Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 95.2
edited by Xiaoling
on 2022/07/09 10:34
Change comment: There is no comment for this version
To version 32.13
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,661 +1,753 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
12 12  
13 13  
15 += 1. Introduction =
14 14  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
16 -= 1.  Introduction =
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
19 19  
20 20  (((
21 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
22 22  
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
30 30  )))
31 31  
32 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 33  )))
34 34  
39 +
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
43 +[[image:1654503265560-120.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
43 43  
44 -
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
57 57  
61 +== 1.3 Specification ==
58 58  
59 -== 1.3  Specification ==
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
65 +[[image:image-20220606162220-5.png]]
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
64 -* Supply Voltage: 2.1v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**NB-IoT Spec:**
69 +== ​1.4 Applications ==
68 68  
69 -* - B1 @H-FDD: 2100MHz
70 -* - B3 @H-FDD: 1800MHz
71 -* - B8 @H-FDD: 900MHz
72 -* - B5 @H-FDD: 850MHz
73 -* - B20 @H-FDD: 800MHz
74 -* - B28 @H-FDD: 700MHz
71 +* Smart Agriculture
75 75  
76 -(% style="color:#037691" %)**Battery:**
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
76 +== 1.5 Firmware Change log ==
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
79 +**LSE01 v1.0 :**  Release
88 88  
89 89  
90 90  
91 -== ​1. Applications ==
83 += 2. Configure LSE01 to connect to LoRaWAN network =
92 92  
93 -* Smart Buildings & Home Automation
94 -* Logistics and Supply Chain Management
95 -* Smart Metering
96 -* Smart Agriculture
97 -* Smart Cities
98 -* Smart Factory
85 +== 2.1 How it works ==
99 99  
100 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
101 -​
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
102 102  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
103 103  
104 104  
105 -== 1.5  Pin Definitions ==
106 106  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
107 107  
108 -[[image:1657328609906-564.png]]
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 109  
110 110  
102 +[[image:1654503992078-669.png]]
111 111  
112 -= 2.  Use NDDS75 to communicate with IoT Server =
113 113  
114 -== 2.1  How it works ==
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
115 115  
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
116 116  (((
117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
153 +Uplink payload includes in total 11 bytes.
118 118  )))
119 119  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
120 120  
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
170 +)))
171 +
172 +
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
121 121  (((
122 -The diagram below shows the working flow in default firmware of NDDS75:
199 +Check the battery voltage for LSE01.
123 123  )))
124 124  
125 125  (((
126 -
203 +Ex1: 0x0B45 = 2885mV
127 127  )))
128 128  
129 -[[image:1657328659945-416.png]]
130 -
131 131  (((
132 -
207 +Ex2: 0x0B49 = 2889mV
133 133  )))
134 134  
135 135  
136 -== 2.2 ​ Configure the NDDS75 ==
137 137  
212 +=== 2.3.4 Soil Moisture ===
138 138  
139 -=== 2.2.1 Test Requirement ===
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
140 140  
141 141  (((
142 -To use NDDS75 in your city, make sure meet below requirements:
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
143 143  )))
144 144  
145 -* Your local operator has already distributed a NB-IoT Network there.
146 -* The local NB-IoT network used the band that NSE01 supports.
147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
148 148  
149 149  (((
150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
151 151  )))
152 152  
153 153  
154 -[[image:1657328756309-230.png]]
155 155  
232 +=== 2.3.5 Soil Temperature ===
156 156  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
157 157  
158 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
159 159  
160 160  (((
161 -Insert the NB-IoT Card get from your provider.
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
162 162  )))
163 163  
164 164  (((
165 -User need to take out the NB-IoT module and insert the SIM card like below:
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
166 166  )))
167 167  
168 168  
169 -[[image:1657328884227-504.png]]
170 170  
252 +=== 2.3.6 Soil Conductivity (EC) ===
171 171  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
172 172  
173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
174 174  
175 175  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
176 176  (((
177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
267 +
178 178  )))
269 +
270 +(((
271 +
179 179  )))
180 180  
181 -[[image:image-20220709092052-2.png]]
274 +=== 2.3.7 MOD ===
182 182  
183 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
190 190  
283 +**Downlink Command:**
191 191  
192 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
199 199  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
200 200  (((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
299 +The payload decoder function for TTN is here:
202 202  )))
203 203  
204 -[[image:1657329814315-101.png]]
205 -
206 206  (((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
208 208  )))
209 209  
210 210  
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
308 +== 2.4 Uplink Interval ==
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
215 215  
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
314 +== 2.5 Downlink Payload ==
222 222  
223 -For parameter description, please refer to AT command set
316 +By default, LSE50 prints the downlink payload to console port.
