596 596  
611 +Uplink channels 1-8 (RX1)
597 597  
598 -Download URL & Firmware Change log
613 +923.2 - SF10BW125 (RX2)
599 599  
600 -(((
601 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
602 -)))
603 603  
604 604  
605 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
617 +=== 2.7.6 KR920-923 (KR920) ===
606 606  
619 +Default channel:
607 607  
621 +922.1 - SF7BW125 to SF12BW125
608 608  
609 -== 2. Battery Analysis ==
623 +922.3 - SF7BW125 to SF12BW125
610 610  
611 -=== 2.8.1  Battery Type ===
625 +922.5 - SF7BW125 to SF12BW125
612 612  
613 613  
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +922.7 - SF7BW125 to SF12BW125
637 +
638 +922.9 - SF7BW125 to SF12BW125
639 +
640 +923.1 - SF7BW125 to SF12BW125
641 +
642 +923.3 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +Uplink channels 1-7(RX1)
648 +
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 +
651 +
652 +
653 +=== 2.7.7 IN865-867 (IN865) ===
654 +
655 +(% style="color:#037691" %)** Uplink:**
656 +
657 +865.0625 - SF7BW125 to SF12BW125
658 +
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
614 614  (((
615 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
616 616  )))
692 +)))
617 617  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
618 618  (((
619 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
620 620  )))
621 621  
622 622  (((
623 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
624 624  )))
625 625  
626 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
627 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
628 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
707 +== 2.10 ​Firmware Change Log ==
708 +
630 630  (((
631 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
632 632  )))
633 633  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
634 634  
717 +(((
718 +
719 +)))
635 635  
636 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
637 637  
638 638  (((
639 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +
640 640  )))
641 641  
729 +(((
730 +**V1.0.**
731 +)))
642 642  
643 643  (((
644 -Instruction to use as below:
734 +Release
645 645  )))
646 646  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
647 647  (((
648 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
649 649  )))
650 650  
746 +(((
747 +The battery is designed to last for more than 5 years for the LSN50.
748 +)))
651 651  
652 652  (((
653 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
654 654  )))
754 +)))
655 655  
656 656  * (((
657 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
658 658  )))
659 659  * (((
660 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
661 661  )))
662 662  * (((
663 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
664 664  )))
665 665  
666 -(((
667 -And the Life expectation in difference case will be shown on the right.
668 -)))
766 + [[image:image-20220610172436-1.png]]
669 669  
670 -[[image:image-20220709110451-3.png]]
671 671  
672 672  
770 +=== 2.11.2 ​Battery Note ===
673 673  
674 -=== 2.8.3  ​Battery Note ===
675 -
676 676  (((
677 677  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
678 678  )))
... ... @@ -679,169 +679,302 @@
679 679  
680 680  
681 681  
682 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
683 683  
684 684  (((
685 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
686 686  )))
687 687  
688 -
689 -
690 -= 3. ​ Access NB-IoT Module =
691 -
692 692  (((
693 -Users can directly access the AT command set of the NB-IoT module.
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
694 694  )))
695 695  
696 696  (((
697 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
698 698  )))
699 699  
700 -[[image:1657333200519-600.png]]
701 701  
702 702  
794 += 3. ​Using the AT Commands =
703 703  
704 -= 4.  Using the AT Commands =
796 +== 3.1 Access AT Commands ==
705 705  
706 -== 4.1  Access AT Commands ==
707 707  
708 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
709 709  
801 +[[image:1654501986557-872.png||height="391" width="800"]]
710 710  
711 -AT+<CMD>?  : Help on <CMD>
712 712  
713 -AT+<CMD>         : Run <CMD>
804 +Or if you have below board, use below connection:
714 714  
715 -AT+<CMD>=<value> : Set the value
716 716  
717 -AT+<CMD>=?  : Get the value
807 +[[image:1654502005655-729.png||height="503" width="801"]]
718 718  
719 719  
810 +
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 +
813 +
814 + [[image:1654502050864-459.png||height="564" width="806"]]
815 +
816 +
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 +
819 +
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 +
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
720 720  (% style="color:#037691" %)**General Commands**(%%)      
721 721  
722 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
723 723  
724 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
725 725  
726 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
727 727  
728 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
729 729  
730 -AT+CFG  : Print all configurations
731 731  
732 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
733 733  
734 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
735 735  
736 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
737 737  
738 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
739 739  
740 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
741 741  
742 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
743 743  
744 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
745 745  
746 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
747 747  
748 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
749 749  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
750 750  
751 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
752 752  
753 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
754 754  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
755 755  
756 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
757 757  
758 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
759 759  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
760 760  
761 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
762 762  
763 -AT+CLIENT               : Get or Set MQTT client
764 764  
765 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
766 766  
767 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
768 768  
769 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
770 770  
771 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
772 772  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
773 773  
774 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
775 775  
776 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
777 777  
778 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
779 779  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
780 780  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
781 781  
782 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
783 783  
784 -== 5.1 How to Upgrade Firmware ==
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
785 785  
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
786 786  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 +
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
787 787  (((
788 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
789 789  )))
790 790  
791 791  (((
792 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
793 793  )))
794 794  
795 795  (((
796 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
797 797  )))
798 798  
942 +(((
943 +
944 +)))
799 799  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
800 800  
801 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
802 802  
803 -== 6.1  ​Connection problem when uploading firmware ==
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
804 804  
958 +[[image:image-20220606154726-3.png]]
805 805  
960 +
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
806 806  (((
807 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
808 808  )))
809 809  
810 -(% class="wikigeneratedid" %)
811 811  (((
812 812  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
813 813  )))
814 814  
986 +(((
987 +
988 +)))
815 815  
816 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
817 817  
994 +[[image:image-20220606154825-4.png]]
995 +
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
818 818  (((
819 819  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
820 820  
821 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
822 822  )))
823 823  
824 824  
825 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
826 826  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
827 827  
828 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
829 829  
830 830  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
831 831  (% class="wikigeneratedid" %)
832 832  (((
833 833  
834 834  )))
835 835  
836 -= 8.  Packing Info =
1064 += 7. Packing Info =
837 837  
838 838  (((
839 839  
840 840  
841 841  (% style="color:#037691" %)**Package Includes**:
1070 +)))
842 842  
843 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
844 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
845 845  )))
846 846  
847 847  (((
... ... @@ -848,22 +848,24 @@
848 848  
849 849  
850 850  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
851 851  
852 -
853 -* Device Size: 13.0 x 5 x 4.5 cm
854 -* Device Weight: 150g
855 -* Package Size / pcs : 15 x 12x 5.5 cm
856 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
857 857  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
858 858  
859 -(((
860 860  
861 -
862 -
863 -
864 864  )))
865 865  
866 -= 9.  Support =
1097 += 8. Support =
867 867  
868 868  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
869 869  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content