Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 48 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 - 7 - 8 8 **Table of Contents:** 9 9 10 10 {{toc/}} ... ... @@ -14,649 +14,774 @@ 14 14 15 15 16 16 17 -= 1. 15 += 1. Introduction = 18 18 19 -== 1.1 DDS75DistanceDetectionSensor ==17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 20 20 21 21 ((( 22 22 23 23 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 +))) 24 + 24 24 ((( 25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 31 31 ))) 32 32 33 - 29 +((( 30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 34 34 ))) 35 35 36 -[[image:1654503236291-817.png]] 33 +((( 34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 +))) 37 37 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 +))) 38 38 39 -[[image:1657327959271-447.png]] 40 40 42 +[[image:1654503236291-817.png]] 41 41 42 42 43 - == 1.2 Features ==45 +[[image:1654503265560-120.png]] 44 44 45 45 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 + 49 +== 1.2 Features == 50 + 51 +* LoRaWAN 1.0.3 Class A 47 47 * Ultra low power consumption 48 -* Distance Detectionby Ultrasonictechnology49 -* Flat objectrange280mm - 7500mm50 -* Accuracy:±(1cm+S*0.3%) (S: Distance)51 -* Cable Length: 25cm53 +* Monitor Soil Moisture 54 +* Monitor Soil Temperature 55 +* Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 52 52 * AT Commands to change parameters 53 53 * Uplink on periodically 54 54 * Downlink to change configure 55 55 * IP66 Waterproof Enclosure 56 -* Micro SIM card slot for NB-IoT SIM 57 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 58 58 59 59 60 -== 1.3 Specification == 61 61 65 +== 1.3 Specification == 62 62 63 - (%style="color:#037691"%)**CommonDC Characteristics:**67 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +[[image:image-20220606162220-5.png]] 67 67 68 -(% style="color:#037691" %)**NB-IoT Spec:** 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 76 76 77 - (% style="color:#037691"%)**Battery:**73 +== 1.4 Applications == 78 78 79 -* Li/SOCI2 un-chargeable battery 80 -* Capacity: 8500mAh 81 -* Self Discharge: <1% / Year @ 25°C 82 -* Max continuously current: 130mA 83 -* Max boost current: 2A, 1 second 75 +* Smart Agriculture 84 84 85 -(% style="color:#037691" %)**Power Consumption** 77 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 + 86 86 87 -* STOP Mode: 10uA @ 3.3v 88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 80 +== 1.5 Firmware Change log == 89 89 90 90 83 +**LSE01 v1.0 :** Release 91 91 92 -== 1.4 Applications == 93 93 94 -* Smart Buildings & Home Automation 95 -* Logistics and Supply Chain Management 96 -* Smart Metering 97 -* Smart Agriculture 98 -* Smart Cities 99 -* Smart Factory 100 100 101 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 - 87 += 2. Configure LSE01 to connect to LoRaWAN network = 103 103 89 +== 2.1 How it works == 104 104 91 +((( 92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 +))) 105 105 106 -== 1.5 Pin Definitions == 95 +((( 96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 97 +))) 107 107 108 108 109 -[[image:1657328609906-564.png]] 110 110 101 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 112 113 -= 2. Use NDDS75 to communicate with IoT Server = 114 114 115 - ==2.1 How it works ==106 +[[image:1654503992078-669.png]] 116 116 117 -((( 118 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 119 -))) 120 120 109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 121 121 122 -((( 123 -The diagram below shows the working flow in default firmware of NDDS75: 124 -))) 125 125 126 -((( 127 - 128 -))) 112 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 129 129 130 - [[image:1657328659945-416.png]]114 +Each LSE01 is shipped with a sticker with the default device EUI as below: 131 131 132 -((( 133 - 134 -))) 116 +[[image:image-20220606163732-6.jpeg]] 135 135 118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 136 136 137 - ==2.2ConfiguretheNDDS75 ==120 +**Add APP EUI in the application** 138 138 139 139 140 - === 2.2.1 Test Requirement ===123 +[[image:1654504596150-405.png]] 141 141 142 -((( 143 -To use NDDS75 in your city, make sure meet below requirements: 144 -))) 145 145 146 -* Your local operator has already distributed a NB-IoT Network there. 147 -* The local NB-IoT network used the band that NSE01 supports. 