Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 95.4
edited by Xiaoling
on 2022/07/09 10:46
Change comment: There is no comment for this version
To version 40.7
edited by Xiaoling
on 2022/06/30 11:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,649 +14,767 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
24 24  (((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
31 31  )))
32 32  
33 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 34  )))
35 35  
36 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
37 37  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
38 38  
39 -[[image:1657327959271-447.png]]
40 40  
50 +[[image:1654503236291-817.png]]
41 41  
42 42  
43 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
44 44  
45 45  
46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
47 47  * Ultra low power consumption
48 -* Distance Detection by Ultrasonic technology
49 -* Flat object range 280mm - 7500mm
50 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
51 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 52  * AT Commands to change parameters
53 53  * Uplink on periodically
54 54  * Downlink to change configure
55 55  * IP66 Waterproof Enclosure
56 -* Micro SIM card slot for NB-IoT SIM
57 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
58 58  
71 +== 1.3 Specification ==
59 59  
60 -== 1.3  Specification ==
73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 61  
75 +[[image:image-20220606162220-5.png]]
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +== ​1.4 Applications ==
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
76 -
77 -(% style="color:#037691" %)**Battery:**
78 -
79 -* Li/SOCI2 un-chargeable battery
80 -* Capacity: 8500mAh
81 -* Self Discharge: <1% / Year @ 25°C
82 -* Max continuously current: 130mA
83 -* Max boost current: 2A, 1 second
84 -
85 -(% style="color:#037691" %)**Power Consumption**
86 -
87 -* STOP Mode: 10uA @ 3.3v
88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
89 -
90 -
91 -
92 -== ​1.4  Applications ==
93 -
94 -* Smart Buildings & Home Automation
95 -* Logistics and Supply Chain Management
96 -* Smart Metering
97 97  * Smart Agriculture
98 -* Smart Cities
99 -* Smart Factory
100 100  
101 101  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
102 102  ​
103 103  
86 +== 1.5 Firmware Change log ==
104 104  
105 105  
106 -== 1.5  Pin Definitions ==
89 +**LSE01 v1.0 :**  Release
107 107  
108 108  
109 -[[image:1657328609906-564.png]]
110 110  
93 += 2. Configure LSE01 to connect to LoRaWAN network =
111 111  
95 +== 2.1 How it works ==
112 112  
113 -= 2.  Use NDDS75 to communicate with IoT Server =
114 -
115 -== 2.1  How it works ==
116 -
117 117  (((
118 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
119 119  )))
120 120  
121 -
122 122  (((
123 -The diagram below shows the working flow in default firmware of NDDS75:
102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
124 124  )))
125 125  
126 -(((
127 -
128 -)))
129 129  
130 -[[image:1657328659945-416.png]]
131 131  
132 -(((
133 -
134 -)))
107 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
135 135  
109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
136 136  
137 -== 2.2 ​ Configure the NDDS75 ==
138 138  
112 +[[image:1654503992078-669.png]]
139 139  
140 -=== 2.2.1 Test Requirement ===
141 141  
142 -(((
143 -To use NDDS75 in your city, make sure meet below requirements:
144 -)))
115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
145 145  
146 -* Your local operator has already distributed a NB-IoT Network there.
147 -* The local NB-IoT network used the band that NSE01 supports.
148 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
149 149  
150 -(((
151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
152 -)))
118 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
153 153  
120 +Each LSE01 is shipped with a sticker with the default device EUI as below:
154 154  
155 -[[image:1657328756309-230.png]]
122 +[[image:image-20220606163732-6.jpeg]]
156 156  
124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
157 157  
126 +**Add APP EUI in the application**
158 158  
159 -=== 2.2.2 Insert SIM card ===
160 160  
161 -(((
162 -Insert the NB-IoT Card get from your provider.