224 224  
225 -[[image:1657330452568-615.png]]
318 +[[image:image-20220606165544-8.png]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
321 +**Examples:**
229 229  
230 -[[image:1657330472797-498.png]]
231 231  
324 +* **Set TDC**
232 232  
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
328 +Payload:    01 00 00 1E    TDC=30S
235 235  
330 +Payload:    01 00 00 3C    TDC=60S
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
240 240  
241 -[[image:1657330501006-241.png]]
333 +* **Reset**
242 242  
335 +If payload = 0x04FF, it will reset the LSE01
243 243  
244 -[[image:1657330533775-472.png]]
245 245  
338 +* **CFM**
246 246  
340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
247 247  
248 -=== 2.2.6 Use MQTT protocol to uplink data ===
249 249  
250 250  
251 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
257 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
344 +== 2.6 ​Show Data in DataCake IoT Server ==
258 258  
259 -[[image:1657249978444-674.png]]
346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
260 260  
261 261  
262 -[[image:1657330723006-866.png]]
349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
263 263  
351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
264 264  
265 -(((
266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 -)))
268 268  
354 +[[image:1654505857935-743.png]]
269 269  
270 270  
271 -=== 2.2.7 Use TCP protocol to uplink data ===
357 +[[image:1654505874829-548.png]]
272 272  
359 +Step 3: Create an account or log in Datacake.
273 273  
274 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
361 +Step 4: Search the LSE01 and add DevEUI.
276 276  
277 -[[image:image-20220709093918-1.png]]
278 278  
364 +[[image:1654505905236-553.png]]
279 279  
280 -[[image:image-20220709093918-2.png]]
281 281  
367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
282 282  
369 +[[image:1654505925508-181.png]]
283 283  
284 -=== 2.2.8 Change Update Interval ===
285 285  
286 -User can use below command to change the (% style="color:green" %)**uplink interval**.
287 287  
288 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
373 +== 2.7 Frequency Plans ==
289 289  
290 -(((
291 -(% style="color:red" %)**NOTE:**
292 -)))
375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
293 293  
294 -(((
295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 -)))
297 297  
378 +=== 2.7.1 EU863-870 (EU868) ===
298 298  
380 +(% style="color:#037691" %)** Uplink:**
299 299  
300 -== 2. Uplink Payload ==
382 +868.1 - SF7BW125 to SF12BW125
301 301  
302 -In this mode, uplink payload includes in total 14 bytes
384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
303 303  
386 +868.5 - SF7BW125 to SF12BW125
304 304  
305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 -|=(% style="width: 60px;" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
388 +867.1 - SF7BW125 to SF12BW125
310 310  
311 -(((
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
313 -)))
390 +867.3 - SF7BW125 to SF12BW125
314 314  
392 +867.5 - SF7BW125 to SF12BW125
315 315  
316 -[[image:1657331036973-987.png]]
394 +867.7 - SF7BW125 to SF12BW125
317 317  
318 -(((
319 -The payload is ASCII string, representative same HEX:
320 -)))
396 +867.9 - SF7BW125 to SF12BW125
321 321  
322 -(((
323 -0x72403155615900640c6c19029200 where:
324 -)))
398 +868.8 - FSK
325 325  
326 -* (((
327 -Device ID: 0x724031556159 = 724031556159
328 -)))
329 -* (((
330 -Version: 0x0064=100=1.0.0
331 -)))
332 332  
333 -* (((
334 -BAT: 0x0c6c = 3180 mV = 3.180V
335 -)))
336 -* (((
337 -Signal: 0x19 = 25
338 -)))
339 -* (((
340 -Distance: 0x0292= 658 mm
341 -)))
342 -* (((
343 -Interrupt: 0x00 = 0
344 -)))
401 +(% style="color:#037691" %)** Downlink:**
345 345  
403 +Uplink channels 1-9 (RX1)
346 346  
347 -== 2.4  Payload Explanation and Sensor Interface ==