148 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 149 149 150 -((( 151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 152 -))) 127 +**Add APP KEY and DEV EUI** 153 153 129 +[[image:1654504683289-357.png]] 154 154 155 -[[image:1657328756309-230.png]] 156 156 157 157 133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 158 158 159 -=== 2.2.2 Insert SIM card === 160 160 161 -((( 162 -Insert the NB-IoT Card get from your provider. 163 -))) 136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 164 164 165 -((( 166 -User need to take out the NB-IoT module and insert the SIM card like below: 167 -))) 138 +[[image:image-20220606163915-7.png]] 168 168 169 169 170 - [[image:1657328884227-504.png]]141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 171 171 143 +[[image:1654504778294-788.png]] 172 172 173 173 174 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 175 175 147 +== 2.3 Uplink Payload == 148 + 149 + 150 +=== 2.3.1 MOD~=0(Default Mode) === 151 + 152 +LSE01 will uplink payload via LoRaWAN with below payload format: 153 + 176 176 ((( 177 -((( 178 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 155 +Uplink payload includes in total 11 bytes. 179 179 ))) 180 -))) 181 181 182 -[[image:image-20220709092052-2.png]] 158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 +|((( 160 +**Size** 183 183 184 -**Connection:** 162 +**(bytes)** 163 +)))|**2**|**2**|**2**|**2**|**2**|**1** 164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 +Temperature 185 185 186 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 167 +(Reserve, Ignore now) 168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 +MOD & Digital Interrupt 187 187 188 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 171 +(Optional) 172 +))) 189 189 190 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 191 191 192 192 193 -In the PC, use below serial tool settings: 194 194 195 -* Baud: (% style="color:green" %)**9600** 196 -* Data bits:** (% style="color:green" %)8(%%)** 197 -* Stop bits: (% style="color:green" %)**1** 198 -* Parity: (% style="color:green" %)**None** 199 -* Flow Control: (% style="color:green" %)**None** 200 200 201 -((( 202 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 203 -))) 178 +=== 2.3.2 MOD~=1(Original value) === 204 204 205 - [[image:1657329814315-101.png]]180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 206 206 207 -((( 208 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 +|((( 184 +**Size** 185 + 186 +**(bytes)** 187 +)))|**2**|**2**|**2**|**2**|**2**|**1** 188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 +Temperature 190 + 191 +(Reserve, Ignore now) 192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 +MOD & Digital Interrupt 194 + 195 +(Optional) 209 209 ))) 210 210 211 211 212 212 213 -=== 2.2.4 Use CoAP protocol to uplink data === 214 214 215 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 216 216 202 +=== 2.3.3 Battery Info === 217 217 218 -**Use below commands:** 204 +((( 205 +Check the battery voltage for LSE01. 206 +))) 219 219 220 - *(% style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink221 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683**(%%)~/~/ to set CoAP server address and port222 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path208 +((( 209 +Ex1: 0x0B45 = 2885mV 210 +))) 223 223 224 -For parameter description, please refer to AT command set 212 +((( 213 +Ex2: 0x0B49 = 2889mV 214 +))) 225 225 226 -[[image:1657330452568-615.png]] 227 227 228 228 229 - After configure the server address and (% style="color:green"%)**resetthe device**(%%) (via AT+ATZ ), NDDS75 willstart touplinksensor valuesto CoAP server.218 +=== 2.3.4 Soil Moisture === 230 230 231 -[[image:1657330472797-498.png]] 220 +((( 221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 +))) 232 232 224 +((( 225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 +))) 233 233 228 +((( 229 + 230 +))) 234 234 235 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 232 +((( 233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 +))) 236 236 237 237 238 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 240 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 241 241 242 - [[image:1657330501006-241.png]]238 +=== 2.3.5 Soil Temperature === 243 243 240 +((( 241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 +))) 244 244 245 -[[image:1657330533775-472.png]] 244 +((( 245 +**Example**: 246 +))) 246 246 248 +((( 