Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 97.10
edited by Xiaoling
on 2022/07/09 11:30
Change comment: There is no comment for this version
To version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,670 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 20  
18 +
19 +
20 +
21 += 1. Introduction =
22 +
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
21 21  (((
22 22  
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 -)))
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 +
33 33  
34 34  )))
35 35  
36 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
37 37  
38 38  
42 +[[image:1657245163077-232.png]]
39 39  
40 -== 1.2 ​ Features ==
41 41  
42 42  
43 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
44 44  * Ultra low power consumption
45 -* Distance Detection by Ultrasonic technology
46 -* Flat object range 280mm - 7500mm
47 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
48 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
49 49  * AT Commands to change parameters
50 50  * Uplink on periodically
51 51  * Downlink to change configure
52 52  * IP66 Waterproof Enclosure
53 -* Micro SIM card slot for NB-IoT SIM
54 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
55 55  
60 +== 1.3 Specification ==
56 56  
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
57 57  
58 -== 1.3  Specification ==
64 +[[image:image-20220606162220-5.png]]
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
62 62  
63 -* Supply Voltage: 2.1v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
68 +== ​1.4 Applications ==
65 65  
66 -(% style="color:#037691" %)**NB-IoT Spec:**
70 +* Smart Agriculture
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
74 74  
75 -(% style="color:#037691" %)**Battery:**
75 +== 1.5 Firmware Change log ==
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
78 +**LSE01 v1.0 :**  Release
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: 350mA@3.3v
87 87  
88 88  
82 += 2. Configure LSE01 to connect to LoRaWAN network =
89 89  
90 -== ​1. Applications ==
84 +== 2.1 How it works ==
91 91  
92 -* Smart Buildings & Home Automation
93 -* Logistics and Supply Chain Management
94 -* Smart Metering
95 -* Smart Agriculture
96 -* Smart Cities
97 -* Smart Factory
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
98 98  
99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 -​
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
101 101  
102 102  
103 -== 1.5  Pin Definitions ==
104 104  
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105 105  
106 -[[image:1657328609906-564.png]]
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
107 107  
108 108  
101 +[[image:1654503992078-669.png]]
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
111 111  
112 -== 2.1  How it works ==
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
113 113  
106 +
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 +
111 +[[image:image-20220606163732-6.jpeg]]
112 +
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +
115 +**Add APP EUI in the application**
116 +
117 +
118 +[[image:1654504596150-405.png]]
119 +
120 +
121 +
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
116 116  )))
117 117  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
118 118  
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
187 +)))
188 +
189 +=== 2.3.3 Battery Info ===
190 +
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
192 +Check the battery voltage for LSE01.
121 121  )))
122 122  
123 123  (((
124 -
196 +Ex1: 0x0B45 = 2885mV
125 125  )))
126 126  
127 -[[image:1657328659945-416.png]]
128 -
129 129  (((
130 -
200 +Ex2: 0x0B49 = 2889mV
131 131  )))
132 132  
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
205 +=== 2.3.4 Soil Moisture ===
136 136  
137 -=== 2.2.1 Test Requirement ===
207 +(((
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +)))
138 138  
139 139  (((
140 -To use NDDS75 in your city, make sure meet below requirements:
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 141  )))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
215 +(((
216 +
217 +)))
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 149  )))
150 150  
151 151  
152 -[[image:1657328756309-230.png]]
153 153  
225 +=== 2.3.5 Soil Temperature ===
154 154  
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
155 155  
156 -=== 2.2.2 Insert SIM card ===
231 +(((
232 +**Example**:
233 +)))
157 157  
158 158  (((
159 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 160  )))
161 161  
162 162  (((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 164  )))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
168 168  
245 +=== 2.3.6 Soil Conductivity (EC) ===
169 169  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
172 172  
173 173  (((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
258 +
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
260 +
176 176  )))
262 +
263 +(((
264 +
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
180 180  
181 -**Connection:**
269 +Firmware version at least v2.1 supports changing mode.
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 +For example, bytes[10]=90
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 +mod=(bytes[10]>>7)&0x01=1.