405 +869.525 - SF9BW125 (RX2 downlink only)
348 348  
349 349  
350 -=== 2.4.1  Device ID ===
351 351  
352 -(((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
354 -)))
409 +=== 2.7.2 US902-928(US915) ===
355 355  
356 -(((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
358 -)))
411 +Used in USA, Canada and South America. Default use CHE=2
359 359  
360 -(((
361 -**Example:**
362 -)))
413 +(% style="color:#037691" %)**Uplink:**
363 363  
364 -(((
365 -AT+DEUI=A84041F15612
366 -)))
415 +903.9 - SF7BW125 to SF10BW125
367 367  
368 -(((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
370 -)))
417 +904.1 - SF7BW125 to SF10BW125
371 371  
419 +904.3 - SF7BW125 to SF10BW125
372 372  
421 +904.5 - SF7BW125 to SF10BW125
373 373  
374 -=== 2.4.2  Version Info ===
423 +904.7 - SF7BW125 to SF10BW125
375 375  
376 -(((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
378 -)))
425 +904.9 - SF7BW125 to SF10BW125
379 379  
380 -(((
381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 -)))
427 +905.1 - SF7BW125 to SF10BW125
383 383  
429 +905.3 - SF7BW125 to SF10BW125
384 384  
385 385  
386 -=== 2.4.3  Battery Info ===
432 +(% style="color:#037691" %)**Downlink:**
387 387  
388 -(((
389 -Check the battery voltage for LSE01.
390 -)))
434 +923.3 - SF7BW500 to SF12BW500
391 391  
392 -(((
393 -Ex1: 0x0B45 = 2885mV
394 -)))
436 +923.9 - SF7BW500 to SF12BW500
395 395  
396 -(((
397 -Ex2: 0x0B49 = 2889mV
398 -)))
438 +924.5 - SF7BW500 to SF12BW500
399 399  
440 +925.1 - SF7BW500 to SF12BW500
400 400  
442 +925.7 - SF7BW500 to SF12BW500
401 401  
402 -=== 2.4.4  Signal Strength ===
444 +926.3 - SF7BW500 to SF12BW500
403 403  
404 -(((
405 -NB-IoT Network signal Strength.
406 -)))
446 +926.9 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -**Ex1: 0x1d = 29**
410 -)))
448 +927.5 - SF7BW500 to SF12BW500
411 411  
412 -(((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
414 -)))
450 +923.3 - SF12BW500(RX2 downlink only)
415 415  
416 -(((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
418 -)))
419 419  
420 -(((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 -)))
423 423  
424 -(((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 -)))
454 +=== 2.7.3 CN470-510 (CN470) ===
427 427  
428 -(((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 -)))
456 +Used in China, Default use CHE=1
431 431  
458 +(% style="color:#037691" %)**Uplink:**
432 432  
460 +486.3 - SF7BW125 to SF12BW125
433 433  
434 -=== 2.4.5  Soil Moisture ===
462 +486.5 - SF7BW125 to SF12BW125
435 435  
436 -Get the distance. Flat object range 280mm - 7500mm.
464 +486.7 - SF7BW125 to SF12BW125
437 437  
438 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
466 +486.9 - SF7BW125 to SF12BW125
439 439  
440 -(((
441 -(((
442 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
443 -)))
444 -)))
468 +487.1 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -
448 -)))
470 +487.3 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -
452 -)))
472 +487.5 - SF7BW125 to SF12BW125
453 453  
454 -=== 2.4. Digital Interrupt ===
474 +487.7 - SF7BW125 to SF12BW125
455 455  
456 -(((
457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 -)))
459 459  
460 -(((
461 -The command is:
462 -)))
477 +(% style="color:#037691" %)**Downlink:**
463 463  
464 -(((
465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 -)))
479 +506.7 - SF7BW125 to SF12BW125
467 467  
481 +506.9 - SF7BW125 to SF12BW125
468 468  
469 -(((
470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 -)))
483 +507.1 - SF7BW125 to SF12BW125
472 472  
485 +507.3 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -Example:
476 -)))
487 +507.5 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -0x(00): Normal uplink packet.
480 -)))
489 +507.7 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -0x(01): Interrupt Uplink Packet.
