Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 49 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,662 +1,741 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 += 1. Introduction = 15 15 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 16 16 17 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 18 18 19 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 20 20 21 21 ((( 22 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 23 23 24 24 ((( 25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 31 31 ))) 32 32 33 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 34 34 ))) 35 35 39 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 40 40 41 41 42 42 43 -== 1.2 47 +== 1.2 Features == 44 44 45 - 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 47 47 * Ultra low power consumption 48 -* Distance Detectionby Ultrasonictechnology49 -* Flat objectrange280mm - 7500mm50 -* Accuracy:±(1cm+S*0.3%) (S: Distance)51 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 52 52 * AT Commands to change parameters 53 53 * Uplink on periodically 54 54 * Downlink to change configure 55 55 * IP66 Waterproof Enclosure 56 -* Micro SIM card slot for NB-IoT SIM 57 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 58 58 61 +== 1.3 Specification == 59 59 60 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 61 61 65 +[[image:image-20220606162220-5.png]] 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 67 67 68 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 76 76 77 -(% style="color:#037691" %)**Battery:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 78 78 79 -* Li/SOCI2 un-chargeable battery 80 -* Capacity: 8500mAh 81 -* Self Discharge: <1% / Year @ 25°C 82 -* Max continuously current: 130mA 83 -* Max boost current: 2A, 1 second 76 +== 1.5 Firmware Change log == 84 84 85 -(% style="color:#037691" %)**Power Consumption** 86 86 87 -* STOP Mode: 10uA @ 3.3v 88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 79 +**LSE01 v1.0 :** Release 89 89 90 90 91 91 92 -= =1.4Applications==83 += 2. Configure LSE01 to connect to LoRaWAN network = 93 93 94 -* Smart Buildings & Home Automation 95 -* Logistics and Supply Chain Management 96 -* Smart Metering 97 -* Smart Agriculture 98 -* Smart Cities 99 -* Smart Factory 85 +== 2.1 How it works == 100 100 101 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 - 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 103 103 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 104 104 105 105 106 -== 1.5 Pin Definitions == 107 107 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 109 - [[image:1657328609906-564.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 110 110 111 111 102 +[[image:1654503992078-669.png]] 112 112 113 -= 2. Use NDDS75 to communicate with IoT Server = 114 114 115 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 116 117 -((( 118 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 119 -))) 120 120 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 121 121 122 -((( 123 -The diagram below shows the working flow in default firmware of NDDS75: 124 -))) 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 125 125 126 -((( 127 - 128 -))) 112 +[[image:image-20220606163732-6.jpeg]] 129 129 130 - [[image:1657328659945-416.png]]114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 131 131 132 -((( 133 - 134 -))) 116 +**Add APP EUI in the application** 135 135 136 136 137 - == 2.2 Configurethe NDDS75==119 +[[image:1654504596150-405.png]] 138 138 139 139 140 -=== 2.2.1 Test Requirement === 141 141 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 142 142 ((( 143 - To useNDDS75inyour city, makesuremeetbelow requirements:153 +Uplink payload includes in total 11 bytes. 