Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 95.5
edited by Xiaoling
on 2022/07/09 10:58
Change comment: There is no comment for this version
To version 45.3
edited by Xiaoling
on 2022/07/08 10:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,35 +1,38 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
33 33  
34 34  )))
35 35  
... ... @@ -36,26 +36,28 @@
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
44 44  
45 45  
46 46  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 -* Ultra low power consumption
48 -* Distance Detection by Ultrasonic technology
49 -* Flat object range 280mm - 7500mm
50 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
51 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
52 52  * AT Commands to change parameters
53 53  * Uplink on periodically
54 54  * Downlink to change configure
55 55  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
56 56  * Micro SIM card slot for NB-IoT SIM
57 57  * 8500mAh Battery for long term use
58 58  
62 +
63 +
59 59  == 1.3  Specification ==
60 60  
61 61  
... ... @@ -64,6 +64,7 @@
64 64  * Supply Voltage: 2.1v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
72 +
67 67  (% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 69  * - B1 @H-FDD: 2100MHz
... ... @@ -73,591 +73,727 @@
73 73  * - B20 @H-FDD: 800MHz
74 74  * - B28 @H-FDD: 700MHz
75 75  
76 -(% style="color:#037691" %)**Battery:**
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
87 +[[image:image-20220708101224-1.png]]
88 88  
89 89  
90 +
90 90  == ​1.4  Applications ==
91 91  
92 -* Smart Buildings & Home Automation
93 -* Logistics and Supply Chain Management
94 -* Smart Metering
95 95  * Smart Agriculture
96 -* Smart Cities
97 -* Smart Factory
98 98  
99 99  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 100  ​
101 101  
102 -
103 -
104 104  == 1.5  Pin Definitions ==
105 105  
106 106  
107 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
108 108  
109 109  
110 110  
111 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
112 112  
113 113  == 2.1  How it works ==
114 114  
109 +
115 115  (((
116 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
117 117  )))
118 118  
119 119  
120 120  (((
121 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
122 122  )))
123 123  
119 +[[image:image-20220708101605-2.png]]
120 +
124 124  (((
125 125  
126 126  )))
127 127  
128 -[[image:1657328659945-416.png]]
129 129  
130 -(((
131 -
132 -)))
133 133  
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
134 134  
135 -== 2.2 Configure the NDDS75 ==
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
136 136  
137 137  
138 -=== 2.2.1 Test Requirement ===
132 +[[image:1654503992078-669.png]]
139 139  
140 -(((
141 -To use NDDS75 in your city, make sure meet below requirements:
142 -)))
143 143  
144 -* Your local operator has already distributed a NB-IoT Network there.
145 -* The local NB-IoT network used the band that NSE01 supports.
146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
147 147  
148 -(((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 -)))
151 151  
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
152 152  
153 -[[image:1657328756309-230.png]]
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
154 154  
142 +[[image:image-20220606163732-6.jpeg]]
155 155  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
156 156  
157 -=== 2.2.2 Insert SIM card ===
146 +**Add APP EUI in the application**
158 158  
159 -(((
160 -Insert the NB-IoT Card get from your provider.
161 -)))
162 162  
163 -(((
164 -User need to take out the NB-IoT module and insert the SIM card like below:
165 -)))
149 +[[image:1654504596150-405.png]]
166 166  
167 167  
168 -[[image:1657328884227-504.png]]
169 169  
153 +**Add APP KEY and DEV EUI**
170 170  
155 +[[image:1654504683289-357.png]]
171 171  
172 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
173 173  
174 -(((
175 -(((
176 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
177 -)))
178 -)))
179 179  
180 -[[image:image-20220709092052-2.png]]
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
181 181  
182 -**Connection:**
183 183  
184 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
185 185  
186 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
164 +[[image:image-20220606163915-7.png]]
187 187  
188 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
189 189  
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
190 190  
191 -In the PC, use below serial tool settings:
169 +[[image:1654504778294-788.png]]
192 192  
193 -* Baud:  (% style="color:green" %)**9600**
194 -* Data bits:** (% style="color:green" %)8(%%)**
195 -* Stop bits: (% style="color:green" %)**1**
196 -* Parity:  (% style="color:green" %)**None**
197 -* Flow Control: (% style="color:green" %)**None**
198 198  
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
199 199  (((
200 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
181 +Uplink payload includes in total 11 bytes.