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
188 188  
276 +**Downlink Command:**
189 189  
190 -In the PC, use below serial tool settings:
278 +If payload = 0x0A00, workmode=0
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
280 +If** **payload =** **0x0A01, workmode=1
197 197  
282 +
283 +
284 +=== 2.3.8 ​Decode payload in The Things Network ===
285 +
286 +While using TTN network, you can add the payload format to decode the payload.
287 +
288 +
289 +[[image:1654505570700-128.png]]
290 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
292 +The payload decoder function for TTN is here:
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
203 -
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
206 206  )))
207 207  
208 208  
300 +== 2.4 Uplink Interval ==
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
213 213  
214 214  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
215 215  (((
216 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
217 217  )))
218 218  
219 -* (((
220 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
221 221  )))
320 +
222 222  * (((
223 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
224 224  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
225 225  * (((
226 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
227 227  )))
228 228  
229 229  (((
230 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
231 231  )))
232 232  
233 -[[image:1657330452568-615.png]]
234 234  
350 +* (% style="color:blue" %)**CFM**
235 235  
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 +
354 +
355 +
356 +== 2.6 ​Show Data in DataCake IoT Server ==
357 +
236 236  (((
237 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
238 238  )))
239 239  
240 -[[image:1657330472797-498.png]]
362 +(((
363 +
364 +)))
241 241  
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
242 242  
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
243 243  
244 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
245 245  
375 +[[image:1654505857935-743.png]]
246 246  
247 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
248 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
249 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
250 250  
251 -[[image:1657330501006-241.png]]
378 +[[image:1654505874829-548.png]]
252 252  
253 253  
254 -[[image:1657330533775-472.png]]
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
255 255  
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
256 256  
257 257  
258 -=== 2.2.6 Use MQTT protocol to uplink data ===
386 +[[image:1654505905236-553.png]]
259 259  
260 260  
261 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
263 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
264 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
265 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
266 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
267 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
268 268  
269 -[[image:1657249978444-674.png]]
391 +[[image:1654505925508-181.png]]
270 270  
271 271  
272 -[[image:1657330723006-866.png]]
273 273  
395 +== 2.7 Frequency Plans ==
274 274  
275 -(((
276 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
277 -)))
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
278 278  
279 279  
400 +=== 2.7.1 EU863-870 (EU868) ===
280 280  
281 -=== 2.2.7 Use TCP protocol to uplink data ===
402 +(% style="color:#037691" %)** Uplink:**
282 282  
404 +868.1 - SF7BW125 to SF12BW125
283 283  
284 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
285 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
286 286  
287 -[[image:image-20220709093918-1.png]]
408 +868.5 - SF7BW125 to SF12BW125
288 288  
410 +867.1 - SF7BW125 to SF12BW125
289 289  
290 -[[image:image-20220709093918-2.png]]
412 +867.3 - SF7BW125 to SF12BW125
291 291  
414 +867.5 - SF7BW125 to SF12BW125
292 292  
416 +867.7 - SF7BW125 to SF12BW125
293 293  
294 -=== 2.2.8 Change Update Interval ===
418 +867.9 - SF7BW125 to SF12BW125
295 295  
296 -User can use below command to change the (% style="color:green" %)**uplink interval**.