163 -)))
129 +[[image:1654504596150-405.png]]
164 164  
165 -(((
166 -User need to take out the NB-IoT module and insert the SIM card like below:
167 -)))
168 168  
169 169  
170 -[[image:1657328884227-504.png]]
133 +**Add APP KEY and DEV EUI**
171 171  
135 +[[image:1654504683289-357.png]]
172 172  
173 173  
174 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
175 175  
176 -(((
177 -(((
178 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
179 -)))
180 -)))
139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
181 181  
182 -[[image:image-20220709092052-2.png]]
183 183  
184 -**Connection:**
142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
185 185  
186 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
144 +[[image:image-20220606163915-7.png]]
187 187  
188 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
189 189  
190 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
191 191  
149 +[[image:1654504778294-788.png]]
192 192  
193 -In the PC, use below serial tool settings:
194 194  
195 -* Baud:  (% style="color:green" %)**9600**
196 -* Data bits:** (% style="color:green" %)8(%%)**
197 -* Stop bits: (% style="color:green" %)**1**
198 -* Parity:  (% style="color:green" %)**None**
199 -* Flow Control: (% style="color:green" %)**None**
200 200  
153 +== 2.3 Uplink Payload ==
154 +
155 +
156 +=== 2.3.1 MOD~=0(Default Mode) ===
157 +
158 +LSE01 will uplink payload via LoRaWAN with below payload format: 
159 +
201 201  (((
202 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
161 +Uplink payload includes in total 11 bytes.
203 203  )))
204 204  
205 -[[image:1657329814315-101.png]]
164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 +|(((
166 +**Size**
206 206  
207 -(((
208 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
168 +**(bytes)**
169 +)))|**2**|**2**|**2**|**2**|**2**|**1**
170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 +Temperature
172 +
173 +(Reserve, Ignore now)
174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 +MOD & Digital Interrupt
176 +
177 +(Optional)
209 209  )))
210 210  
180 +=== 2.3.2 MOD~=1(Original value) ===
211 211  
182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
212 212  
213 -=== 2.2.4 Use CoAP protocol to uplink data ===
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
214 214  
215 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
216 216  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 +MOD & Digital Interrupt
217 217  
218 -**Use below commands:**
197 +(Optional)
198 +)))
219 219  
220 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
222 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
200 +=== 2.3.3 Battery Info ===
223 223  
224 -For parameter description, please refer to AT command set
202 +(((
203 +Check the battery voltage for LSE01.
204 +)))
225 225  
226 -[[image:1657330452568-615.png]]
206 +(((
207 +Ex1: 0x0B45 = 2885mV
208 +)))
227 227  
210 +(((
211 +Ex2: 0x0B49 = 2889mV
212 +)))
228 228  
229 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
230 230  
231 -[[image:1657330472797-498.png]]
232 232  
216 +=== 2.3.4 Soil Moisture ===
233 233  
218 +(((
219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 +)))
234 234  
235 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
222 +(((
223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 +)))
236 236  
226 +(((
227 +
228 +)))
237 237  
238 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
240 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 +)))
241 241  
242 -[[image:1657330501006-241.png]]
243 243  
244 244  
245 -[[image:1657330533775-472.png]]
236 +=== 2.3.5 Soil Temperature ===
246 246  
238 +(((
239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 +)))
247 247  
242 +(((
243 +**Example**:
244 +)))
248 248  
249 -=== 2.2.6 Use MQTT protocol to uplink data ===
246 +(((
247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
248 +)))
250 250  
250 +(((
251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 +)))
251 251  
252 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
258 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
259 259  
260 -[[image:1657249978444-674.png]]
261 261  
256 +=== 2.3.6 Soil Conductivity (EC) ===
262 262  
263 -[[image:1657330723006-866.png]]
258 +(((
259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 +)))
264 264  
262 +(((
263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 +)))
265 265  
266 266  (((
267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +Generally, the EC value of irrigation water is less than 800uS / cm.
268 268  )))
269 269  
270 +(((
271 +
272 +)))
270 270  
274 +(((
275 +
276 +)))
271 271  
272 -=== 2.2.7 Use TCP protocol to uplink data ===
278 +=== 2.3.7 MOD ===
273 273  
280 +Firmware version at least v2.1 supports changing mode.
274 274  
275 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
282 +For example, bytes[10]=90
277 277  
278 -[[image:image-20220709093918-1.png]]
284 +mod=(bytes[10]>>7)&0x01=1.
279 279  
280 280  
281 -[[image:image-20220709093918-2.png]]
287 +**Downlink Command:**
282 282  
289 +If payload = 0x0A00, workmode=0
283 283  
291 +If** **payload =** **0x0A01, workmode=1
284 284  
285 -=== 2.2.8 Change Update Interval ===
286 286  
287 -User can use below command to change the (% style="color:green" %)**uplink interval**.
288 288  
289 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 +=== 2.3.8 ​Decode payload in The Things Network ===
290 290  
297 +While using TTN network, you can add the payload format to decode the payload.