201 201  )))
202 202  
203 -[[image:1657329814315-101.png]]
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
204 204  
205 -(((
206 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
207 207  )))
208 208  
200 +=== 2.3.2 MOD~=1(Original value) ===
209 209  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
210 210  
211 -=== 2.2.4 Use CoAP protocol to uplink data ===
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
212 212  
213 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
214 214  
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
215 215  
216 -**Use below commands:**
217 +(Optional)
218 +)))
217 217  
218 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
220 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
220 +=== 2.3.3 Battery Info ===
221 221  
222 -For parameter description, please refer to AT command set
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
223 223  
224 -[[image:1657330452568-615.png]]
226 +(((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
225 225  
230 +(((
231 +Ex2: 0x0B49 = 2889mV
232 +)))
226 226  
227 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
228 228  
229 -[[image:1657330472797-498.png]]
230 230  
236 +=== 2.3.4 Soil Moisture ===
231 231  
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 +)))
232 232  
233 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
234 234  
246 +(((
247 +
248 +)))
235 235  
236 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
239 239  
240 -[[image:1657330501006-241.png]]
241 241  
242 242  
243 -[[image:1657330533775-472.png]]
256 +=== 2.3.5 Soil Temperature ===
244 244  
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
245 245  
262 +(((
263 +**Example**:
264 +)))
246 246  
247 -=== 2.2.6 Use MQTT protocol to uplink data ===
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
248 248  
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
249 249  
250 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
251 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
252 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
253 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
254 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
255 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
256 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
257 257  
258 -[[image:1657249978444-674.png]]
259 259  
276 +=== 2.3.6 Soil Conductivity (EC) ===
260 260  
261 -[[image:1657330723006-866.png]]
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
262 262  
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
263 263  
264 264  (((
265 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
266 266  )))
267 267  
290 +(((
291 +
292 +)))
268 268  
294 +(((
295 +
296 +)))
269 269  
270 -=== 2.2.7 Use TCP protocol to uplink data ===
298 +=== 2.3.7 MOD ===
271 271  
300 +Firmware version at least v2.1 supports changing mode.
272 272  
273 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
274 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
302 +For example, bytes[10]=90
275 275  
276 -[[image:image-20220709093918-1.png]]
304 +mod=(bytes[10]>>7)&0x01=1.
277 277  
278 278  
279 -[[image:image-20220709093918-2.png]]
307 +**Downlink Command:**
280 280  
309 +If payload = 0x0A00, workmode=0
281 281  
311 +If** **payload =** **0x0A01, workmode=1
282 282  
283 -=== 2.2.8 Change Update Interval ===
284 284  
285 -User can use below command to change the (% style="color:green" %)**uplink interval**.
286 286  
287 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
315 +=== 2.3.8 ​Decode payload in The Things Network ===
288 288  
317 +While using TTN network, you can add the payload format to decode the payload.
318 +
319 +
320 +[[image:1654505570700-128.png]]
321 +
289 289  (((
290 -(% style="color:red" %)**NOTE:**
323 +The payload decoder function for TTN is here:
291 291  )))
292 292  
293 293  (((
294 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
295 295  )))
296 296  
297 297  
331 +== 2.4 Uplink Interval ==
298 298  
299 -== 2. Uplink Payload ==
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
300 300  
301 -In this mode, uplink payload includes in total 14 bytes
302 302  
303 303  
304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 -|=(% style="width: 80px;" %)(((
306 -**Size(bytes)**
307 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
308 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
337 +== 2.5 Downlink Payload ==
309 309  
310 -(((
311 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
312 -)))
339 +By default, LSE50 prints the downlink payload to console port.