249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 +))) 247 247 252 +((( 253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 +))) 248 248 249 -=== 2.2.6 Use MQTT protocol to uplink data === 250 250 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 +=== 2.3.6 Soil Conductivity (EC) === 259 259 260 -[[image:1657249978444-674.png]] 260 +((( 261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 +))) 261 261 264 +((( 265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 +))) 262 262 263 -[[image:1657330723006-866.png]] 268 +((( 269 +Generally, the EC value of irrigation water is less than 800uS / cm. 270 +))) 264 264 272 +((( 273 + 274 +))) 265 265 266 266 ((( 267 - MQTTprotocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.277 + 268 268 ))) 269 269 280 +=== 2.3.7 MOD === 270 270 282 +Firmware version at least v2.1 supports changing mode. 271 271 272 - ===2.2.7 UseTCPprotocol to uplink data===284 +For example, bytes[10]=90 273 273 286 +mod=(bytes[10]>>7)&0x01=1. 274 274 275 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 277 277 278 - [[image:image-20220709093918-1.png]]289 +**Downlink Command:** 279 279 291 +If payload = 0x0A00, workmode=0 280 280 281 - [[image:image-20220709093918-2.png]]293 +If** **payload =** **0x0A01, workmode=1 282 282 283 283 284 284 285 -=== 2. 2.8ChangeUpdateInterval===297 +=== 2.3.8 Decode payload in The Things Network === 286 286 287 - Usercanusebelowcommandto changethe(% style="color:green"%)**uplink interval**.299 +While using TTN network, you can add the payload format to decode the payload. 288 288 289 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 290 290 302 +[[image:1654505570700-128.png]] 303 + 291 291 ((( 292 - (%style="color:red"%)**NOTE:**305 +The payload decoder function for TTN is here: 293 293 ))) 294 294 295 295 ((( 296 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.309 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 297 ))) 298 298 299 299 313 +== 2.4 Uplink Interval == 300 300 301 - ==2.3UplinkPayload ==315 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 302 302 303 -In this mode, uplink payload includes in total 14 bytes 304 304 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 80px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 319 +== 2.5 Downlink Payload == 311 311 312 -((( 313 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 314 -))) 321 +By default, LSE50 prints the downlink payload to console port. 315 315 323 +[[image:image-20220606165544-8.png]] 316 316 317 -[[image:1657331036973-987.png]] 318 318 319 319 ((( 320 - The payload is ASCII string, representative same HEX:327 +**Examples:** 321 321 ))) 322 322 323 323 ((( 324 - 0x72403155615900640c6c19029200where:331 + 325 325 ))) 326 326 327 327 * ((( 328 - DeviceID: 0x724031556159 = 724031556159335 +**Set TDC** 329 329 ))) 330 -* ((( 331 -Version: 0x0064=100=1.0.0 337 + 338 +((( 339 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 332 332 ))) 333 333 334 - *(((335 - BAT: 0x0c6c=3180mV=.180V342 +((( 343 +Payload: 01 00 00 1E TDC=30S 336 336 ))) 337 -* ((( 338 -Signal: 0x19 = 25 345 + 346 +((( 347 +Payload: 01 00 00 3C TDC=60S 339 339 ))) 340 -* ((( 341 -Distance: 0x0292= 658 mm 349 + 350 +((( 351 + 342 342 ))) 353 + 343 343 * ((( 344 - Interrupt: 0x00 = 0355 +**Reset** 345 345 ))) 346 346 358 +((( 359 +If payload = 0x04FF, it will reset the LSE01 360 +))) 347 347 348 -== 2.4 Payload Explanation and Sensor Interface == 349 349 363 +* **CFM** 350 350 351 - ===2.4.1DeviceID===365 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 352 352 353 -((( 354 -By default, the Device ID equal to the last 6 bytes of IMEI. 355 -))) 356 356 368 + 369 +== 2.6 Show Data in DataCake IoT Server == 370 + 357 357 ((( 358 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID372 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 359 359 ))) 360 360 361 361 ((( 362 - **Example:**376 + 363 363 ))) 364 364 365 365 ((( 366 - AT+DEUI=A84041F15612380 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 367 367 ))) 368 368 369 369 ((( 370 - TheDeviceIDisstoredinanone-erasearea,Upgradethefirmwareorrun**AT+FDR**won'tseDeviceID.384 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 371 371 ))) 372 372 373 373 388 +[[image:1654505857935-743.png]] 374 374 375 -=== 2.4.2 Version Info === 376 376 377 -((( 378 -Specify the software version: 0x64=100, means firmware version 1.00. 