Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 93.1
edited by Xiaoling
on 2022/07/09 10:14
Change comment: Uploaded new attachment "image-20220709101450-2.png", version {1}
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,438 +13,370 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 58  
59 -== 1.3  Specification ==
60 60  
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
64 -* Supply Voltage: 2.1v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
75 +== 1.3 Specification ==
66 66  
67 -(% style="color:#037691" %)**NB-IoT Spec:**
77 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -* - B1 @H-FDD: 2100MHz
70 -* - B3 @H-FDD: 1800MHz
71 -* - B8 @H-FDD: 900MHz
72 -* - B5 @H-FDD: 850MHz
73 -* - B20 @H-FDD: 800MHz
74 -* - B28 @H-FDD: 700MHz
79 +[[image:image-20220606162220-5.png]]
75 75  
76 -(% style="color:#037691" %)**Battery:**
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
83 +== ​1.4 Applications ==
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
88 -
89 -
90 -
91 -== ​1.4  Applications ==
92 -
93 -* Smart Buildings & Home Automation
94 -* Logistics and Supply Chain Management
95 -* Smart Metering
96 96  * Smart Agriculture
97 -* Smart Cities
98 -* Smart Factory
99 99  
100 100  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
101 101  ​
102 102  
90 +== 1.5 Firmware Change log ==
103 103  
104 104  
105 -== 1.5  Pin Definitions ==
93 +**LSE01 v1.0 :**  Release
106 106  
107 107  
108 -[[image:1657328609906-564.png]]
109 109  
97 += 2. Configure LSE01 to connect to LoRaWAN network =
110 110  
99 +== 2.1 How it works ==
111 111  
112 -= 2.  Use NDDS75 to communicate with IoT Server =
113 -
114 -== 2.1  How it works ==
115 -
116 116  (((
117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 118  )))
119 119  
120 -
121 121  (((
122 -The diagram below shows the working flow in default firmware of NDDS75:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 123  )))
124 124  
125 -(((
126 -
127 -)))
128 128  
129 -[[image:1657328659945-416.png]]
130 130  
131 -(((
132 -
133 -)))
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
134 134  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
135 135  
136 -== 2.2 ​ Configure the NDDS75 ==
137 137  
116 +[[image:1654503992078-669.png]]
138 138  
139 -=== 2.2.1 Test Requirement ===
140 140  
141 -(((
142 -To use NDDS75 in your city, make sure meet below requirements:
143 -)))
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
144 144  
145 -* Your local operator has already distributed a NB-IoT Network there.
146 -* The local NB-IoT network used the band that NSE01 supports.
147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
148 148  
149 -(((
150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
151 -)))
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
152 152  
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
153 153  
154 -[[image:1657328756309-230.png]]
126 +[[image:image-20220606163732-6.jpeg]]
155 155  
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
156 156  
130 +**Add APP EUI in the application**
157 157  
158 -=== 2.2.2 Insert SIM card ===
159 159  
160 -(((
161 -Insert the NB-IoT Card get from your provider.
162 -)))
133 +[[image:1654504596150-405.png]]
163 163  
164 -(((
165 -User need to take out the NB-IoT module and insert the SIM card like below:
166 -)))
167 167  
168 168  
169 -[[image:1657328884227-504.png]]
137 +**Add APP KEY and DEV EUI**
170 170  
139 +[[image:1654504683289-357.png]]
171 171  
172 172  
173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
174 174  
175 -(((
176 -(((
177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
178 -)))
179 -)))
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
180 180  
181 -[[image:image-20220709092052-2.png]]
182 182  
183 -**Connection:**
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
148 +[[image:image-20220606163915-7.png]]
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
190 190  
153 +[[image:1654504778294-788.png]]
191 191  
192 -In the PC, use below serial tool settings:
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
199 199  
200 -(((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
202 -)))
157 +== 2.3 Uplink Payload ==
203 203  
204 -[[image:1657329814315-101.png]]
205 205  
160 +=== 2.3.1 MOD~=0(Default Mode) ===
161 +
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
206 206  (((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
165 +Uplink payload includes in total 11 bytes.
208 208  )))
209 209  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
210 210  
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 +(Optional)
182 +)))
215 215  
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
222 222  
223 -For parameter description, please refer to AT command set
224 224  
225 -[[image:1657330452568-615.png]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
190 +=== 2.3.2 MOD~=1(Original value) ===
229 229  
230 -[[image:1657330472797-498.png]]
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
231 231  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
232 232  
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
235 235  
207 +(Optional)
208 +)))
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
240 240  
241 -[[image:1657330501006-241.png]]
242 242  
243 243  
244 -[[image:1657330533775-472.png]]
245 245  
246 246  
247 247  
248 -=== 2.2.6 Use MQTT protocol to uplink data ===
216 +=== 2.3.3 Battery Info ===
249 249  
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
250 250  
251 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
257 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
258 258  
259 -[[image:1657249978444-674.png]]
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
260 260  
261 261  
262 -[[image:1657330723006-866.png]]
263 263  
232 +=== 2.3.4 Soil Moisture ===
264 264  
265 265  (((
266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
267 267  )))
268 268  
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
269 269  
270 -
271 -=== 2.2.7 Use TCP protocol to uplink data ===
272 -
273 -
274 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
276 -
277 -[[image:image-20220709093918-1.png]]
278 -
279 -
280 -[[image:image-20220709093918-2.png]]
281 -
282 -
283 -
284 -=== 2.2.8 Change Update Interval ===
285 -
286 -User can use below command to change the (% style="color:green" %)**uplink interval**.