484 -)))
491 +507.9 - SF7BW125 to SF12BW125
485 485  
493 +508.1 - SF7BW125 to SF12BW125
486 486  
495 +505.3 - SF12BW125 (RX2 downlink only)
487 487  
488 -=== 2.4.7  ​+5V Output ===
489 489  
490 -(((
491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 -)))
493 493  
499 +=== 2.7.4 AU915-928(AU915) ===
494 494  
495 -(((
496 -The 5V output time can be controlled by AT Command.
497 -)))
501 +Default use CHE=2
498 498  
499 -(((
500 -(% style="color:blue" %)**AT+5VT=1000**
501 -)))
503 +(% style="color:#037691" %)**Uplink:**
502 502  
503 -(((
504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 -)))
505 +916.8 - SF7BW125 to SF12BW125
506 506  
507 +917.0 - SF7BW125 to SF12BW125
507 507  
509 +917.2 - SF7BW125 to SF12BW125
508 508  
509 -== 2.5  Downlink Payload ==
511 +917.4 - SF7BW125 to SF12BW125
510 510  
511 -By default, NDDS75 prints the downlink payload to console port.
513 +917.6 - SF7BW125 to SF12BW125
512 512  
513 -[[image:image-20220709100028-1.png]]
515 +917.8 - SF7BW125 to SF12BW125
514 514  
517 +918.0 - SF7BW125 to SF12BW125
515 515  
516 -(((
517 -(% style="color:blue" %)**Examples:**
518 -)))
519 +918.2 - SF7BW125 to SF12BW125
519 519  
520 -(((
521 -
522 -)))
523 523  
524 -* (((
525 -(% style="color:blue" %)**Set TDC**
526 -)))
522 +(% style="color:#037691" %)**Downlink:**
527 527  
528 -(((
529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 -)))
524 +923.3 - SF7BW500 to SF12BW500
531 531  
532 -(((
533 -Payload:    01 00 00 1E    TDC=30S
534 -)))
526 +923.9 - SF7BW500 to SF12BW500
535 535  
536 -(((
537 -Payload:    01 00 00 3C    TDC=60S
538 -)))
528 +924.5 - SF7BW500 to SF12BW500
539 539  
540 -(((
541 -
542 -)))
530 +925.1 - SF7BW500 to SF12BW500
543 543  
544 -* (((
545 -(% style="color:blue" %)**Reset**
546 -)))
532 +925.7 - SF7BW500 to SF12BW500
547 547  
548 -(((
549 -If payload = 0x04FF, it will reset the NDDS75
550 -)))
534 +926.3 - SF7BW500 to SF12BW500
551 551  
536 +926.9 - SF7BW500 to SF12BW500
552 552  
553 -* (% style="color:blue" %)**INTMOD**
538 +927.5 - SF7BW500 to SF12BW500
554 554  
555 -(((
556 -Downlink Payload: 06000003, Set AT+INTMOD=3
557 -)))
540 +923.3 - SF12BW500(RX2 downlink only)
558 558  
559 559  
560 560  
561 -== 2. ​LED Indicator ==
544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
562 562  
546 +(% style="color:#037691" %)**Default Uplink channel:**
563 563  
564 -The NDDS75 has an internal LED which is to show the status of different state.
548 +923.2 - SF7BW125 to SF10BW125
565 565  
550 +923.4 - SF7BW125 to SF10BW125
566 566  
567 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 -* Then the LED will be on for 1 second means device is boot normally.
569 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
570 -* For each uplink probe, LED will be on for 500ms.