379 -))) 391 +[[image:1654505874829-548.png]] 380 380 381 -((( 382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 383 -))) 393 +Step 3: Create an account or log in Datacake. 384 384 395 +Step 4: Search the LSE01 and add DevEUI. 385 385 386 386 387 - === 2.4.3 Battery Info ===398 +[[image:1654505905236-553.png]] 388 388 389 -((( 390 -Check the battery voltage for LSE01. 391 -))) 392 392 393 -((( 394 -Ex1: 0x0B45 = 2885mV 395 -))) 401 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 396 396 397 -((( 398 -Ex2: 0x0B49 = 2889mV 399 -))) 403 +[[image:1654505925508-181.png]] 400 400 401 401 402 402 403 -== =2.4.4Signal Strength===407 +== 2.7 Frequency Plans == 404 404 405 -((( 406 -NB-IoT Network signal Strength. 407 -))) 409 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 408 408 409 -((( 410 -**Ex1: 0x1d = 29** 411 -))) 412 412 413 -((( 414 -(% style="color:blue" %)**0**(%%) -113dBm or less 415 -))) 412 +=== 2.7.1 EU863-870 (EU868) === 416 416 417 -((( 418 -(% style="color:blue" %)**1**(%%) -111dBm 419 -))) 414 +(% style="color:#037691" %)** Uplink:** 420 420 421 -((( 422 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 423 -))) 416 +868.1 - SF7BW125 to SF12BW125 424 424 425 -((( 426 -(% style="color:blue" %)**31** (%%) -51dBm or greater 427 -))) 418 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 428 428 429 -((( 430 -(% style="color:blue" %)**99** (%%) Not known or not detectable 431 -))) 420 +868.5 - SF7BW125 to SF12BW125 432 432 422 +867.1 - SF7BW125 to SF12BW125 433 433 424 +867.3 - SF7BW125 to SF12BW125 434 434 435 - ===2.4.5Distance===426 +867.5 - SF7BW125 to SF12BW125 436 436 437 - Get the distance. Flatobjectrange280mm - 7500mm.428 +867.7 - SF7BW125 to SF12BW125 438 438 439 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is430 +867.9 - SF7BW125 to SF12BW125 440 440 441 -((( 442 -((( 443 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 444 -))) 445 -))) 432 +868.8 - FSK 446 446 447 -((( 448 - 449 -))) 450 450 451 -((( 452 - 453 -))) 435 +(% style="color:#037691" %)** Downlink:** 454 454 455 - === 2.4.6 DigitalInterrupt===437 +Uplink channels 1-9 (RX1) 456 456 457 -((( 458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 459 -))) 439 +869.525 - SF9BW125 (RX2 downlink only) 460 460 461 -((( 462 -The command is: 463 -))) 464 464 465 -((( 466 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 467 -))) 468 468 443 +=== 2.7.2 US902-928(US915) === 469 469 470 -((( 471 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 472 -))) 445 +Used in USA, Canada and South America. Default use CHE=2 473 473 447 +(% style="color:#037691" %)**Uplink:** 474 474 475 -((( 476 -Example: 477 -))) 449 +903.9 - SF7BW125 to SF10BW125 478 478 479 -((( 480 -0x(00): Normal uplink packet. 481 -))) 451 +904.1 - SF7BW125 to SF10BW125 482 482 483 -((( 484 -0x(01): Interrupt Uplink Packet. 485 -))) 453 +904.3 - SF7BW125 to SF10BW125 486 486 455 +904.5 - SF7BW125 to SF10BW125 487 487 457 +904.7 - SF7BW125 to SF10BW125 488 488 489 - === 2.4.7+5VOutput===459 +904.9 - SF7BW125 to SF10BW125 490 490 491 -((( 492 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 493 -))) 461 +905.1 - SF7BW125 to SF10BW125 494 494 463 +905.3 - SF7BW125 to SF10BW125 495 495 496 -((( 497 -The 5V output time can be controlled by AT Command. 498 -))) 499 499 500 -((( 501 -(% style="color:blue" %)**AT+5VT=1000** 502 -))) 466 +(% style="color:#037691" %)**Downlink:** 503 503 504 -((( 505 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 506 -))) 468 +923.3 - SF7BW500 to SF12BW500 507 507 470 +923.9 - SF7BW500 to SF12BW500 508 508 472 +924.5 - SF7BW500 to SF12BW500 509 509 510 - ==2.5DownlinkPayload ==474 +925.1 - SF7BW500 to SF12BW500 511 511 512 - Bydefault,NDDS75prints the downlinkpayload to console port.476 +925.7 - SF7BW500 to SF12BW500 513 513 514 - [[image:image-20220709100028-1.png]]478 +926.3 - SF7BW500 to SF12BW500 515 515 480 +926.9 - SF7BW500 to SF12BW500 516 516 517 -((( 518 -(% style="color:blue" %)**Examples:** 519 -))) 482 +927.5 - SF7BW500 to SF12BW500 520 520 521 -((( 522 - 523 -))) 484 +923.3 - SF12BW500(RX2 downlink only) 524 524 525 -* ((( 526 -(% style="color:blue" %)**Set TDC** 527 -))) 528 528 529 -((( 530 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 531 -))) 532 532 533 -((( 534 -Payload: 01 00 00 1E TDC=30S 535 -))) 488 +=== 2.7.3 CN470-510 (CN470) === 536 536 537 -((( 538 -Payload: 01 00 00 3C TDC=60S 539 -))) 490 +Used in