313 313  
341 +[[image:image-20220606165544-8.png]]
314 314  
315 -[[image:1657331036973-987.png]]
316 316  
317 317  (((
318 -The payload is ASCII string, representative same HEX:
345 +(% style="color:blue" %)**Examples:**
319 319  )))
320 320  
321 321  (((
322 -0x72403155615900640c6c19029200 where:
349 +
323 323  )))
324 324  
325 325  * (((
326 -Device ID: 0x724031556159 = 724031556159
353 +(% style="color:blue" %)**Set TDC**
327 327  )))
328 -* (((
329 -Version: 0x0064=100=1.0.0
355 +
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
330 330  )))
331 331  
332 -* (((
333 -BAT: 0x0c6c = 3180 mV = 3.180V
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
334 334  )))
335 -* (((
336 -Signal: 0x19 = 25
363 +
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
337 337  )))
338 -* (((
339 -Distance: 0x0292= 658 mm
367 +
368 +(((
369 +
340 340  )))
371 +
341 341  * (((
342 -Interrupt: 0x00 = 0
373 +(% style="color:blue" %)**Reset**
374 +)))
343 343  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
344 344  
345 345  
346 -
347 -)))
381 +* (% style="color:blue" %)**CFM**
348 348  
349 -== 2.4  Payload Explanation and Sensor Interface ==
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
350 350  
351 351  
352 -=== 2.4.1  Device ID ===
353 353  
354 -(((
355 -By default, the Device ID equal to the last 6 bytes of IMEI.
356 -)))
387 +== 2.6 ​Show Data in DataCake IoT Server ==
357 357  
358 358  (((
359 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
360 360  )))
361 361  
362 362  (((
363 -**Example:**
394 +
364 364  )))
365 365  
366 366  (((
367 -AT+DEUI=A84041F15612
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 368  )))
369 369  
370 370  (((
371 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 372  )))
373 373  
374 374  
406 +[[image:1654505857935-743.png]]
375 375  
376 -=== 2.4.2  Version Info ===
377 377  
378 -(((
379 -Specify the software version: 0x64=100, means firmware version 1.00.
380 -)))
409 +[[image:1654505874829-548.png]]
381 381  
382 -(((
383 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
384 -)))
385 385  
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
386 386  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
387 387  
388 -=== 2.4.3  Battery Info ===
389 389  
390 -(((
391 -Check the battery voltage for LSE01.
392 -)))
417 +[[image:1654505905236-553.png]]
393 393  
394 -(((
395 -Ex1: 0x0B45 = 2885mV
396 -)))
397 397  
398 -(((
399 -Ex2: 0x0B49 = 2889mV
400 -)))
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
401 401  
422 +[[image:1654505925508-181.png]]
402 402  
403 403  
404 -=== 2.4.4  Signal Strength ===
405 405  
406 -(((
407 -NB-IoT Network signal Strength.
408 -)))
426 +== 2.7 Frequency Plans ==
409 409  
410 -(((
411 -**Ex1: 0x1d = 29**
412 -)))
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
413 413  
414 -(((
415 -(% style="color:blue" %)**0**(%%)  -113dBm or less
416 -)))
417 417  
418 -(((
419 -(% style="color:blue" %)**1**(%%)  -111dBm
420 -)))
431 +=== 2.7.1 EU863-870 (EU868) ===
421 421  
422 -(((
423 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
424 -)))
433 +(% style="color:#037691" %)** Uplink:**
425 425  
426 -(((
427 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
428 -)))
435 +868.1 - SF7BW125 to SF12BW125
429 429  
430 -(((
431 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
432 -)))
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
433 433  
439 +868.5 - SF7BW125 to SF12BW125
434 434  
441 +867.1 - SF7BW125 to SF12BW125
435 435  
436 -=== 2.4.5  Distance ===
443 +867.3 - SF7BW125 to SF12BW125
437 437  
438 -Get the distance. Flat object range 280mm - 7500mm.
445 +867.5 - SF7BW125 to SF12BW125
439 439  
440 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
447 +867.7 - SF7BW125 to SF12BW125
441 441  
442 -(((
443 -(((
444 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
445 -)))
446 -)))
449 +867.9 - SF7BW125 to SF12BW125
447 447  
448 -(((
449 -
450 -)))
451 +868.8 - FSK
451 451  
452 -(((
453 -
454 -)))
455 455  
456 -=== 2.4.6  Digital Interrupt ===
454 +(% style="color:#037691" %)** Downlink:**
457 457  
458 -(((
459 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
460 -)))
456 +Uplink channels 1-9 (RX1)
461 461  
462 -(((
463 -The command is:
464 -)))
458 +869.525 - SF9BW125 (RX2 downlink only)
465 465  
466 -(((
467 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
468 -)))
469 469  
470 470  
471 -(((
472 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
473 -)))
462 +=== 2.7.2 US902-928(US915) ===
474 474  
464 +Used in USA, Canada and South America. Default use CHE=2
475 475  
476 -(((
477 -Example:
478 -)))
466 +(% style="color:#037691" %)**Uplink:**
479 479  
480 -(((
481 -0x(00): Normal uplink packet.