571 571  
572 -(((
573 -
574 -)))
553 +(% style="color:#037691" %)**Additional Uplink Channel**:
575 575  
555 +(OTAA mode, channel added by JoinAccept message)
576 576  
557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
577 577  
578 -== 2. Firmware Change Log ==
559 +922.2 - SF7BW125 to SF10BW125
579 579  
561 +922.4 - SF7BW125 to SF10BW125
580 580  
581 -Download URL & Firmware Change log
563 +922.6 - SF7BW125 to SF10BW125
582 582  
583 -(((
584 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
585 -)))
565 +922.8 - SF7BW125 to SF10BW125
586 586  
567 +923.0 - SF7BW125 to SF10BW125
587 587  
588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
569 +922.0 - SF7BW125 to SF10BW125
589 589  
590 590  
572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
591 591  
592 -== 2. Battery Analysis ==
574 +923.6 - SF7BW125 to SF10BW125
593 593  
594 -=== 2.8.1  Battery Type ===
576 +923.8 - SF7BW125 to SF10BW125
595 595  
578 +924.0 - SF7BW125 to SF10BW125
596 596  
580 +924.2 - SF7BW125 to SF10BW125
581 +
582 +924.4 - SF7BW125 to SF10BW125
583 +
584 +924.6 - SF7BW125 to SF10BW125
585 +
586 +
587 +(% style="color:#037691" %)** Downlink:**
588 +
589 +Uplink channels 1-8 (RX1)
590 +
591 +923.2 - SF10BW125 (RX2)
592 +
593 +
594 +
595 +=== 2.7.6 KR920-923 (KR920) ===
596 +
597 +Default channel:
598 +
599 +922.1 - SF7BW125 to SF12BW125
600 +
601 +922.3 - SF7BW125 to SF12BW125
602 +
603 +922.5 - SF7BW125 to SF12BW125
604 +
605 +
606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
607 +
608 +922.1 - SF7BW125 to SF12BW125
609 +
610 +922.3 - SF7BW125 to SF12BW125
611 +
612 +922.5 - SF7BW125 to SF12BW125
613 +
614 +922.7 - SF7BW125 to SF12BW125
615 +
616 +922.9 - SF7BW125 to SF12BW125
617 +
618 +923.1 - SF7BW125 to SF12BW125
619 +
620 +923.3 - SF7BW125 to SF12BW125
621 +
622 +
623 +(% style="color:#037691" %)**Downlink:**
624 +
625 +Uplink channels 1-7(RX1)
626 +
627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
628 +
629 +
630 +
631 +=== 2.7.7 IN865-867 (IN865) ===
632 +
633 +(% style="color:#037691" %)** Uplink:**
634 +
635 +865.0625 - SF7BW125 to SF12BW125
636 +
637 +865.4025 - SF7BW125 to SF12BW125
638 +
639 +865.9850 - SF7BW125 to SF12BW125
640 +
641 +
642 +(% style="color:#037691" %) **Downlink:**
643 +
644 +Uplink channels 1-3 (RX1)
645 +
646 +866.550 - SF10BW125 (RX2)
647 +
648 +
649 +
650 +
651 +== 2.8 LED Indicator ==
652 +
653 +The LSE01 has an internal LED which is to show the status of different state.
654 +
655 +* Blink once when device power on.
656 +* Solid ON for 5 seconds once device successful Join the network.
657 +* Blink once when device transmit a packet.
658 +
659 +
660 +
661 +== 2.9 Installation in Soil ==
662 +
663 +**Measurement the soil surface**
664 +
665 +
666 +[[image:1654506634463-199.png]] ​
667 +
597 597  (((
598 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
669 +(((
670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 599  )))
672 +)))
600 600  
674 +
675 +[[image:1654506665940-119.png]]
676 +
601 601  (((
602 -The battery is designed to last for several years depends on the actually use environment and update interval. 
678 +Dig a hole with diameter > 20CM.
603 603  )))
604 604  
605 605  (((
606 -The battery related documents as below:
682 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 607  )))
608 608  
609 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
610 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
611 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 612  
686 +== 2.10 ​Firmware Change Log ==
687 +
613 613  (((
614 -[[image:image-20220709101450-2.png]]
689 +**Firmware download link:**
615 615  )))
616 616  
692 +(((
693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
694 +)))
617 617  
696 +(((
697 +
698 +)))
618 618  
619 -=== 2.8.2  Power consumption Analyze ===
700 +(((
701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
702 +)))
620 620  
621 621  (((
622 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
705 +
623 623  )))
624 624  
708 +(((
709 +**V1.0.**
710 +)))
625 625  
626 626  (((
627 -Instruction to use as below:
713 +Release
628 628  )))
629 629  
716 +
717 +== 2.11 ​Battery Analysis ==
718 +
719 +=== 2.11.1 ​Battery Type ===
720 +
630 630  (((
631 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
632 632  )))
633 633  
725 +(((
726 +The battery is designed to last for more than 5 years for the LSN50.
727 +)))
634 634  
635 635  (((
636 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
730 +(((
731 +The battery-related documents are as below:
637 637  )))
733 +)))
638 638  
639 639  * (((
640 -Product Model
736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
641 641  )))
642 642  * (((
643 -Uplink Interval
739 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
644 644  )))
645 645  * (((
646 -Working Mode
742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
647 647  )))
648 648  
649 -(((
650 -And the Life expectation in difference case will be shown on the right.