144 144 ))) 145 145 146 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.147 - * The local NB-IoT network used the band that NSE01 supports.148 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 149 149 150 -((( 151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 152 152 ))) 153 153 154 154 155 -[[image:1657328756309-230.png]] 156 156 174 +=== 2.3.2 MOD~=1(Original value) === 157 157 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 158 158 159 -=== 2.2.2 Insert SIM card === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 160 160 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 161 161 ((( 162 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 163 163 ))) 164 164 165 165 ((( 166 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 167 167 ))) 168 168 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 169 169 170 -[[image:1657328884227-504.png]] 171 171 172 172 212 +=== 2.3.4 Soil Moisture === 173 173 174 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 175 175 176 176 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 177 177 ((( 178 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.223 + 179 179 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 180 180 ))) 181 181 182 -[[image:image-20220709092052-2.png]] 183 183 184 -**Connection:** 185 185 186 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 187 187 188 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 189 189 190 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD236 +**Example**: 191 191 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 192 192 193 -I nthe PC, use below serialtool settings:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 194 194 195 -* Baud: (% style="color:green" %)**9600** 196 -* Data bits:** (% style="color:green" %)8(%%)** 197 -* Stop bits: (% style="color:green" %)**1** 198 -* Parity: (% style="color:green" %)**None** 199 -* Flow Control: (% style="color:green" %)**None** 200 200 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 201 201 ((( 202 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNDDS75.NDDS75 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 203 203 ))) 204 204 205 -[[image:1657329814315-101.png]] 250 +((( 251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 +))) 206 206 207 207 ((( 208 - (% style="color:red"%)Note: thevalid ATCommandscan befoundat: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]255 +Generally, the EC value of irrigation water is less than 800uS / cm. 209 209 ))) 210 210 258 +((( 259 + 260 +))) 211 211 262 +((( 263 + 264 +))) 212 212 213 -=== 2. 2.4Use CoAP protocol to uplink data===266 +=== 2.3.7 MOD === 214 214 215 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]268 +Firmware version at least v2.1 supports changing mode. 216 216 270 +For example, bytes[10]=90 217 217 218 - **Use below commands:**272 +mod=(bytes[10]>>7)&0x01=1. 219 219 220 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 222 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 223 223 224 - For parameter description,please refer toAT commandset275 +**Downlink Command:** 225 225 226 - [[image:1657330452568-615.png]]277 +If payload = 0x0A00, workmode=0 227 227 279 +If** **payload =** **0x0A01, workmode=1 228 228 229 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 230 230 231 -[[image:1657330472797-498.png]] 232 232 283 +=== 2.3.8 Decode payload in The Things Network === 233 233 285 +While using TTN network, you can add the payload format to decode the payload. 234 234 235 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 236 236 288 +[[image:1654505570700-128.png]] 237 237 238 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 240 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 290 +The payload decoder function for TTN is here: 241 241 242 -[[ima ge:1657330501006-241.png]]292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 243 243 244 244 245 -[[image:1657330533775-472.png]] 246 246 296 +== 2.4 Uplink Interval == 247 247 298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 248 248 249 -=== 2.2.6 Use MQTT protocol to uplink data === 250 250 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 302 +== 2.5 Downlink Payload == 259 259 260 - [[image:1657249978444-674.png]]304 +By default, LSE50 prints the downlink payload to console port. 261 261 306 +[[image:image-20220606165544-8.png]] 262 262 263 -[[image:1657330723006-866.png]] 264 264 309 +**Examples:** 265 265 266 -((( 267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 268 -))) 269 269 312 +* **Set TDC** 270 270 314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 271 271 272 - === 2.2.7 Use TCPprotocoltouplinkdata===316 +Payload: 01 00 00 1E TDC=30S 273 273 318 +Payload: 01 00 00 3C TDC=60S 274 274 275 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 277 277 278 - [[image:image-20220709093918-1.png]]321 +* **Reset** 279 279 323 +If payload = 0x04FF, it will reset the LSE01 280 280 281 -[[image:image-20220709093918-2.png]] 282 282 326 +* **CFM** 283 283 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 284 284 285 -=== 2.2.8 Change Update Interval === 286 286 287 -User can use below command to change the (% style="color:green" %)**uplink interval**. 288 288 289 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/SetUpdate Intervalto 600s332 +== 2.6 Show Data in DataCake IoT Server == 290 290 291 -((( 292 -(% style="color:red" %)**NOTE:** 293 -))) 334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 294 294 295 -((( 296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 -))) 298 298 337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 299 299 339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 300 300 301 -== 2.3 Uplink Payload == 302 302 303 - In thismode, uplink payload includes in total14bytes342 +[[image:1654505857935-743.png]] 304 304 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 80px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 345 +[[image:1654505874829-548.png]] 311 311 312 -((( 313 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 314 -))) 347 +Step 3: Create an account or log in Datacake. 315 315 349 +Step 4: Search the LSE01 and add DevEUI. 316 316 317 -[[image:1657331036973-987.png]] 318 318 319 -((( 320 -The payload is ASCII string, representative same HEX: 321 -))) 352 +[[image:1654505905236-553.png]] 322 322 323 -((( 324 -0x72403155615900640c6c19029200 where: 325 -))) 326 326 327 -* ((( 328 -Device ID: 0x724031556159 = 724031556159 329 -))) 330 -* ((( 331 -Version: 0x0064=100=1.0.0 332 -))) 355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 333 333 334 -* ((( 335 -BAT: 0x0c6c = 3180 mV = 3.180V 336 -))) 337 -* ((( 338 -Signal: 0x19 = 25 339 -))) 340 -* ((( 341 -Distance: 0x0292= 658 mm 342 -))) 343 -* ((( 344 -Interrupt: 0x00 = 0 345 -))) 357 +[[image:1654505925508-181.png]] 346 346 347 347 348 -== 2.4 Payload Explanation and Sensor Interface == 349 349 361 +== 2.7 Frequency Plans == 350 350 351 - ===2.4.1Device ID===363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 353 -((( 354 -By default, the Device ID equal to the last 6 bytes of IMEI. 355 -))) 356 356 357 -((( 358 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 359 -))) 366 +=== 2.7.1 EU863-870 (EU868) === 360 360 361 -((( 362 -**Example:** 363 -))) 368 +(% style="color:#037691" %)** Uplink:** 364 364 365 -((( 366 -AT+DEUI=A84041F15612 367 -))) 370 +868.1 - SF7BW125 to SF12BW125 368 368 369 -((( 370 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 371 -))) 372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 372 372 374 +868.5 - SF7BW125 to SF12BW125 373 373 376 +867.1 - SF7BW125 to SF12BW125 374 374 375 - ===2.4.2VersionInfo ===378 +867.3 - SF7BW125 to SF12BW125 376 376 377 -((( 378 -Specify the software version: 0x64=100, means firmware version 1.00. 379 -))) 380 +867.5 - SF7BW125 to SF12BW125 380 380 381 -((( 382 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 383 -))) 382 +867.7 - SF7BW125 to SF12BW125 384 384 384 +867.9 - SF7BW125 to SF12BW125 385 385 386 +868.8 - FSK 386 386 387 -=== 2.4.3 Battery Info === 388 388 389 -((( 390 -Check the battery voltage for LSE01. 391 -))) 389 +(% style="color:#037691" %)** Downlink:** 392 392 393 -((( 394 -Ex1: 0x0B45 = 2885mV 395 -))) 391 +Uplink channels 1-9 (RX1) 396 396 397 -((( 398 -Ex2: 0x0B49 = 2889mV 399 -))) 393 +869.525 - SF9BW125 (RX2 downlink only) 400 400 401 401 402 402 403 -=== 2. 4.4SignalStrength===397 +=== 2.7.2 US902-928(US915) === 404 404 405 -((( 406 -NB-IoT Network signal Strength. 