420 +868.8 - FSK
297 297  
298 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
299 299  
300 -(((
301 -(% style="color:red" %)**NOTE:**
302 -)))
423 +(% style="color:#037691" %)** Downlink:**
303 303  
304 -(((
305 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
306 -)))
425 +Uplink channels 1-9 (RX1)
307 307  
427 +869.525 - SF9BW125 (RX2 downlink only)
308 308  
309 309  
310 -== 2.3  Uplink Payload ==
311 311  
312 -In this mode, uplink payload includes in total 14 bytes
431 +=== 2.7.2 US902-928(US915) ===
313 313  
433 +Used in USA, Canada and South America. Default use CHE=2
314 314  
315 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 -|=(% style="width: 80px;" %)(((
317 -**Size(bytes)**
318 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
435 +(% style="color:#037691" %)**Uplink:**
320 320  
321 -(((
322 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
323 -)))
437 +903.9 - SF7BW125 to SF10BW125
324 324  
439 +904.1 - SF7BW125 to SF10BW125
325 325  
326 -[[image:1657331036973-987.png]]
441 +904.3 - SF7BW125 to SF10BW125
327 327  
328 -(((
329 -The payload is ASCII string, representative same HEX:
330 -)))
443 +904.5 - SF7BW125 to SF10BW125
331 331  
332 -(((
333 -0x72403155615900640c6c19029200 where:
334 -)))
445 +904.7 - SF7BW125 to SF10BW125
335 335  
336 -* (((
337 -Device ID: 0x724031556159 = 724031556159
338 -)))
339 -* (((
340 -Version: 0x0064=100=1.0.0
341 -)))
447 +904.9 - SF7BW125 to SF10BW125
342 342  
343 -* (((
344 -BAT: 0x0c6c = 3180 mV = 3.180V
345 -)))
346 -* (((
347 -Signal: 0x19 = 25
348 -)))
349 -* (((
350 -Distance: 0x0292= 658 mm
351 -)))
352 -* (((
353 -Interrupt: 0x00 = 0
449 +905.1 - SF7BW125 to SF10BW125
354 354  
451 +905.3 - SF7BW125 to SF10BW125
355 355  
356 356  
357 -
358 -)))
454 +(% style="color:#037691" %)**Downlink:**
359 359  
360 -== 2. Payload Explanation and Sensor Interface ==
456 +923.3 - SF7BW500 to SF12BW500
361 361  
458 +923.9 - SF7BW500 to SF12BW500
362 362  
363 -=== 2.4.1  Device ID ===
460 +924.5 - SF7BW500 to SF12BW500
364 364  
365 -(((
366 -By default, the Device ID equal to the last 6 bytes of IMEI.
367 -)))
462 +925.1 - SF7BW500 to SF12BW500
368 368  
369 -(((
370 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
371 -)))
464 +925.7 - SF7BW500 to SF12BW500
372 372  
373 -(((
374 -**Example:**
375 -)))
466 +926.3 - SF7BW500 to SF12BW500
376 376  
377 -(((
378 -AT+DEUI=A84041F15612
379 -)))
468 +926.9 - SF7BW500 to SF12BW500
380 380  
381 -(((
382 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
383 -)))
470 +927.5 - SF7BW500 to SF12BW500
384 384  
472 +923.3 - SF12BW500(RX2 downlink only)
385 385  
386 386  
387 -=== 2.4.2  Version Info ===
388 388  
389 -(((
390 -Specify the software version: 0x64=100, means firmware version 1.00.
391 -)))
476 +=== 2.7.3 CN470-510 (CN470) ===
392 392  
393 -(((
394 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
395 -)))
478 +Used in China, Default use CHE=1
396 396  
480 +(% style="color:#037691" %)**Uplink:**
397 397  
482 +486.3 - SF7BW125 to SF12BW125
398 398  
399 -=== 2.4. Battery Info ===
484 +486.5 - SF7BW125 to SF12BW125
400 400  
401 -(((
402 -Ex1: 0x0B45 = 2885mV
403 -)))
486 +486.7 - SF7BW125 to SF12BW125
404 404  
405 -(((
406 -Ex2: 0x0B49 = 2889mV
407 -)))
488 +486.9 - SF7BW125 to SF12BW125
408 408  
490 +487.1 - SF7BW125 to SF12BW125
409 409  
492 +487.3 - SF7BW125 to SF12BW125
410 410  
411 -=== 2.4. Signal Strength ===
494 +487.5 - SF7BW125 to SF12BW125
412 412  
413 -(((
414 -NB-IoT Network signal Strength.
415 -)))
496 +487.7 - SF7BW125 to SF12BW125
416 416  
417 -(((
418 -**Ex1: 0x1d = 29**
419 -)))
420 420  
421 -(((
422 -(% style="color:blue" %)**0**(%%)  -113dBm or less
423 -)))
499 +(% style="color:#037691" %)**Downlink:**
424 424  
425 -(((
426 -(% style="color:blue" %)**1**(%%)  -111dBm
427 -)))
501 +506.7 - SF7BW125 to SF12BW125
428 428  
429 -(((
430 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
431 -)))
503 +506.9 - SF7BW125 to SF12BW125
432 432  
433 -(((
434 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
435 -)))
505 +507.1 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
439 -)))
507 +507.3 - SF7BW125 to SF12BW125
440 440  
509 +507.5 - SF7BW125 to SF12BW125
441 441  
511 +507.7 - SF7BW125 to SF12BW125
442 442  
443 -=== 2.4.5  Distance ===
513 +507.9 - SF7BW125 to SF12BW125
444 444  
445 -Get the distance. Flat object range 280mm - 7500mm.