651 -)))
745 + [[image:image-20220606171726-9.png]]
652 652  
653 -[[image:image-20220708141352-7.jpeg]]
654 654  
655 655  
749 +=== 2.11.2 ​Battery Note ===
656 656  
657 -=== 2.8.3  ​Battery Note ===
658 -
659 659  (((
660 660  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
661 661  )))
... ... @@ -662,169 +662,303 @@
662 662  
663 663  
664 664  
665 -=== 2.8. Replace the battery ===
757 +=== 2.11.3 Replace the battery ===
666 666  
667 667  (((
668 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
760 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
669 669  )))
670 670  
671 -
672 -
673 -= 3. ​ Access NB-IoT Module =
674 -
675 675  (((
676 -Users can directly access the AT command set of the NB-IoT module.
764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
677 677  )))
678 678  
679 679  (((
680 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
681 681  )))
682 682  
683 -[[image:1657333200519-600.png]]
684 684  
685 685  
773 += 3. ​Using the AT Commands =
686 686  
687 -= 4.  Using the AT Commands =
775 +== 3.1 Access AT Commands ==
688 688  
689 -== 4.1  Access AT Commands ==
690 690  
691 -See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
692 692  
780 +[[image:1654501986557-872.png||height="391" width="800"]]
693 693  
694 -AT+<CMD>?  : Help on <CMD>
695 695  
696 -AT+<CMD>         : Run <CMD>
783 +Or if you have below board, use below connection:
697 697  
698 -AT+<CMD>=<value> : Set the value
699 699  
700 -AT+<CMD>=?  : Get the value
786 +[[image:1654502005655-729.png||height="503" width="801"]]
701 701  
702 702  
789 +
790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +
792 +
793 + [[image:1654502050864-459.png||height="564" width="806"]]
794 +
795 +
796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 +
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +
803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +
805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +
807 +
703 703  (% style="color:#037691" %)**General Commands**(%%)      
704 704  
705 -AT  : Attention       
810 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
706 706  
707 -AT?  : Short Help     
812 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
708 708  
709 -ATZ  : MCU Reset    
814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
710 710  
711 -AT+TDC  : Application Data Transmission Interval
816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
712 712  
713 -AT+CFG  : Print all configurations
714 714  
715 -AT+CFGMOD           : Working mode selection
819 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
716 716  
717 -AT+INTMOD            : Set the trigger interrupt mode
821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
718 718  
719 -AT+5VT  : Set extend the time of 5V power  
823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
720 720  
721 -AT+PRO  : Choose agreement
825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
722 722  
723 -AT+WEIGRE  : Get weight or set weight to 0
827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
724 724  
725 -AT+WEIGAP  : Get or Set the GapValue of weight
829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
726 726  
727 -AT+RXDL  : Extend the sending and receiving time
831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
728 728  
729 -AT+CNTFAC  : Get or set counting parameters
833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
730 730  
731 -AT+SERVADDR  : Server Address
835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
732 732  
837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
733 733  
734 -(% style="color:#037691" %)**COAP Management**      
839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
735 735  
736 -AT+URI            : Resource parameters
841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
737 737  
843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
738 738  
739 -(% style="color:#037691" %)**UDP Management**
845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
740 740  
741 -AT+CFM          : Upload confirmation mode (only valid for UDP)
847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
742 742  
849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
743 743  
744 -(% style="color:#037691" %)**MQTT Management**
851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
745 745  
746 -AT+CLIENT               : Get or Set MQTT client
747 747  
748 -AT+UNAME  : Get or Set MQTT Username
854 +(% style="color:#037691" %)**LoRa Network Management**
749 749  
750 -AT+PWD                  : Get or Set MQTT password
856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
751 751  
752 -AT+PUBTOPI : Get or Set MQTT publish topic
858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
753 753  
754 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
755 755  
862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
756 756  
757 -(% style="color:#037691" %)**Information**          
864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
758 758  
759 -AT+FDR  : Factory Data Reset
866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
760 760  
761 -AT+PWOR : Serial Access Password
868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