298 +
299 +
300 +[[image:1654505570700-128.png]]
301 +
291 291  (((
292 -(% style="color:red" %)**NOTE:**
303 +The payload decoder function for TTN is here:
293 293  )))
294 294  
295 295  (((
296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
297 297  )))
298 298  
299 299  
311 +== 2.4 Uplink Interval ==
300 300  
301 -== 2. Uplink Payload ==
313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
302 302  
303 -In this mode, uplink payload includes in total 14 bytes
304 304  
305 305  
306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 -|=(% style="width: 80px;" %)(((
308 -**Size(bytes)**
309 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
317 +== 2.5 Downlink Payload ==
311 311  
312 -(((
313 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
314 -)))
319 +By default, LSE50 prints the downlink payload to console port.
315 315  
321 +[[image:image-20220606165544-8.png]]
316 316  
317 -[[image:1657331036973-987.png]]
318 318  
319 319  (((
320 -The payload is ASCII string, representative same HEX:
325 +(% style="color:blue" %)**Examples:**
321 321  )))
322 322  
323 323  (((
324 -0x72403155615900640c6c19029200 where:
329 +
325 325  )))
326 326  
327 327  * (((
328 -Device ID: 0x724031556159 = 724031556159
333 +(% style="color:blue" %)**Set TDC**
329 329  )))
330 -* (((
331 -Version: 0x0064=100=1.0.0
335 +
336 +(((
337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
332 332  )))
333 333  
334 -* (((
335 -BAT: 0x0c6c = 3180 mV = 3.180V
340 +(((
341 +Payload:    01 00 00 1E    TDC=30S
336 336  )))
337 -* (((
338 -Signal: 0x19 = 25
343 +
344 +(((
345 +Payload:    01 00 00 3C    TDC=60S
339 339  )))
340 -* (((
341 -Distance: 0x0292= 658 mm
347 +
348 +(((
349 +
342 342  )))
351 +
343 343  * (((
344 -Interrupt: 0x00 = 0
353 +(% style="color:blue" %)**Reset**
345 345  )))
346 346  
356 +(((
357 +If payload = 0x04FF, it will reset the LSE01
358 +)))
347 347  
348 -== 2.4  Payload Explanation and Sensor Interface ==
349 349  
361 +* (% style="color:blue" %)**CFM**
350 350  
351 -=== 2.4.1  Device ID ===
363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
352 352  
353 -(((
354 -By default, the Device ID equal to the last 6 bytes of IMEI.
355 -)))
356 356  
366 +
367 +== 2.6 ​Show Data in DataCake IoT Server ==
368 +
357 357  (((
358 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
359 359  )))
360 360  
361 361  (((
362 -**Example:**
374 +
363 363  )))
364 364  
365 365  (((
366 -AT+DEUI=A84041F15612
378 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
367 367  )))
368 368  
369 369  (((
370 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
382 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
371 371  )))
372 372  
373 373  
386 +[[image:1654505857935-743.png]]
374 374  
375 -=== 2.4.2  Version Info ===
376 376  
377 -(((
378 -Specify the software version: 0x64=100, means firmware version 1.00.
379 -)))
389 +[[image:1654505874829-548.png]]
380 380  
381 -(((
382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
383 -)))
384 384  
392 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
385 385  
394 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
386 386  
387 -=== 2.4.3  Battery Info ===
388 388  
389 -(((
390 -Check the battery voltage for LSE01.
391 -)))
397 +[[image:1654505905236-553.png]]
392 392  
393 -(((
394 -Ex1: 0x0B45 = 2885mV
395 -)))
396 396  
397 -(((
398 -Ex2: 0x0B49 = 2889mV
399 -)))
400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
400 400  
402 +[[image:1654505925508-181.png]]
401 401  
402 402  
403 -=== 2.4.4  Signal Strength ===
404 404  
405 -(((
406 -NB-IoT Network signal Strength.