407 -))) 399 +Used in USA, Canada and South America. Default use CHE=2 408 408 409 -((( 410 -**Ex1: 0x1d = 29** 411 -))) 401 +(% style="color:#037691" %)**Uplink:** 412 412 413 -((( 414 -(% style="color:blue" %)**0**(%%) -113dBm or less 415 -))) 403 +903.9 - SF7BW125 to SF10BW125 416 416 417 -((( 418 -(% style="color:blue" %)**1**(%%) -111dBm 419 -))) 405 +904.1 - SF7BW125 to SF10BW125 420 420 421 -((( 422 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 423 -))) 407 +904.3 - SF7BW125 to SF10BW125 424 424 425 -((( 426 -(% style="color:blue" %)**31** (%%) -51dBm or greater 427 -))) 409 +904.5 - SF7BW125 to SF10BW125 428 428 429 -((( 430 -(% style="color:blue" %)**99** (%%) Not known or not detectable 431 -))) 411 +904.7 - SF7BW125 to SF10BW125 432 432 413 +904.9 - SF7BW125 to SF10BW125 433 433 415 +905.1 - SF7BW125 to SF10BW125 434 434 435 - ===2.4.5Distance===417 +905.3 - SF7BW125 to SF10BW125 436 436 437 -Get the distance. Flat object range 280mm - 7500mm. 438 438 439 - Forexample, ifthe datayou get from theregister is **__0x0B0x05__**, the distance betweenthe sensor and the measured objectis420 +(% style="color:#037691" %)**Downlink:** 440 440 441 -((( 442 -((( 443 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 444 -))) 445 -))) 422 +923.3 - SF7BW500 to SF12BW500 446 446 447 -((( 448 - 449 -))) 424 +923.9 - SF7BW500 to SF12BW500 450 450 451 -((( 452 - 453 -))) 426 +924.5 - SF7BW500 to SF12BW500 454 454 455 - ===2.4.6DigitalInterrupt===428 +925.1 - SF7BW500 to SF12BW500 456 456 457 -((( 458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 459 -))) 430 +925.7 - SF7BW500 to SF12BW500 460 460 461 -((( 462 -The command is: 463 -))) 432 +926.3 - SF7BW500 to SF12BW500 464 464 465 -((( 466 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 467 -))) 434 +926.9 - SF7BW500 to SF12BW500 468 468 436 +927.5 - SF7BW500 to SF12BW500 469 469 470 -((( 471 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 472 -))) 438 +923.3 - SF12BW500(RX2 downlink only) 473 473 474 474 475 -((( 476 -Example: 477 -))) 478 478 479 -((( 480 -0x(00): Normal uplink packet. 481 -))) 442 +=== 2.7.3 CN470-510 (CN470) === 482 482 483 -((( 484 -0x(01): Interrupt Uplink Packet. 485 -))) 444 +Used in China, Default use CHE=1 486 486 446 +(% style="color:#037691" %)**Uplink:** 487 487 448 +486.3 - SF7BW125 to SF12BW125 488 488 489 - === 2.4.7+5VOutput===450 +486.5 - SF7BW125 to SF12BW125 490 490 491 -((( 492 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 493 -))) 452 +486.7 - SF7BW125 to SF12BW125 494 494 454 +486.9 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -The 5V output time can be controlled by AT Command. 498 -))) 456 +487.1 - SF7BW125 to SF12BW125 499 499 500 -((( 501 -(% style="color:blue" %)**AT+5VT=1000** 502 -))) 458 +487.3 - SF7BW125 to SF12BW125 503 503 504 -((( 505 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 506 -))) 460 +487.5 - SF7BW125 to SF12BW125 507 507 462 +487.7 - SF7BW125 to SF12BW125 508 508 509 509 510 -= =2.5DownlinkPayload ==465 +(% style="color:#037691" %)**Downlink:** 511 511 512 - Bydefault,NDDS75prints the downlinkpayload to console port.467 +506.7 - SF7BW125 to SF12BW125 513 513 514 - [[image:image-20220709100028-1.png]]469 +506.9 - SF7BW125 to SF12BW125 515 515 471 +507.1 - SF7BW125 to SF12BW125 516 516 517 -((( 518 -(% style="color:blue" %)**Examples:** 519 -))) 473 +507.3 - SF7BW125 to SF12BW125 520 520 521 -((( 522 - 523 -))) 475 +507.5 - SF7BW125 to SF12BW125 524 524 525 -* ((( 526 -(% style="color:blue" %)**Set TDC** 527 -))) 477 +507.7 - SF7BW125 to SF12BW125 528 528 529 -((( 530 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 531 -))) 479 +507.9 - SF7BW125 to SF12BW125 532 532 533 -((( 534 -Payload: 01 00 00 1E TDC=30S 535 -))) 481 +508.1 - SF7BW125 to SF12BW125 536 536 537 -((( 538 -Payload: 01 00 00 3C TDC=60S 539 -))) 483 +505.3 - SF12BW125 (RX2 downlink only) 540 540 541 -((( 542 - 543 -))) 544 544 545 -* ((( 546 -(% style="color:blue" %)**Reset** 547 -))) 548 548 549 -((( 550 -If payload = 0x04FF, it will reset the NDDS75 551 -))) 487 +=== 