482 -)))
468 +903.9 - SF7BW125 to SF10BW125
483 483  
484 -(((
485 -0x(01): Interrupt Uplink Packet.
486 -)))
470 +904.1 - SF7BW125 to SF10BW125
487 487  
472 +904.3 - SF7BW125 to SF10BW125
488 488  
474 +904.5 - SF7BW125 to SF10BW125
489 489  
490 -=== 2.4.7  ​+5V Output ===
476 +904.7 - SF7BW125 to SF10BW125
491 491  
492 -(((
493 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
494 -)))
478 +904.9 - SF7BW125 to SF10BW125
495 495  
480 +905.1 - SF7BW125 to SF10BW125
496 496  
497 -(((
498 -The 5V output time can be controlled by AT Command.
499 -)))
482 +905.3 - SF7BW125 to SF10BW125
500 500  
501 -(((
502 -(% style="color:blue" %)**AT+5VT=1000**
503 -)))
504 504  
505 -(((
506 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
507 -)))
485 +(% style="color:#037691" %)**Downlink:**
508 508  
487 +923.3 - SF7BW500 to SF12BW500
509 509  
489 +923.9 - SF7BW500 to SF12BW500
510 510  
511 -== 2.5  Downlink Payload ==
491 +924.5 - SF7BW500 to SF12BW500
512 512  
513 -By default, NDDS75 prints the downlink payload to console port.
493 +925.1 - SF7BW500 to SF12BW500
514 514  
515 -[[image:image-20220709100028-1.png]]
495 +925.7 - SF7BW500 to SF12BW500
516 516  
497 +926.3 - SF7BW500 to SF12BW500
517 517  
518 -(((
519 -(% style="color:blue" %)**Examples:**
520 -)))
499 +926.9 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -
524 -)))
501 +927.5 - SF7BW500 to SF12BW500
525 525  
526 -* (((
527 -(% style="color:blue" %)**Set TDC**
528 -)))
503 +923.3 - SF12BW500(RX2 downlink only)
529 529  
530 -(((
531 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
532 -)))
533 533  
534 -(((
535 -Payload:    01 00 00 1E    TDC=30S
536 -)))
537 537  
538 -(((
539 -Payload:    01 00 00 3C    TDC=60S
540 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
541 541  
542 -(((
543 -
544 -)))
509 +Used in China, Default use CHE=1
545 545  
546 -* (((
547 -(% style="color:blue" %)**Reset**
548 -)))
511 +(% style="color:#037691" %)**Uplink:**
549 549  
550 -(((
551 -If payload = 0x04FF, it will reset the NDDS75
552 -)))
513 +486.3 - SF7BW125 to SF12BW125
553 553  
515 +486.5 - SF7BW125 to SF12BW125
554 554  
555 -* (% style="color:blue" %)**INTMOD**
517 +486.7 - SF7BW125 to SF12BW125
556 556  
557 -(((
558 -Downlink Payload: 06000003, Set AT+INTMOD=3
559 -)))
519 +486.9 - SF7BW125 to SF12BW125
560 560  
521 +487.1 - SF7BW125 to SF12BW125
561 561  
523 +487.3 - SF7BW125 to SF12BW125
562 562  
563 -== 2. ​LED Indicator ==
525 +487.5 - SF7BW125 to SF12BW125
564 564  
527 +487.7 - SF7BW125 to SF12BW125
565 565  
566 -The NDDS75 has an internal LED which is to show the status of different state.
567 567  
530 +(% style="color:#037691" %)**Downlink:**
568 568  
569 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
570 -* Then the LED will be on for 1 second means device is boot normally.
571 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
572 -* For each uplink probe, LED will be on for 500ms.