China, Default use CHE=1 540 540 541 -((( 542 - 543 -))) 492 +(% style="color:#037691" %)**Uplink:** 544 544 545 -* ((( 546 -(% style="color:blue" %)**Reset** 547 -))) 494 +486.3 - SF7BW125 to SF12BW125 548 548 549 -((( 550 -If payload = 0x04FF, it will reset the NDDS75 551 -))) 496 +486.5 - SF7BW125 to SF12BW125 552 552 498 +486.7 - SF7BW125 to SF12BW125 553 553 554 - *(%style="color:blue"%)**INTMOD**500 +486.9 - SF7BW125 to SF12BW125 555 555 556 -((( 557 -Downlink Payload: 06000003, Set AT+INTMOD=3 558 -))) 502 +487.1 - SF7BW125 to SF12BW125 559 559 504 +487.3 - SF7BW125 to SF12BW125 560 560 506 +487.5 - SF7BW125 to SF12BW125 561 561 562 - == 2.6LEDIndicator==508 +487.7 - SF7BW125 to SF12BW125 563 563 564 564 565 - TheNDDS75 hasan internalLED which is toshowthe statusof different state.511 +(% style="color:#037691" %)**Downlink:** 566 566 513 +506.7 - SF7BW125 to SF12BW125 567 567 568 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 569 -* Then the LED will be on for 1 second means device is boot normally. 570 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 571 -* For each uplink probe, LED will be on for 500ms. 515 +506.9 - SF7BW125 to SF12BW125 572 572 573 -((( 574 - 575 -))) 517 +507.1 - SF7BW125 to SF12BW125 576 576 519 +507.3 - SF7BW125 to SF12BW125 577 577 521 +507.5 - SF7BW125 to SF12BW125 578 578 579 - == 2.7FirmwareChange Log==523 +507.7 - SF7BW125 to SF12BW125 580 580 525 +507.9 - SF7BW125 to SF12BW125 581 581 582 - DownloadURL&FirmwareChange log527 +508.1 - SF7BW125 to SF12BW125 583 583 584 -((( 585 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 586 -))) 529 +505.3 - SF12BW125 (RX2 downlink only) 587 587 588 588 589 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 590 590 533 +=== 2.7.4 AU915-928(AU915) === 591 591 535 +Default use CHE=2 592 592 593 - ==2.8 BatteryAnalysis ==537 +(% style="color:#037691" %)**Uplink:** 594 594 595 - === 2.8.1BatteryType ===539 +916.8 - SF7BW125 to SF12BW125 596 596 541 +917.0 - SF7BW125 to SF12BW125 597 597 543 +917.2 - SF7BW125 to SF12BW125 544 + 545 +917.4 - SF7BW125 to SF12BW125 546 + 547 +917.6 - SF7BW125 to SF12BW125 548 + 549 +917.8 - SF7BW125 to SF12BW125 550 + 551 +918.0 - SF7BW125 to SF12BW125 552 + 553 +918.2 - SF7BW125 to SF12BW125 554 + 555 + 556 +(% style="color:#037691" %)**Downlink:** 557 + 558 +923.3 - SF7BW500 to SF12BW500 559 + 560 +923.9 - SF7BW500 to SF12BW500 561 + 562 +924.5 - SF7BW500 to SF12BW500 563 + 564 +925.1 - SF7BW500 to SF12BW500 565 + 566 +925.7 - SF7BW500 to SF12BW500 567 + 568 +926.3 - SF7BW500 to SF12BW500 569 + 570 +926.9 - SF7BW500 to SF12BW500 571 + 572 +927.5 - SF7BW500 to SF12BW500 573 + 574 +923.3 - SF12BW500(RX2 downlink only) 575 + 576 + 577 + 578 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 579 + 580 +(% style="color:#037691" %)**Default Uplink channel:** 581 + 582 +923.2 - SF7BW125 to SF10BW125 583 + 584 +923.4 - SF7BW125 to SF10BW125 585 + 586 + 587 +(% style="color:#037691" %)**Additional Uplink Channel**: 588 + 589 +(OTAA mode, channel added by JoinAccept message) 590 + 591 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 592 + 593 +922.2 - SF7BW125 to SF10BW125 594 + 595 +922.4 - SF7BW125 to SF10BW125 596 + 597 +922.6 - SF7BW125 to SF10BW125 598 + 599 +922.8 - SF7BW125 to SF10BW125 600 + 601 +923.0 - SF7BW125 to SF10BW125 602 + 603 +922.0 - SF7BW125 to SF10BW125 604 + 605 + 606 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 607 + 608 +923.6 - SF7BW125 to SF10BW125 609 + 610 +923.8 - SF7BW125 to SF10BW125 611 + 612 +924.0 - SF7BW125 to SF10BW125 613 + 614 +924.2 - SF7BW125 to SF10BW125 615 + 616 +924.4 - SF7BW125 to SF10BW125 617 + 618 +924.6 - SF7BW125 to SF10BW125 619 + 620 + 621 +(% style="color:#037691" %)** Downlink:** 622 + 623 +Uplink channels 1-8 (RX1) 624 + 625 +923.2 - SF10BW125 (RX2) 626 + 627 + 628 + 629 +=== 2.7.6 KR920-923 (KR920) === 630 + 631 +Default channel: 632 + 633 +922.1 - SF7BW125 to SF12BW125 634 + 635 +922.3 - SF7BW125 to SF12BW125 636 + 637 +922.5 - SF7BW125 to SF12BW125 638 + 639 + 640 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 641 + 642 +922.1 - SF7BW125 to SF12BW125 643 + 644 +922.3 - SF7BW125 to SF12BW125 645 + 646 +922.5 - SF7BW125 to SF12BW125 647 + 648 +922.7 - SF7BW125 to SF12BW125 649 + 650 +922.9 - SF7BW125 to SF12BW125 651 + 652 +923.1 - SF7BW125 to SF12BW125 653 + 654 +923.3 - SF7BW125 to SF12BW125 655 + 656 + 657 +(% style="color:#037691" %)**Downlink:** 658 + 659 +Uplink channels 1-7(RX1) 660 + 661 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 662 + 663 + 664 + 665 +=== 2.7.7 IN865-867 (IN865) === 666 + 667 +(% style="color:#037691" %)** Uplink:** 668 + 669 +865.0625 - SF7BW125 to SF12BW125 670 + 671 +865.4025 - SF7BW125 to SF12BW125 672 + 673 +865.9850 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %) **Downlink:** 677 + 678 +Uplink channels 1-3 (RX1) 679 + 680 +866.550 - SF10BW125 (RX2) 681 + 682 + 683 + 684 + 685 +== 2.8 LED Indicator == 686 + 687 +The LSE01 has an internal LED which is to show the status of different state. 