2.7.4 AU915-928(AU915) === 552 552 489 +Default use CHE=2 553 553 554 - *(% style="color:blue" %)**INTMOD**491 +(% style="color:#037691" %)**Uplink:** 555 555 556 -((( 557 -Downlink Payload: 06000003, Set AT+INTMOD=3 558 -))) 493 +916.8 - SF7BW125 to SF12BW125 559 559 495 +917.0 - SF7BW125 to SF12BW125 560 560 497 +917.2 - SF7BW125 to SF12BW125 561 561 562 - == 2.6LEDIndicator==499 +917.4 - SF7BW125 to SF12BW125 563 563 501 +917.6 - SF7BW125 to SF12BW125 564 564 565 - TheNDDS75has an internal LED which is toshow the status of different state.503 +917.8 - SF7BW125 to SF12BW125 566 566 505 +918.0 - SF7BW125 to SF12BW125 567 567 568 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 569 -* Then the LED will be on for 1 second means device is boot normally. 570 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 571 -* For each uplink probe, LED will be on for 500ms. 507 +918.2 - SF7BW125 to SF12BW125 572 572 573 -((( 574 - 575 -))) 576 576 510 +(% style="color:#037691" %)**Downlink:** 577 577 512 +923.3 - SF7BW500 to SF12BW500 578 578 579 - ==2.7FirmwareChange Log==514 +923.9 - SF7BW500 to SF12BW500 580 580 516 +924.5 - SF7BW500 to SF12BW500 581 581 582 - DownloadURL&FirmwareChange log518 +925.1 - SF7BW500 to SF12BW500 583 583 584 -((( 585 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 586 -))) 520 +925.7 - SF7BW500 to SF12BW500 587 587 522 +926.3 - SF7BW500 to SF12BW500 588 588 589 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]524 +926.9 - SF7BW500 to SF12BW500 590 590 526 +927.5 - SF7BW500 to SF12BW500 591 591 528 +923.3 - SF12BW500(RX2 downlink only) 592 592 593 -== 2.8 Battery Analysis == 594 594 595 -=== 2.8.1 Battery Type === 596 596 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 597 597 534 +(% style="color:#037691" %)**Default Uplink channel:** 535 + 536 +923.2 - SF7BW125 to SF10BW125 537 + 538 +923.4 - SF7BW125 to SF10BW125 539 + 540 + 541 +(% style="color:#037691" %)**Additional Uplink Channel**: 542 + 543 +(OTAA mode, channel added by JoinAccept message) 544 + 545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 546 + 547 +922.2 - SF7BW125 to SF10BW125 548 + 549 +922.4 - SF7BW125 to SF10BW125 550 + 551 +922.6 - SF7BW125 to SF10BW125 552 + 553 +922.8 - SF7BW125 to SF10BW125 554 + 555 +923.0 - SF7BW125 to SF10BW125 556 + 557 +922.0 - SF7BW125 to SF10BW125 558 + 559 + 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 561 + 562 +923.6 - SF7BW125 to SF10BW125 563 + 564 +923.8 - SF7BW125 to SF10BW125 565 + 566 +924.0 - SF7BW125 to SF10BW125 567 + 568 +924.2 - SF7BW125 to SF10BW125 569 + 570 +924.4 - SF7BW125 to SF10BW125 571 + 572 +924.6 - SF7BW125 to SF10BW125 573 + 574 + 575 +(% style="color:#037691" %)** Downlink:** 576 + 577 +Uplink channels 1-8 (RX1) 578 + 579 +923.2 - SF10BW125 (RX2) 580 + 581 + 582 + 583 +=== 2.7.6 KR920-923 (KR920) === 584 + 585 +Default channel: 586 + 587 +922.1 - SF7BW125 to SF12BW125 588 + 589 +922.3 - SF7BW125 to SF12BW125 590 + 591 +922.5 - SF7BW125 to SF12BW125 592 + 593 + 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 + 596 +922.1 - SF7BW125 to SF12BW125 597 + 598 +922.3 - SF7BW125 to SF12BW125 599 + 600 +922.5 - SF7BW125 to SF12BW125 601 + 602 +922.7 - SF7BW125 to SF12BW125 603 + 604 +922.9 - SF7BW125 to SF12BW125 605 + 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 598 598 ((( 599 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 600 600 ))) 660 +))) 601 601 662 + 663 +[[image:1654506665940-119.png]] 664 + 602 602 ((( 603 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.666 +Dig a hole with diameter > 20CM. 604 604 ))) 605 605 606 606 ((( 607 - The batteryrelateddocumentsasbelow:670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 608 608 ))) 609 609 610 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 611 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 612 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 613 613 674 +== 2.10 Firmware Change Log == 675 + 614 614 ((( 615 - [[image:image-20220709101450-2.png]]677 +**Firmware download link:** 616 616 ))) 617 617 680 +((( 681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 682 +))) 618 618 684 +((( 685 + 686 +))) 619 619 620 -=== 2.8.2 Power consumption Analyze === 688 +((( 689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 690 +))) 621 621 622 622 ((( 623 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.693 + 624 624 ))) 625 625 696 +((( 697 +**V1.0.