532 +506.7 - SF7BW125 to SF12BW125
573 573  
574 -(((
575 -
576 -)))
534 +506.9 - SF7BW125 to SF12BW125
577 577  
536 +507.1 - SF7BW125 to SF12BW125
578 578  
538 +507.3 - SF7BW125 to SF12BW125
579 579  
580 -== 2.7  Firmware Change Log ==
540 +507.5 - SF7BW125 to SF12BW125
581 581  
542 +507.7 - SF7BW125 to SF12BW125
582 582  
583 -Download URL & Firmware Change log
544 +507.9 - SF7BW125 to SF12BW125
584 584  
585 -(((
586 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
587 -)))
546 +508.1 - SF7BW125 to SF12BW125
588 588  
548 +505.3 - SF12BW125 (RX2 downlink only)
589 589  
590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
591 591  
592 592  
552 +=== 2.7.4 AU915-928(AU915) ===
593 593  
594 -== 2.8  ​Battery Analysis ==
554 +Default use CHE=2
595 595  
596 -=== 2.8.1  ​Battery Type ===
556 +(% style="color:#037691" %)**Uplink:**
597 597  
558 +916.8 - SF7BW125 to SF12BW125
598 598  
560 +917.0 - SF7BW125 to SF12BW125
561 +
562 +917.2 - SF7BW125 to SF12BW125
563 +
564 +917.4 - SF7BW125 to SF12BW125
565 +
566 +917.6 - SF7BW125 to SF12BW125
567 +
568 +917.8 - SF7BW125 to SF12BW125
569 +
570 +918.0 - SF7BW125 to SF12BW125
571 +
572 +918.2 - SF7BW125 to SF12BW125
573 +
574 +
575 +(% style="color:#037691" %)**Downlink:**
576 +
577 +923.3 - SF7BW500 to SF12BW500
578 +
579 +923.9 - SF7BW500 to SF12BW500
580 +
581 +924.5 - SF7BW500 to SF12BW500
582 +
583 +925.1 - SF7BW500 to SF12BW500
584 +
585 +925.7 - SF7BW500 to SF12BW500
586 +
587 +926.3 - SF7BW500 to SF12BW500
588 +
589 +926.9 - SF7BW500 to SF12BW500
590 +
591 +927.5 - SF7BW500 to SF12BW500
592 +
593 +923.3 - SF12BW500(RX2 downlink only)
594 +
595 +
596 +
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 +
599 +(% style="color:#037691" %)**Default Uplink channel:**
600 +
601 +923.2 - SF7BW125 to SF10BW125
602 +
603 +923.4 - SF7BW125 to SF10BW125
604 +
605 +
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
607 +
608 +(OTAA mode, channel added by JoinAccept message)
609 +
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 +
612 +922.2 - SF7BW125 to SF10BW125
613 +
614 +922.4 - SF7BW125 to SF10BW125
615 +
616 +922.6 - SF7BW125 to SF10BW125
617 +
618 +922.8 - SF7BW125 to SF10BW125
619 +
620 +923.0 - SF7BW125 to SF10BW125
621 +
622 +922.0 - SF7BW125 to SF10BW125
623 +
624 +
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
626 +
627 +923.6 - SF7BW125 to SF10BW125
628 +
629 +923.8 - SF7BW125 to SF10BW125
630 +
631 +924.0 - SF7BW125 to SF10BW125
632 +
633 +924.2 - SF7BW125 to SF10BW125
634 +
635 +924.4 - SF7BW125 to SF10BW125
636 +
637 +924.6 - SF7BW125 to SF10BW125
638 +
639 +
640 +(% style="color:#037691" %)** Downlink:**
641 +
642 +Uplink channels 1-8 (RX1)
643 +
644 +923.2 - SF10BW125 (RX2)
645 +
646 +
647 +
648 +=== 2.7.6 KR920-923 (KR920) ===
649 +
650 +Default channel:
651 +
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
599 599  (((
600 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 601  )))
723 +)))
602 602  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
603 603  (((
604 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
605 605  )))
606 606  
607 607  (((
608 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
609 609  )))
610 610  
611 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
613 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
614 614  
738 +== 2.10 ​Firmware Change Log ==
739 +
615 615  (((
616 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
617 617  )))
618 618  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
619 619  
748 +(((
749 +
750 +)))
620 620  
621 -=== 2.8.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
622 622  
623 623  (((
624 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +
625 625  )))
626 626  
760 +(((
761 +**V1.0.**
762 +)))
627 627  
628 628  (((
629 -Instruction to use as below:
765 +Release
630 630  )))
631 631  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
632 632  (((
633 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
634 634  )))
635 635  
777 +(((
778 +The battery is designed to last for more than 5 years for the LSN50.
779 +)))
636 636  
637 637  (((
638 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
639 639  )))
785 +)))
640 640  
641 641  * (((
642 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
643 643  )))
644 644  * (((
645 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
646 646  )))
647 647  * (((
648 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
649 649  )))
650 650  
651 -(((
652 -And the Life expectation in difference case will be shown on the right.