515 +508.1 - SF7BW125 to SF12BW125
446 446  
447 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
517 +505.3 - SF12BW125 (RX2 downlink only)
448 448  
449 -(((
450 -(((
451 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
452 -)))
453 -)))
454 454  
455 -(((
456 -
457 -)))
458 458  
459 -(((
460 -
461 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
462 462  
463 -=== 2.4.6  Digital Interrupt ===
523 +Default use CHE=2
464 464  
465 -(((
466 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
467 -)))
525 +(% style="color:#037691" %)**Uplink:**
468 468  
469 -(((
470 -The command is:
471 -)))
527 +916.8 - SF7BW125 to SF12BW125
472 472  
473 -(((
474 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
475 -)))
529 +917.0 - SF7BW125 to SF12BW125
476 476  
531 +917.2 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
480 -)))
533 +917.4 - SF7BW125 to SF12BW125
481 481  
535 +917.6 - SF7BW125 to SF12BW125
482 482  
483 -(((
484 -Example:
485 -)))
537 +917.8 - SF7BW125 to SF12BW125
486 486  
487 -(((
488 -0x(00): Normal uplink packet.
489 -)))
539 +918.0 - SF7BW125 to SF12BW125
490 490  
491 -(((
492 -0x(01): Interrupt Uplink Packet.
493 -)))
541 +918.2 - SF7BW125 to SF12BW125
494 494  
495 495  
544 +(% style="color:#037691" %)**Downlink:**
496 496  
497 -=== 2.4.7  ​+5V Output ===
546 +923.3 - SF7BW500 to SF12BW500
498 498  
499 -(((
500 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
501 -)))
548 +923.9 - SF7BW500 to SF12BW500
502 502  
550 +924.5 - SF7BW500 to SF12BW500
503 503  
504 -(((
505 -The 5V output time can be controlled by AT Command.
506 -)))
552 +925.1 - SF7BW500 to SF12BW500
507 507  
508 -(((
509 -(% style="color:blue" %)**AT+5VT=1000**
510 -)))
554 +925.7 - SF7BW500 to SF12BW500
511 511  
512 -(((
513 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
514 -)))
556 +926.3 - SF7BW500 to SF12BW500
515 515  
558 +926.9 - SF7BW500 to SF12BW500
516 516  
560 +927.5 - SF7BW500 to SF12BW500
517 517  
518 -== 2.5  Downlink Payload ==
562 +923.3 - SF12BW500(RX2 downlink only)
519 519  
520 -By default, NDDS75 prints the downlink payload to console port.
521 521  
522 -[[image:image-20220709100028-1.png]]
523 523  
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
524 524  
525 -(((
526 -(% style="color:blue" %)**Examples:**
527 -)))
568 +(% style="color:#037691" %)**Default Uplink channel:**
528 528  
529 -(((
530 -
531 -)))
570 +923.2 - SF7BW125 to SF10BW125
532 532  
533 -* (((
534 -(% style="color:blue" %)**Set TDC**
535 -)))
572 +923.4 - SF7BW125 to SF10BW125
536 536  
537 -(((
538 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
539 -)))
540 540  
541 -(((
542 -Payload:    01 00 00 1E    TDC=30S
543 -)))
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
544 544  
545 -(((
546 -Payload:    01 00 00 3C    TDC=60S
547 -)))
577 +(OTAA mode, channel added by JoinAccept message)
548 548  
549 -(((
550 -
551 -)))
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
552 552  
553 -* (((
554 -(% style="color:blue" %)**Reset**
555 -)))
581 +922.2 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -If payload = 0x04FF, it will reset the NDDS75
559 -)))
583 +922.4 - SF7BW125 to SF10BW125
560 560  
585 +922.6 - SF7BW125 to SF10BW125
561 561  
562 -* (% style="color:blue" %)**INTMOD**
587 +922.8 - SF7BW125 to SF10BW125
563 563  
564 -(((
565 -Downlink Payload: 06000003, Set AT+INTMOD=3
566 -)))
589 +923.0 - SF7BW125 to SF10BW125
567 567  
591 +922.0 - SF7BW125 to SF10BW125
568 568  
569 569  
570 -== 2.6  ​LED Indicator ==
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 571  
596 +923.6 - SF7BW125 to SF10BW125
572 572  
573 -The NDDS75 has an internal LED which is to show the status of different state.