407 -)))
406 +== 2.7 Frequency Plans ==
408 408  
409 -(((
410 -**Ex1: 0x1d = 29**
411 -)))
408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
412 412  
413 -(((
414 -(% style="color:blue" %)**0**(%%)  -113dBm or less
415 -)))
416 416  
417 -(((
418 -(% style="color:blue" %)**1**(%%)  -111dBm
419 -)))
411 +=== 2.7.1 EU863-870 (EU868) ===
420 420  
421 -(((
422 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
423 -)))
413 +(% style="color:#037691" %)** Uplink:**
424 424  
425 -(((
426 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
427 -)))
415 +868.1 - SF7BW125 to SF12BW125
428 428  
429 -(((
430 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
431 -)))
417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
432 432  
419 +868.5 - SF7BW125 to SF12BW125
433 433  
421 +867.1 - SF7BW125 to SF12BW125
434 434  
435 -=== 2.4.5  Distance ===
423 +867.3 - SF7BW125 to SF12BW125
436 436  
437 -Get the distance. Flat object range 280mm - 7500mm.
425 +867.5 - SF7BW125 to SF12BW125
438 438  
439 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
427 +867.7 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -(((
443 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
444 -)))
445 -)))
429 +867.9 - SF7BW125 to SF12BW125
446 446  
447 -(((
448 -
449 -)))
431 +868.8 - FSK
450 450  
451 -(((
452 -
453 -)))
454 454  
455 -=== 2.4.6  Digital Interrupt ===
434 +(% style="color:#037691" %)** Downlink:**
456 456  
457 -(((
458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
459 -)))
436 +Uplink channels 1-9 (RX1)
460 460  
461 -(((
462 -The command is:
463 -)))
438 +869.525 - SF9BW125 (RX2 downlink only)
464 464  
465 -(((
466 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
467 -)))
468 468  
469 469  
470 -(((
471 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
472 -)))
442 +=== 2.7.2 US902-928(US915) ===
473 473  
444 +Used in USA, Canada and South America. Default use CHE=2
474 474  
475 -(((
476 -Example:
477 -)))
446 +(% style="color:#037691" %)**Uplink:**
478 478  
479 -(((
480 -0x(00): Normal uplink packet.
481 -)))
448 +903.9 - SF7BW125 to SF10BW125
482 482  
483 -(((
484 -0x(01): Interrupt Uplink Packet.
485 -)))
450 +904.1 - SF7BW125 to SF10BW125
486 486  
452 +904.3 - SF7BW125 to SF10BW125
487 487  
454 +904.5 - SF7BW125 to SF10BW125
488 488  
489 -=== 2.4.7  ​+5V Output ===
456 +904.7 - SF7BW125 to SF10BW125
490 490  
491 -(((
492 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
493 -)))
458 +904.9 - SF7BW125 to SF10BW125
494 494  
460 +905.1 - SF7BW125 to SF10BW125
495 495  
496 -(((
497 -The 5V output time can be controlled by AT Command.
498 -)))
462 +905.3 - SF7BW125 to SF10BW125
499 499  
500 -(((
501 -(% style="color:blue" %)**AT+5VT=1000**
502 -)))
503 503  
504 -(((
505 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
506 -)))
465 +(% style="color:#037691" %)**Downlink:**
507 507  
467 +923.3 - SF7BW500 to SF12BW500
508 508  
469 +923.9 - SF7BW500 to SF12BW500
509 509  
510 -== 2.5  Downlink Payload ==
471 +924.5 - SF7BW500 to SF12BW500
511 511  
512 -By default, NDDS75 prints the downlink payload to console port.
473 +925.1 - SF7BW500 to SF12BW500
513 513  
514 -[[image:image-20220709100028-1.png]]
475 +925.7 - SF7BW500 to SF12BW500
515 515  
477 +926.3 - SF7BW500 to SF12BW500
516 516  
517 -(((
518 -(% style="color:blue" %)**Examples:**
519 -)))
479 +926.9 - SF7BW500 to SF12BW500
520 520  
521 -(((
522 -
523 -)))
481 +927.5 - SF7BW500 to SF12BW500
524 524  
525 -* (((
526 -(% style="color:blue" %)**Set TDC**
527 -)))
483 +923.3 - SF12BW500(RX2 downlink only)
528 528  
529 -(((
530 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
531 -)))
532 532  
533 -(((
534 -Payload:    01 00 00 1E    TDC=30S
535 -)))
536 536  
537 -(((
538 -Payload:    01 00 00 3C    TDC=60S
539 -)))
487 +=== 2.7.3 CN470-510 (CN470) ===
540 540  
541 -(((
542 -
543 -)))
489 +Used in China, Default use CHE=1
544 544  
545 -* (((
546 -(% style="color:blue" %)**Reset**
547 -)))
491 +(% style="color:#037691" %)**Uplink:**
548 548  
549 -(((
550 -If payload = 0x04FF, it will reset the NDDS75
551 -)))
493 +486.3 - SF7BW125 to SF12BW125
552 552  
495 +486.5 - SF7BW125 to SF12BW125
553 553  
554 -* (% style="color:blue" %)**INTMOD**
497 +486.7 - SF7BW125 to SF12BW125
555 555  
556 -(((
557 -Downlink Payload: 06000003, Set AT+INTMOD=3
558 -)))
499 +486.9 - SF7BW125 to SF12BW125
559 559  
501 +487.1 - SF7BW125 to SF12BW125
560 560  
503 +487.3 - SF7BW125 to SF12BW125
561 561  
562 -== 2. ​LED Indicator ==
505 +487.5 - SF7BW125 to SF12BW125
563 563  
507 +487.7 - SF7BW125 to SF12BW125
564 564  
565 -The NDDS75 has an internal LED which is to show the status of different state.