** 698 +))) 626 626 627 627 ((( 628 - Instruction to usebelow:701 +Release 629 629 ))) 630 630 704 + 705 +== 2.11 Battery Analysis == 706 + 707 +=== 2.11.1 Battery Type === 708 + 631 631 ((( 632 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 633 633 ))) 634 634 713 +((( 714 +The battery is designed to last for more than 5 years for the LSN50. 715 +))) 635 635 636 636 ((( 637 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 718 +((( 719 +The battery-related documents are as below: 638 638 ))) 721 +))) 639 639 640 640 * ((( 641 - ProductModel724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 642 642 ))) 643 643 * ((( 644 - UplinkInterval727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 645 645 ))) 646 646 * ((( 647 - WorkingMode730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 648 648 ))) 649 649 650 -((( 651 -And the Life expectation in difference case will be shown on the right. 652 -))) 733 + [[image:image-20220606171726-9.png]] 653 653 654 -[[image:image-20220708141352-7.jpeg]] 655 655 656 656 737 +=== 2.11.2 Battery Note === 657 657 658 -=== 2.8.3 Battery Note === 659 - 660 660 ((( 661 661 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 662 662 ))) ... ... @@ -663,169 +663,303 @@ 663 663 664 664 665 665 666 -=== 2. 8.4Replace the battery ===745 +=== 2.11.3 Replace the battery === 667 667 668 668 ((( 669 - The defaultbatterypack of NDDS75includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 670 670 ))) 671 671 672 - 673 - 674 -= 3. Access NB-IoT Module = 675 - 676 676 ((( 677 - Userscan directly accesstheATcommand set of theNB-IoTmodule.752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 678 678 ))) 679 679 680 680 ((( 681 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 682 682 ))) 683 683 684 -[[image:1657333200519-600.png]] 685 685 686 686 761 += 3. Using the AT Commands = 687 687 688 -= 4.UsingtheAT Commands =763 +== 3.1 Access AT Commands == 689 689 690 -== 4.1 Access AT Commands == 691 691 692 -S eethislinkfordetail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 693 693 768 +[[image:1654501986557-872.png||height="391" width="800"]] 694 694 695 -AT+<CMD>? : Help on <CMD> 696 696 697 - AT+<CMD>: Run<CMD>771 +Or if you have below board, use below connection: 698 698 699 -AT+<CMD>=<value> : Set the value 700 700 701 - AT+<CMD>=?:Get the value774 +[[image:1654502005655-729.png||height="503" width="801"]] 702 702 703 703 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 704 704 (% style="color:#037691" %)**General Commands**(%%) 705 705 706 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 707 707 708 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 709 709 710 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 711 711 712 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 713 713 714 -AT+CFG : Print all configurations 715 715 716 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 717 717 718 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 719 719 720 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 721 721 722 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 723 723 724 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 725 725 726 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 727 727 728 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 729 729 730 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 731 731 732 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 733 733 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 734 734 735 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 736 736 737 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 738 738 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 739 739 740 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 