598 +923.8 - SF7BW125 to SF10BW125
574 574  
600 +924.0 - SF7BW125 to SF10BW125
575 575  
576 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
577 -* Then the LED will be on for 1 second means device is boot normally.
578 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
579 -* For each uplink probe, LED will be on for 500ms.
602 +924.2 - SF7BW125 to SF10BW125
580 580  
581 -(((
582 -
583 -)))
604 +924.4 - SF7BW125 to SF10BW125
584 584  
606 +924.6 - SF7BW125 to SF10BW125
585 585  
586 586  
587 -== 2.7  ​Firmware Change Log ==
609 +(% style="color:#037691" %)** Downlink:**
588 588  
611 +Uplink channels 1-8 (RX1)
589 589  
590 -Download URL & Firmware Change log
613 +923.2 - SF10BW125 (RX2)
591 591  
592 -(((
593 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
594 -)))
595 595  
596 596  
597 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
617 +=== 2.7.6 KR920-923 (KR920) ===
598 598  
619 +Default channel:
599 599  
621 +922.1 - SF7BW125 to SF12BW125
600 600  
601 -== 2. Battery Analysis ==
623 +922.3 - SF7BW125 to SF12BW125
602 602  
603 -=== 2.8.1  Battery Type ===
625 +922.5 - SF7BW125 to SF12BW125
604 604  
605 605  
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +922.7 - SF7BW125 to SF12BW125
637 +
638 +922.9 - SF7BW125 to SF12BW125
639 +
640 +923.1 - SF7BW125 to SF12BW125
641 +
642 +923.3 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Downlink:**
646 +
647 +Uplink channels 1-7(RX1)
648 +
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 +
651 +
652 +
653 +=== 2.7.7 IN865-867 (IN865) ===
654 +
655 +(% style="color:#037691" %)** Uplink:**
656 +
657 +865.0625 - SF7BW125 to SF12BW125
658 +
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
606 606  (((
607 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
608 608  )))
692 +)))
609 609  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
610 610  (((
611 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
612 612  )))
613 613  
614 614  (((
615 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
616 616  )))
617 617  
618 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
619 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
620 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
621 621  
707 +== 2.10 ​Firmware Change Log ==
708 +
622 622  (((
623 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
624 624  )))
625 625  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
626 626  
717 +(((
718 +
719 +)))
627 627  
628 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
629 629  
630 630  (((
631 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +
632 632  )))
633 633  
729 +(((
730 +**V1.0.**
731 +)))
634 634  
635 635  (((
636 -Instruction to use as below:
734 +Release
637 637  )))
638 638  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
639 639  (((
640 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
641 641  )))
642 642  
746 +(((
747 +The battery is designed to last for more than 5 years for the LSN50.
748 +)))
643 643  
644 644  (((
645 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
646 646  )))
754 +)))
647 647  
648 648  * (((
649 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
650 650  )))
651 651  * (((
652 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
653 653  )))
654 654  * (((
655 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
656 656  )))
657 657  
658 -(((
659 -And the Life expectation in difference case will be shown on the right.
660 -)))
766 + [[image:image-20220610172436-1.png]]
661 661  
662 -[[image:image-20220709110451-3.png]]
663 663  
664 664  
770 +=== 2.11.2 ​Battery Note ===
665 665  
666 -=== 2.8.3  ​Battery Note ===
667 -
668 668  (((
669 669  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
670 670  )))
... ... @@ -671,169 +671,302 @@
671 671  
672 672  
673 673  
674 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
675 675  
676 676  (((
677 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
678 678  )))
679 679  
680 -
681 -
682 -= 3. ​ Access NB-IoT Module =
683 -
684 684  (((
685 -Users can directly access the AT command set of the NB-IoT module.