566 566  
510 +(% style="color:#037691" %)**Downlink:**
567 567  
568 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
569 -* Then the LED will be on for 1 second means device is boot normally.
570 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
571 -* For each uplink probe, LED will be on for 500ms.
512 +506.7 - SF7BW125 to SF12BW125
572 572  
573 -(((
574 -
575 -)))
514 +506.9 - SF7BW125 to SF12BW125
576 576  
516 +507.1 - SF7BW125 to SF12BW125
577 577  
518 +507.3 - SF7BW125 to SF12BW125
578 578  
579 -== 2.7  Firmware Change Log ==
520 +507.5 - SF7BW125 to SF12BW125
580 580  
522 +507.7 - SF7BW125 to SF12BW125
581 581  
582 -Download URL & Firmware Change log
524 +507.9 - SF7BW125 to SF12BW125
583 583  
584 -(((
585 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
586 -)))
526 +508.1 - SF7BW125 to SF12BW125
587 587  
528 +505.3 - SF12BW125 (RX2 downlink only)
588 588  
589 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
590 590  
591 591  
532 +=== 2.7.4 AU915-928(AU915) ===
592 592  
593 -== 2.8  ​Battery Analysis ==
534 +Default use CHE=2
594 594  
595 -=== 2.8.1  ​Battery Type ===
536 +(% style="color:#037691" %)**Uplink:**
596 596  
538 +916.8 - SF7BW125 to SF12BW125
597 597  
540 +917.0 - SF7BW125 to SF12BW125
541 +
542 +917.2 - SF7BW125 to SF12BW125
543 +
544 +917.4 - SF7BW125 to SF12BW125
545 +
546 +917.6 - SF7BW125 to SF12BW125
547 +
548 +917.8 - SF7BW125 to SF12BW125
549 +
550 +918.0 - SF7BW125 to SF12BW125
551 +
552 +918.2 - SF7BW125 to SF12BW125
553 +
554 +
555 +(% style="color:#037691" %)**Downlink:**
556 +
557 +923.3 - SF7BW500 to SF12BW500
558 +
559 +923.9 - SF7BW500 to SF12BW500
560 +
561 +924.5 - SF7BW500 to SF12BW500
562 +
563 +925.1 - SF7BW500 to SF12BW500
564 +
565 +925.7 - SF7BW500 to SF12BW500
566 +
567 +926.3 - SF7BW500 to SF12BW500
568 +
569 +926.9 - SF7BW500 to SF12BW500
570 +
571 +927.5 - SF7BW500 to SF12BW500
572 +
573 +923.3 - SF12BW500(RX2 downlink only)
574 +
575 +
576 +
577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
578 +
579 +(% style="color:#037691" %)**Default Uplink channel:**
580 +
581 +923.2 - SF7BW125 to SF10BW125
582 +
583 +923.4 - SF7BW125 to SF10BW125
584 +
585 +
586 +(% style="color:#037691" %)**Additional Uplink Channel**:
587 +
588 +(OTAA mode, channel added by JoinAccept message)
589 +
590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
591 +
592 +922.2 - SF7BW125 to SF10BW125
593 +
594 +922.4 - SF7BW125 to SF10BW125
595 +
596 +922.6 - SF7BW125 to SF10BW125
597 +
598 +922.8 - SF7BW125 to SF10BW125
599 +
600 +923.0 - SF7BW125 to SF10BW125
601 +
602 +922.0 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 +
607 +923.6 - SF7BW125 to SF10BW125
608 +
609 +923.8 - SF7BW125 to SF10BW125
610 +
611 +924.0 - SF7BW125 to SF10BW125
612 +
613 +924.2 - SF7BW125 to SF10BW125
614 +
615 +924.4 - SF7BW125 to SF10BW125
616 +
617 +924.6 - SF7BW125 to SF10BW125
618 +
619 +
620 +(% style="color:#037691" %)** Downlink:**
621 +
622 +Uplink channels 1-8 (RX1)
623 +
624 +923.2 - SF10BW125 (RX2)
625 +
626 +
627 +
628 +=== 2.7.6 KR920-923 (KR920) ===
629 +
630 +Default channel:
631 +
632 +922.1 - SF7BW125 to SF12BW125
633 +
634 +922.3 - SF7BW125 to SF12BW125
635 +
636 +922.5 - SF7BW125 to SF12BW125
637 +
638 +
639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 +
641 +922.1 - SF7BW125 to SF12BW125
642 +
643 +922.3 - SF7BW125 to SF12BW125