653 -)))
797 + [[image:image-20220610172436-1.png]]
654 654  
655 -[[image:image-20220708141352-7.jpeg]]
656 656  
657 657  
801 +=== 2.11.2 ​Battery Note ===
658 658  
659 -=== 2.8.3  ​Battery Note ===
660 -
661 661  (((
662 662  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
663 663  )))
... ... @@ -664,169 +664,302 @@
664 664  
665 665  
666 666  
667 -=== 2.8. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
668 668  
669 669  (((
670 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
671 671  )))
672 672  
673 -
674 -
675 -= 3. ​ Access NB-IoT Module =
676 -
677 677  (((
678 -Users can directly access the AT command set of the NB-IoT module.
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
679 679  )))
680 680  
681 681  (((
682 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
683 683  )))
684 684  
685 -[[image:1657333200519-600.png]]
686 686  
687 687  
825 += 3. ​Using the AT Commands =
688 688  
689 -= 4.  Using the AT Commands =
827 +== 3.1 Access AT Commands ==
690 690  
691 -== 4.1  Access AT Commands ==
692 692  
693 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
694 694  
832 +[[image:1654501986557-872.png||height="391" width="800"]]
695 695  
696 -AT+<CMD>?  : Help on <CMD>
697 697  
698 -AT+<CMD>         : Run <CMD>
835 +Or if you have below board, use below connection:
699 699  
700 -AT+<CMD>=<value> : Set the value
701 701  
702 -AT+<CMD>=?  : Get the value
838 +[[image:1654502005655-729.png||height="503" width="801"]]
703 703  
704 704  
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
705 705  (% style="color:#037691" %)**General Commands**(%%)      
706 706  
707 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
708 708  
709 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
710 710  
711 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
712 712  
713 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
714 714  
715 -AT+CFG  : Print all configurations
716 716  
717 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
718 718  
719 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
720 720  
721 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
722 722  
723 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
724 724  
725 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
726 726  
727 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
728 728  
729 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
730 730  
731 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
732 732  
733 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
734 734  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
735 735  
736 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
737 737  
738 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
739 739  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
740 740  
741 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
742 742  
743 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
744 744  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
745 745  
746 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
747 747  
748 -AT+CLIENT               : Get or Set MQTT client
749 749  
750 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
751 751  
752 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
753 753  
754 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
755 755  
756 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
757 757  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
758 758  
759 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
760 760  
761 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
762 762  
763 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
764 764  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
765 765  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
766 766  
767 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
768 768  
769 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
770 770  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
771 771  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
772 772  (((
773 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
774 774  )))
775 775  
776 776  (((
777 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
778 778  )))
779 779  
780 780  (((
781 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
782 782  )))
783 783  
973 +(((
974 +
975 +)))
784 784  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
785 785  
786 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
787 787  
788 -== 6.1  ​Connection problem when uploading firmware ==
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
789 789  
989 +[[image:image-20220606154726-3.png]]
790 790  
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
791 791  (((
792 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
793 793  )))
794 794  
795 -(% class="wikigeneratedid" %)
796 796  (((
797 797  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
798 798  )))
799 799  
1017 +(((
1018 +
1019 +)))
800 800  
801 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
802 802  
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
803 803  (((
804 804  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
805 805  
806 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
807 807  )))
808 808  
809 809  
810 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
811 811  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
812 812  
813 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
814 814  
815 815  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
816 816  (% class="wikigeneratedid" %)
817 817  (((
818 818  
819 819  )))
820 820  
821 -= 8.  Packing Info =
1095 += 7. Packing Info =
822 822  
823 823  (((
824 824  
825 825  
826 826  (% style="color:#037691" %)**Package Includes**:
1101 +)))
827 827  
828 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
829 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
830 830  )))
831 831  
832 832  (((
... ... @@ -833,22 +833,24 @@
833 833  
834 834  
835 835  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
836 836  
837 -
838 -* Device Size: 13.0 x 5 x 4.5 cm
839 -* Device Weight: 150g
840 -* Package Size / pcs : 15 x 12x 5.5 cm
841 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
842 842  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
843 843  
844 -(((
845 845  
846 -
847 -
848 -
849 849  )))
850 850  
851 -= 9.  Support =
1128 += 8. Support =
852 852  
853 853  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
854 854  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content