688 + 689 +* Blink once when device power on. 690 +* Solid ON for 5 seconds once device successful Join the network. 691 +* Blink once when device transmit a packet. 692 + 693 +== 2.9 Installation in Soil == 694 + 695 +**Measurement the soil surface** 696 + 697 + 698 +[[image:1654506634463-199.png]] 699 + 598 598 ((( 599 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 701 +((( 702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 600 600 ))) 704 +))) 601 601 706 + 707 +[[image:1654506665940-119.png]] 708 + 602 602 ((( 603 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.710 +Dig a hole with diameter > 20CM. 604 604 ))) 605 605 606 606 ((( 607 - The batteryrelateddocumentsasbelow:714 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 608 608 ))) 609 609 610 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 611 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 612 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 613 613 718 +== 2.10 Firmware Change Log == 719 + 614 614 ((( 615 - [[image:image-20220709101450-2.png]]721 +**Firmware download link:** 616 616 ))) 617 617 724 +((( 725 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 726 +))) 618 618 728 +((( 729 + 730 +))) 619 619 620 -=== 2.8.2 Power consumption Analyze === 732 +((( 733 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 734 +))) 621 621 622 622 ((( 623 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.737 + 624 624 ))) 625 625 740 +((( 741 +**V1.0.** 742 +))) 626 626 627 627 ((( 628 - Instruction to usebelow:745 +Release 629 629 ))) 630 630 748 + 749 +== 2.11 Battery Analysis == 750 + 751 +=== 2.11.1 Battery Type === 752 + 631 631 ((( 632 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]754 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 633 633 ))) 634 634 757 +((( 758 +The battery is designed to last for more than 5 years for the LSN50. 759 +))) 635 635 636 636 ((( 637 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 762 +((( 763 +The battery-related documents are as below: 638 638 ))) 765 +))) 639 639 640 640 * ((( 641 - ProductModel768 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 642 642 ))) 643 643 * ((( 644 - UplinkInterval771 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 645 645 ))) 646 646 * ((( 647 - WorkingMode774 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 648 648 ))) 649 649 650 -((( 651 -And the Life expectation in difference case will be shown on the right. 652 -))) 777 + [[image:image-20220610172436-1.png]] 653 653 654 -[[image:image-20220708141352-7.jpeg]] 655 655 656 656 781 +=== 2.11.2 Battery Note === 657 657 658 -=== 2.8.3 Battery Note === 659 - 660 660 ((( 661 661 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 662 662 ))) ... ... @@ -663,169 +663,303 @@ 663 663 664 664 665 665 666 -=== 2. 8.4Replace the battery ===789 +=== 2.11.3 Replace the battery === 667 667 668 668 ((( 669 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).792 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 670 670 ))) 671 671 672 - 673 - 674 -= 3. Access NB-IoT Module = 675 - 676 676 ((( 677 - Userscan directly accesstheATcommand set of theNB-IoTmodule.796 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 678 678 ))) 679 679 680 680 ((( 681 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]800 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 682 682 ))) 683 683 684 -[[image:1657333200519-600.png]] 685 685 686 686 805 += 3. Using the AT Commands = 687 687 688 -= 4.UsingtheAT Commands =807 +== 3.1 Access AT Commands == 689 689 690 -== 4.1 Access AT Commands == 691 691 692 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]810 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 693 693 812 +[[image:1654501986557-872.png||height="391" width="800"]] 694 694 695 -AT+<CMD>? : Help on <CMD> 696 696 697 - AT+<CMD>: Run<CMD>815 +Or if you have below board, use below connection: 698 698 699 -AT+<CMD>=<value> : Set the value 700 700 701 - AT+<CMD>=?:Get the value818 +[[image:1654502005655-729.png||height="503" width="801"]] 702 702 703 703 821 + 822 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 823 + 824 + 825 + [[image:1654502050864-459.png||height="564" width="806"]] 826 + 827 + 828 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 829 + 830 + 831 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 832 + 833 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 834 + 835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 836 + 837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 838 + 839 + 704 704 (% style="color:#037691" %)**General Commands**(%%) 705 705 706 -AT 842 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 707 707 708 -AT? 844 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 709 709 710 -ATZ 846 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 711 711 712 -AT+TDC 848 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 713 713 714 -AT+CFG : Print all configurations 715 715 716 - AT+CFGMOD: Workingmode selection851 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 717 717 718 -AT+I NTMOD:Setthe trigger interruptmode853 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 719 719 720 -AT+ 5VTSetextend the timeof5V power855 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 721 721 722 -AT+P ROChooseagreement857 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 723 723 724 -AT+ WEIGREGet weightorsetweight to 0859 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 725 725 726 -AT+ WEIGAPGet or SettheGapValue of weight861 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 727 727 728 -AT+ RXDL: Extendthe sendingandreceivingtime863 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 729 729 730 -AT+ CNTFACGettcountingparameters865 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 731 731 732 -AT+ SERVADDR:ServerAddress867 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 733 733 869 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 734 734 735 -(% style="color:# 037691" %)**COAPManagement**871 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 736 736 737 -AT+ URIsourceparameters873 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 738 738 875 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 739 739 740 -(% style="color:# 037691" %)**UDPManagement**877 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 741 741 742 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)879 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 743 743 881 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 744 744 745 -(% style="color:# 037691" %)**MQTTManagement**883 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 746 746 747 -AT+CLIENT : Get or Set MQTT client 748 748 749 - AT+UNAMEGetSetMQTT Username886 +(% style="color:#037691" %)**LoRa Network Management** 750 750 751 -AT+ PWDGetor SetMQTT password888 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 752 752 753 -AT+ PUBTOPICGetorSetMQTTpublishtopic890 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 754 754 755 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic892 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 756 756 894 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 757 757 758 -(% style="color:# 037691" %)**Information**896 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 759 759 760 -AT+F DRctoryDataReset898 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 761 761 762 -AT+ PWORDSerialAccessPassword900 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 763 763 902 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 764 764 904 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 765 765 766 -= 5.FAQ=906 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 767 767 768 -= =5.1HowtoUpgradeFirmware==908 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 769 769 910 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 770 770 912 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 917 + 918 + 919 +(% style="color:#037691" %)**Information** 920 + 921 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 922 + 923 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 932 + 933 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 934 + 935 + 936 += 4. FAQ = 937 + 938 +== 4.1 How to change the LoRa Frequency Bands/Region? == 939 + 771 771 ((( 772 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 941 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 942 +When downloading the images, choose the required image file for download. 