644 +
645 +922.5 - SF7BW125 to SF12BW125
646 +
647 +922.7 - SF7BW125 to SF12BW125
648 +
649 +922.9 - SF7BW125 to SF12BW125
650 +
651 +923.1 - SF7BW125 to SF12BW125
652 +
653 +923.3 - SF7BW125 to SF12BW125
654 +
655 +
656 +(% style="color:#037691" %)**Downlink:**
657 +
658 +Uplink channels 1-7(RX1)
659 +
660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
661 +
662 +
663 +
664 +=== 2.7.7 IN865-867 (IN865) ===
665 +
666 +(% style="color:#037691" %)** Uplink:**
667 +
668 +865.0625 - SF7BW125 to SF12BW125
669 +
670 +865.4025 - SF7BW125 to SF12BW125
671 +
672 +865.9850 - SF7BW125 to SF12BW125
673 +
674 +
675 +(% style="color:#037691" %) **Downlink:**
676 +
677 +Uplink channels 1-3 (RX1)
678 +
679 +866.550 - SF10BW125 (RX2)
680 +
681 +
682 +
683 +
684 +== 2.8 LED Indicator ==
685 +
686 +The LSE01 has an internal LED which is to show the status of different state.
687 +
688 +* Blink once when device power on.
689 +* Solid ON for 5 seconds once device successful Join the network.
690 +* Blink once when device transmit a packet.
691 +
692 +
693 +== 2.9 Installation in Soil ==
694 +
695 +**Measurement the soil surface**
696 +
697 +
698 +[[image:1654506634463-199.png]] ​
699 +
598 598  (((
599 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +(((
702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
600 600  )))
704 +)))
601 601  
706 +
707 +
708 +[[image:1654506665940-119.png]]
709 +
602 602  (((
603 -The battery is designed to last for several years depends on the actually use environment and update interval. 
711 +Dig a hole with diameter > 20CM.
604 604  )))
605 605  
606 606  (((
607 -The battery related documents as below:
715 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
608 608  )))
609 609  
610 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
611 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
613 613  
719 +== 2.10 ​Firmware Change Log ==
720 +
614 614  (((
615 -[[image:image-20220709101450-2.png]]
722 +**Firmware download link:**
616 616  )))
617 617  
725 +(((
726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
727 +)))
618 618  
729 +(((
730 +
731 +)))
619 619  
620 -=== 2.8.2  Power consumption Analyze ===
733 +(((
734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
735 +)))
621 621  
622 622  (((
623 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
738 +
624 624  )))
625 625  
741 +(((
742 +**V1.0.**
743 +)))
626 626  
627 627  (((
628 -Instruction to use as below:
746 +Release
629 629  )))
630 630  
749 +
750 +== 2.11 ​Battery Analysis ==
751 +
752 +=== 2.11.1 ​Battery Type ===
753 +
631 631  (((
632 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
633 633  )))
634 634  
758 +(((
759 +The battery is designed to last for more than 5 years for the LSN50.
760 +)))
635 635  
636 636  (((
637 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
763 +(((
764 +The battery-related documents are as below:
638 638  )))
766 +)))
639 639  
640 640  * (((
641 -Product Model
769 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
642 642  )))
643 643  * (((
644 -Uplink Interval
772 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
645 645  )))
646 646  * (((
647 -Working Mode
775 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
648 648  )))
649 649  
650 -(((
651 -And the Life expectation in difference case will be shown on the right.