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
686 686  )))
687 687  
688 688  (((
689 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
690 690  )))
691 691  
692 -[[image:1657333200519-600.png]]
693 693  
694 694  
794 += 3. ​Using the AT Commands =
695 695  
696 -= 4.  Using the AT Commands =
796 +== 3.1 Access AT Commands ==
697 697  
698 -== 4.1  Access AT Commands ==
699 699  
700 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
701 701  
801 +[[image:1654501986557-872.png||height="391" width="800"]]
702 702  
703 -AT+<CMD>?  : Help on <CMD>
704 704  
705 -AT+<CMD>         : Run <CMD>
804 +Or if you have below board, use below connection:
706 706  
707 -AT+<CMD>=<value> : Set the value
708 708  
709 -AT+<CMD>=?  : Get the value
807 +[[image:1654502005655-729.png||height="503" width="801"]]
710 710  
711 711  
810 +
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 +
813 +
814 + [[image:1654502050864-459.png||height="564" width="806"]]
815 +
816 +
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 +
819 +
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 +
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
712 712  (% style="color:#037691" %)**General Commands**(%%)      
713 713  
714 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
715 715  
716 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
717 717  
718 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
719 719  
720 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
721 721  
722 -AT+CFG  : Print all configurations
723 723  
724 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
725 725  
726 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
727 727  
728 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
729 729  
730 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
731 731  
732 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
733 733  
734 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
735 735  
736 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
737 737  
738 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
739 739  
740 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
741 741  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
742 742  
743 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
744 744  
745 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
746 746  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
747 747  
748 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
749 749  
750 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
751 751  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
752 752  
753 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
754 754  
755 -AT+CLIENT               : Get or Set MQTT client
756 756  
757 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
758 758  
759 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
760 760  
761 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
762 762  
763 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
764 764  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
765 765  
766 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
767 767  
768 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
769 769  
770 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
771 771  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
772 772  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
773 773  
774 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
775 775  
776 -== 5.1 How to Upgrade Firmware ==
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
777 777  
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
778 778  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 +
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
779 779  (((
780 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
781 781  )))
782 782  
783 783  (((
784 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
785 785  )))
786 786  
787 787  (((
788 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
789 789  )))
790 790  
942 +(((
943 +
944 +)))
791 791  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
792 792  
793 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
794 794  
795 -== 6.1  ​Connection problem when uploading firmware ==
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
796 796  
958 +[[image:image-20220606154726-3.png]]
797 797  
960 +
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
798 798  (((
799 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
800 800  )))
801 801  
802 -(% class="wikigeneratedid" %)
803 803  (((
804 804  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
805 805  )))
806 806  
986 +(((
987 +
988 +)))
807 807  
808 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
809 809  
994 +[[image:image-20220606154825-4.png]]
995 +
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
810 810  (((
811 811  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
812 812  
813 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
814 814  )))
815 815  
816 816  
817 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
818 818  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
819 819  
820 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
821 821  
822 822  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
823 823  (% class="wikigeneratedid" %)
824 824  (((
825 825  
826 826  )))
827 827  
828 -= 8.  Packing Info =
1064 += 7. Packing Info =
829 829  
830 830  (((
831 831  
832 832  
833 833  (% style="color:#037691" %)**Package Includes**:
1070 +)))
834 834  
835 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
836 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
837 837  )))
838 838  
839 839  (((
... ... @@ -840,22 +840,24 @@
840 840  
841 841  
842 842  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
843 843  
844 -
845 -* Device Size: 13.0 x 5 x 4.5 cm
846 -* Device Weight: 150g
847 -* Package Size / pcs : 15 x 12x 5.5 cm
848 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
849 849  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
850 850  
851 -(((
852 852  
853 -
854 -
855 -
856 856  )))
857 857  
858 -= 9.  Support =
1097 += 8. Support =
859 859  
860 860  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
861 861  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content