741 741 742 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 743 743 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 744 744 745 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 746 746 747 -AT+CLIENT : Get or Set MQTT client 748 748 749 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 750 750 751 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 752 752 753 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 754 754 755 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 756 756 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 757 757 758 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 759 759 760 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 761 761 762 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 763 763 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 764 764 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 765 765 766 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 767 767 768 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 769 769 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 770 770 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 771 771 ((( 772 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 773 773 ))) 774 774 775 775 ((( 776 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 777 777 ))) 778 778 779 779 ((( 780 - (%style="color:red"%)Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 781 ))) 782 782 909 +((( 910 + 911 +))) 783 783 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 784 784 785 -= 6. Trouble Shooting = 917 +((( 918 + 919 +))) 786 786 787 -== 6.1 Connection problem when uploading firmware == 921 +((( 922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 923 +))) 788 788 925 +[[image:image-20220606154726-3.png]] 789 789 927 + 928 +When you use the TTN network, the US915 frequency bands use are: 929 + 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 939 + 790 790 ((( 791 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 792 792 ))) 793 793 794 -(% class=" wikigeneratedid" %)944 +(% class="box infomessage" %) 795 795 ((( 946 +**AT+CHE=2** 947 +))) 948 + 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 953 + 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 957 + 958 +((( 796 796 797 797 ))) 798 798 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 799 799 800 - == 6.2 AT Commandinput doesn't work ==966 +[[image:image-20220606154825-4.png]] 801 801 968 + 969 + 970 += 5. Trouble Shooting = 971 + 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 973 + 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 802 802 ((( 803 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 804 804 805 - 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 806 806 ))) 807 807 808 808 809 - =7. OrderInfo=998 +(% style="color:#4f81bd" %)**Solution: ** 810 810 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 811 811 812 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1002 +[[image:1654500929571-736.png||height="458" width="832"]] 813 813 814 814 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 815 815 (% class="wikigeneratedid" %) 816 816 ((( 817 817 818 818 ))) 819 819 820 -= 8.1032 += 7. Packing Info = 821 821 822 822 ((( 823 823 824 824 825 825 (% style="color:#037691" %)**Package Includes**: 1038 +))) 826 826 827 -* NSE01 NB-IoT Distance Detect Sensor Node x 1828 - *Externalantennax 11040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 829 829 ))) 830 830 831 831 ((( ... ... @@ -832,22 +832,30 @@ 832 832 833 833 834 834 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 835 835 836 - 837 -* Device Size: 13.0 x 5 x 4.5 cm 838 -* Device Weight: 150g 839 -* Package Size / pcs : 15 x 12x 5.5 cm 840 -* Weight / pcs : 220g 1050 +* ((( 1051 +Device Size: cm 841 841 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 842 842 843 -((( 844 - 845 845 846 - 847 847 848 848 ))) 849 849 850 -= 9.1066 += 8. Support = 851 851 852 852 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 853 853 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content