652 -)))
778 + [[image:image-20220610172436-1.png]]
653 653  
654 -[[image:image-20220708141352-7.jpeg]]
655 655  
656 656  
782 +=== 2.11.2 ​Battery Note ===
657 657  
658 -=== 2.8.3  ​Battery Note ===
659 -
660 660  (((
661 661  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
662 662  )))
... ... @@ -663,169 +663,302 @@
663 663  
664 664  
665 665  
666 -=== 2.8. Replace the battery ===
790 +=== 2.11.3 Replace the battery ===
667 667  
668 668  (((
669 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
670 670  )))
671 671  
672 -
673 -
674 -= 3. ​ Access NB-IoT Module =
675 -
676 676  (((
677 -Users can directly access the AT command set of the NB-IoT module.
797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 678  )))
679 679  
680 680  (((
681 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
682 682  )))
683 683  
684 -[[image:1657333200519-600.png]]
685 685  
686 686  
806 += 3. ​Using the AT Commands =
687 687  
688 -= 4.  Using the AT Commands =
808 +== 3.1 Access AT Commands ==
689 689  
690 -== 4.1  Access AT Commands ==
691 691  
692 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
693 693  
813 +[[image:1654501986557-872.png||height="391" width="800"]]
694 694  
695 -AT+<CMD>?  : Help on <CMD>
696 696  
697 -AT+<CMD>         : Run <CMD>
816 +Or if you have below board, use below connection:
698 698  
699 -AT+<CMD>=<value> : Set the value
700 700  
701 -AT+<CMD>=?  : Get the value
819 +[[image:1654502005655-729.png||height="503" width="801"]]
702 702  
703 703  
822 +
823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 +
825 +
826 + [[image:1654502050864-459.png||height="564" width="806"]]
827 +
828 +
829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 +
831 +
832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 +
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 +
840 +
704 704  (% style="color:#037691" %)**General Commands**(%%)      
705 705  
706 -AT  : Attention       
843 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
707 707  
708 -AT?  : Short Help     
845 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
709 709  
710 -ATZ  : MCU Reset    
847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
711 711  
712 -AT+TDC  : Application Data Transmission Interval
849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
713 713  
714 -AT+CFG  : Print all configurations
715 715  
716 -AT+CFGMOD           : Working mode selection
852 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
717 717  
718 -AT+INTMOD            : Set the trigger interrupt mode
854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
719 719  
720 -AT+5VT  : Set extend the time of 5V power  
856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
721 721  
722 -AT+PRO  : Choose agreement
858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
723 723  
724 -AT+WEIGRE  : Get weight or set weight to 0
860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
725 725  
726 -AT+WEIGAP  : Get or Set the GapValue of weight
862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
727 727  
728 -AT+RXDL  : Extend the sending and receiving time
864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
729 729  
730 -AT+CNTFAC  : Get or set counting parameters
866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
731 731  
732 -AT+SERVADDR  : Server Address
868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
733 733  
870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
734 734  
735 -(% style="color:#037691" %)**COAP Management**      
872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
736 736  
737 -AT+URI            : Resource parameters
874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
738 738  
876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
739 739  
740 -(% style="color:#037691" %)**UDP Management**
878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
741 741  
742 -AT+CFM          : Upload confirmation mode (only valid for UDP)
880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
743 743  
882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
744 744  
745 -(% style="color:#037691" %)**MQTT Management**
884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
746 746  
747 -AT+CLIENT               : Get or Set MQTT client
748 748  
749 -AT+UNAME  : Get or Set MQTT Username
887 +(% style="color:#037691" %)**LoRa Network Management**
750 750  
751 -AT+PWD                  : Get or Set MQTT password
889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
752 752  
753 -AT+PUBTOPI : Get or Set MQTT publish topic
891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
754 754  
755 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
756 756  
895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
757 757  
758 -(% style="color:#037691" %)**Information**          
897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
759 759  
760 -AT+FDR  : Factory Data Reset
899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
761 761  
762 -AT+PWOR : Serial Access Password
901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