762 762  
870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
763 763  
872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
764 764  
765 -= ​5.  FAQ =
874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
766 766  
767 -== 5.1 How to Upgrade Firmware ==
876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
768 768  
878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
769 769  
880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +
882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +
884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +
886 +
887 +(% style="color:#037691" %)**Information** 
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +
897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +
899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +
901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 +
903 +
904 += ​4. FAQ =
905 +
906 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
907 +
770 770  (((
771 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
910 +When downloading the images, choose the required image file for download. ​
772 772  )))
773 773  
774 774  (((
775 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 +
776 776  )))
777 777  
778 778  (((
779 -(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
780 780  )))
781 781  
921 +(((
922 +
923 +)))
782 782  
925 +(((
926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
927 +)))
783 783  
784 -= 6.  Trouble Shooting =
929 +(((
930 +
931 +)))
785 785  
786 -== 6.1  ​Connection problem when uploading firmware ==
933 +(((
934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
935 +)))
787 787  
937 +[[image:image-20220606154726-3.png]]
788 788  
939 +
940 +When you use the TTN network, the US915 frequency bands use are:
941 +
942 +* 903.9 - SF7BW125 to SF10BW125
943 +* 904.1 - SF7BW125 to SF10BW125
944 +* 904.3 - SF7BW125 to SF10BW125
945 +* 904.5 - SF7BW125 to SF10BW125
946 +* 904.7 - SF7BW125 to SF10BW125
947 +* 904.9 - SF7BW125 to SF10BW125
948 +* 905.1 - SF7BW125 to SF10BW125
949 +* 905.3 - SF7BW125 to SF10BW125
950 +* 904.6 - SF8BW500
951 +
789 789  (((
790 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
791 791  )))
792 792  
793 -(% class="wikigeneratedid" %)
956 +(% class="box infomessage" %)
794 794  (((
958 +**AT+CHE=2**
959 +)))
960 +
961 +(% class="box infomessage" %)
962 +(((
963 +**ATZ**
964 +)))
965 +
966 +(((
967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
968 +)))
969 +
970 +(((
795 795  
796 796  )))
797 797  
974 +(((
975 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
976 +)))
798 798  
799 -== 6.2  AT Command input doesn't work ==
978 +[[image:image-20220606154825-4.png]]
800 800  
980 +
981 +
982 += 5. Trouble Shooting =
983 +
984 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
985 +
986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
987 +
988 +
989 +== 5.2 AT Command input doesn’t work ==
990 +
801 801  (((
802 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
993 +)))
803 803  
804 -
995 +
996 +== 5.3 Device rejoin in at the second uplink packet ==
997 +
998 +(% style="color:#4f81bd" %)**Issue describe as below:**
999 +
1000 +[[image:1654500909990-784.png]]
1001 +
1002 +
1003 +(% style="color:#4f81bd" %)**Cause for this issue:**
1004 +
1005 +(((
1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
805 805  )))
806 806  
807 807  
808 -= 7. ​ Order Info =
1010 +(% style="color:#4f81bd" %)**Solution: **
809 809  
1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
810 810  
811 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1014 +[[image:1654500929571-736.png||height="458" width="832"]]
812 812  
813 813  
1017 += 6. ​Order Info =
1018 +
1019 +
1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 +
1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1031 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1033 +
1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1035 +
1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1038 +
814 814  (% class="wikigeneratedid" %)
815 815  (((
816 816  
817 817  )))
818 818  
819 -= 8.  Packing Info =
1044 += 7. Packing Info =
820 820  
821 821  (((
822 822  
823 823  
824 824  (% style="color:#037691" %)**Package Includes**:
1050 +)))
825 825  
826 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
827 -* External antenna x 1
1052 +* (((
1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
828 828  )))
829 829  
830 830  (((
... ... @@ -831,19 +831,30 @@
831 831  
832 832  
833 833  (% style="color:#037691" %)**Dimension and weight**:
1060 +)))
834 834  
835 -* Size: 195 x 125 x 55 mm
836 -* Weight:   420g
1062 +* (((
1063 +Device Size: cm
837 837  )))
1065 +* (((
1066 +Device Weight: g
1067 +)))
1068 +* (((
1069 +Package Size / pcs : cm
1070 +)))
1071 +* (((
1072 +Weight / pcs : g
838 838  
839 -(((
840 -
841 841  
842 -
843 843  
844 844  )))
845 845  
846 -= 9.  Support =
1078 += 8. Support =
847 847  
848 848  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
849 849  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 +
1083 +
1084 +~)~)~)
1085 +~)~)~)
1086 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content