773 773 ))) 774 774 775 775 ((( 776 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]946 + 777 777 ))) 778 778 779 779 ((( 780 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.950 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 781 ))) 782 782 953 +((( 954 + 955 +))) 783 783 957 +((( 958 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 959 +))) 784 784 785 -= 6. Trouble Shooting = 961 +((( 962 + 963 +))) 786 786 787 -== 6.1 Connection problem when uploading firmware == 965 +((( 966 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 967 +))) 788 788 969 +[[image:image-20220606154726-3.png]] 789 789 971 + 972 +When you use the TTN network, the US915 frequency bands use are: 973 + 974 +* 903.9 - SF7BW125 to SF10BW125 975 +* 904.1 - SF7BW125 to SF10BW125 976 +* 904.3 - SF7BW125 to SF10BW125 977 +* 904.5 - SF7BW125 to SF10BW125 978 +* 904.7 - SF7BW125 to SF10BW125 979 +* 904.9 - SF7BW125 to SF10BW125 980 +* 905.1 - SF7BW125 to SF10BW125 981 +* 905.3 - SF7BW125 to SF10BW125 982 +* 904.6 - SF8BW500 983 + 790 790 ((( 791 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]985 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 792 792 ))) 793 793 794 -(% class=" wikigeneratedid" %)988 +(% class="box infomessage" %) 795 795 ((( 990 +**AT+CHE=2** 991 +))) 992 + 993 +(% class="box infomessage" %) 994 +((( 995 +**ATZ** 996 +))) 997 + 998 +((( 999 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 +))) 1001 + 1002 +((( 796 796 797 797 ))) 798 798 1006 +((( 1007 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1008 +))) 799 799 800 - == 6.2 AT Commandinput doesn't work ==1010 +[[image:image-20220606154825-4.png]] 801 801 1012 + 1013 + 1014 += 5. Trouble Shooting = 1015 + 1016 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1017 + 1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1019 + 1020 + 1021 +== 5.2 AT Command input doesn’t work == 1022 + 802 802 ((( 803 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1024 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 +))) 804 804 805 - 1027 + 1028 +== 5.3 Device rejoin in at the second uplink packet == 1029 + 1030 +(% style="color:#4f81bd" %)**Issue describe as below:** 1031 + 1032 +[[image:1654500909990-784.png]] 1033 + 1034 + 1035 +(% style="color:#4f81bd" %)**Cause for this issue:** 1036 + 1037 +((( 1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 806 806 ))) 807 807 808 808 809 - =7. OrderInfo=1042 +(% style="color:#4f81bd" %)**Solution: ** 810 810 1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 811 811 812 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1046 +[[image:1654500929571-736.png||height="458" width="832"]] 813 813 814 814 1049 += 6. Order Info = 1050 + 1051 + 1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 + 1054 + 1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 + 1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 + 1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 + 1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 + 815 815 (% class="wikigeneratedid" %) 816 816 ((( 817 817 818 818 ))) 819 819 820 -= 8.1076 += 7. Packing Info = 821 821 822 822 ((( 823 823 824 824 825 825 (% style="color:#037691" %)**Package Includes**: 1082 +))) 826 826 827 -* NSE01 NB-IoT Distance Detect Sensor Node x 1828 - *Externalantennax 11084 +* ((( 1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 829 829 ))) 830 830 831 831 ((( ... ... @@ -832,22 +832,24 @@ 832 832 833 833 834 834 (% style="color:#037691" %)**Dimension and weight**: 1092 +))) 835 835 836 - 837 -* Device Size: 13.0 x 5 x 4.5 cm 838 -* Device Weight: 150g 839 -* Package Size / pcs : 15 x 12x 5.5 cm 840 -* Weight / pcs : 220g 1094 +* ((( 1095 +Device Size: cm 841 841 ))) 1097 +* ((( 1098 +Device Weight: g 1099 +))) 1100 +* ((( 1101 +Package Size / pcs : cm 1102 +))) 1103 +* ((( 1104 +Weight / pcs : g 842 842 843 -((( 844 844 845 - 846 - 847 - 848 848 ))) 849 849 850 -= 9.1109 += 8. Support = 851 851 852 852 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 853 853 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content