763 763  
903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
764 764  
905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
765 765  
766 -= ​5.  FAQ =
907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
767 767  
768 -== 5.1 How to Upgrade Firmware ==
909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
769 769  
911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
770 770  
913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 +
915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 +
919 +
920 +(% style="color:#037691" %)**Information** 
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 +
934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 +
936 +
937 += ​4. FAQ =
938 +
939 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 +
771 771  (((
772 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 +When downloading the images, choose the required image file for download. ​
773 773  )))
774 774  
775 775  (((
776 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 +
777 777  )))
778 778  
779 779  (((
780 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 781  )))
782 782  
954 +(((
955 +
956 +)))
783 783  
958 +(((
959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 +)))
784 784  
785 -= 6.  Trouble Shooting =
962 +(((
963 +
964 +)))
786 786  
787 -== 6.1  ​Connection problem when uploading firmware ==
966 +(((
967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
968 +)))
788 788  
970 +[[image:image-20220606154726-3.png]]
789 789  
972 +
973 +When you use the TTN network, the US915 frequency bands use are:
974 +
975 +* 903.9 - SF7BW125 to SF10BW125
976 +* 904.1 - SF7BW125 to SF10BW125
977 +* 904.3 - SF7BW125 to SF10BW125
978 +* 904.5 - SF7BW125 to SF10BW125
979 +* 904.7 - SF7BW125 to SF10BW125
980 +* 904.9 - SF7BW125 to SF10BW125
981 +* 905.1 - SF7BW125 to SF10BW125
982 +* 905.3 - SF7BW125 to SF10BW125
983 +* 904.6 - SF8BW500
984 +
790 790  (((
791 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 +
988 +* (% style="color:#037691" %)**AT+CHE=2**
989 +* (% style="color:#037691" %)**ATZ**
792 792  )))
793 793  
794 -(% class="wikigeneratedid" %)
795 795  (((
796 796  
994 +
995 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
797 797  )))
798 798  
998 +(((
999 +
1000 +)))
799 799  
800 -== 6.2  AT Command input doesn't work ==
1002 +(((
1003 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 +)))
801 801  
1006 +[[image:image-20220606154825-4.png]]
1007 +
1008 +
1009 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 +
1011 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 +
1013 +
1014 += 5. Trouble Shooting =
1015 +
1016 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 +
1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1019 +
1020 +
1021 +== 5.2 AT Command input doesn't work ==
1022 +
802 802  (((
803 803  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 +)))
804 804  
805 -
1027 +
1028 +== 5.3 Device rejoin in at the second uplink packet ==
1029 +
1030 +(% style="color:#4f81bd" %)**Issue describe as below:**
1031 +
1032 +[[image:1654500909990-784.png]]
1033 +
1034 +
1035 +(% style="color:#4f81bd" %)**Cause for this issue:**
1036 +
1037 +(((
1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
806 806  )))
807 807  
808 808  
809 -= 7. ​ Order Info =
1042 +(% style="color:#4f81bd" %)**Solution: **
810 810  
1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
811 811  
812 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1046 +[[image:1654500929571-736.png||height="458" width="832"]]
813 813  
814 814  
1049 += 6. ​Order Info =
1050 +
1051 +
1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 +
1054 +
1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 +
1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 +
1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 +
1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 +
815 815  (% class="wikigeneratedid" %)
816 816  (((
817 817  
818 818  )))
819 819  
820 -= 8.  Packing Info =
1076 += 7. Packing Info =
821 821  
822 822  (((
823 823  
824 824  
825 825  (% style="color:#037691" %)**Package Includes**:
1082 +)))
826 826  
827 -* NSE01 NB-IoT Distance Detect Sensor Node x 1
828 -* External antenna x 1
1084 +* (((
1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
829 829  )))
830 830  
831 831  (((
... ... @@ -832,22 +832,24 @@
832 832  
833 833  
834 834  (% style="color:#037691" %)**Dimension and weight**:
1092 +)))
835 835  
836 -
837 -* Device Size: 13.0 x 5 x 4.5 cm
838 -* Device Weight: 150g
839 -* Package Size / pcs : 15 x 12x 5.5 cm
840 -* Weight / pcs : 220g
1094 +* (((
1095 +Device Size: cm
841 841  )))
1097 +* (((
1098 +Device Weight: g
1099 +)))
1100 +* (((
1101 +Package Size / pcs : cm
1102 +)))
1103 +* (((
1104 +Weight / pcs : g
842 842  
843 -(((
844 844  
845 -
846 -
847 -
848 848  )))
849 849  
850 -= 9.  Support =
1109 += 8. Support =
851 851  
852 852  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
853 853  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content