287 -
288 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
289 -
290 290  (((
291 -(% style="color:red" %)**NOTE:**
243 +
292 292  )))
293 293  
294 294  (((
295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
296 296  )))
297 297  
298 298  
299 299  
300 -== 2.3  Uplink Payload ==
252 +=== 2.3.5 Soil Temperature ===
301 301  
302 -In this mode, uplink payload includes in total 14 bytes
303 -
304 -
305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 -|=(% style="width: 60px;" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
310 -
311 311  (((
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
313 313  )))
314 314  
315 -
316 -[[image:1657331036973-987.png]]
317 -
318 318  (((
319 -The payload is ASCII string, representative same HEX:
259 +**Example**:
320 320  )))
321 321  
322 322  (((
323 -0x72403155615900640c6c19029200 where:
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
324 324  )))
325 325  
326 -* (((
327 -Device ID: 0x724031556159 = 724031556159
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
328 328  )))
329 -* (((
330 -Version: 0x0064=100=1.0.0
331 -)))
332 332  
333 -* (((
334 -BAT: 0x0c6c = 3180 mV = 3.180V
335 -)))
336 -* (((
337 -Signal: 0x19 = 25
338 -)))
339 -* (((
340 -Distance: 0x0292= 658 mm
341 -)))
342 -* (((
343 -Interrupt: 0x00 = 0
344 -)))
345 345  
346 346  
347 -== 2. Payload Explanation and Sensor Interface ==
272 +=== 2.3.6 Soil Conductivity (EC) ===
348 348  
349 -
350 -=== 2.4.1  Device ID ===
351 -
352 352  (((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
354 354  )))
355 355  
356 356  (((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
358 358  )))
359 359  
360 360  (((
361 -**Example:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
362 362  )))
363 363  
364 364  (((
365 -AT+DEUI=A84041F15612
287 +
366 366  )))
367 367  
368 368  (((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
291 +
370 370  )))
371 371  
294 +=== 2.3.7 MOD ===
372 372  
296 +Firmware version at least v2.1 supports changing mode.
373 373  
374 -=== 2.4.2  Version Info ===
298 +For example, bytes[10]=90
375 375  
376 -(((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
378 -)))
300 +mod=(bytes[10]>>7)&0x01=1.
379 379  
380 -(((
381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 -)))
383 383  
303 +**Downlink Command:**
384 384  
305 +If payload = 0x0A00, workmode=0
385 385  
386 -=== 2.4.3  Battery Info ===
307 +If** **payload =** **0x0A01, workmode=1
387 387  
388 -(((
389 -Check the battery voltage for LSE01.
390 -)))
391 391  
310 +
311 +=== 2.3.8 ​Decode payload in The Things Network ===
312 +
313 +While using TTN network, you can add the payload format to decode the payload.
314 +
315 +
316 +[[image:1654505570700-128.png]]
317 +
392 392  (((
393 -Ex1: 0x0B45 = 2885mV
319 +The payload decoder function for TTN is here:
394 394  )))
395 395  
396 396  (((
397 -Ex2: 0x0B49 = 2889mV
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
398 398  )))
399 399  
400 400  
327 +== 2.4 Uplink Interval ==
401 401  
402 -=== 2.4. Signal Strength ===
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
403 403  
331 +
332 +
333 +== 2.5 Downlink Payload ==
334 +
335 +By default, LSE50 prints the downlink payload to console port.
336 +
337 +[[image:image-20220606165544-8.png]]
338 +
339 +
404 404  (((
405 -NB-IoT Network signal Strength.
341 +**Examples:**
406 406  )))
407 407  
408 408  (((
409 -**Ex1: 0x1d = 29**
345 +
410 410  )))
411 411  
348 +* (((
349 +**Set TDC**
350 +)))
351 +
412 412  (((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
414 414  )))
415 415  
416 416  (((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
357 +Payload:    01 00 00 1E    TDC=30S
418 418  )))
419 419  
420 420  (((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
361 +Payload:    01 00 00 3C    TDC=60S
422 422  )))
423 423  
424 424  (((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
365 +
426 426  )))
427 427  
368 +* (((
369 +**Reset**
370 +)))
371 +
428 428  (((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +If payload = 0x04FF, it will reset the LSE01
430 430  )))
431 431  
432 432  
377 +* **CFM**
433 433  
434 -=== 2.4.5  Soil Moisture ===
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
435 435  
436 -Get the distance. Flat object range 280mm - 7500mm.
437 437  
438 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
439 439  
440 -(((
441 -(((
442 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
443 -)))
444 -)))
383 +== 2.6 ​Show Data in DataCake IoT Server ==
445 445  
446 446  (((
447 -
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
448 448  )))
449 449  
450 450  (((
... ... @@ -451,213 +451,412 @@
451 451  
452 452  )))
453 453  
454 -=== 2.4.6  Digital Interrupt ===
455 -
456 456  (((
457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
394 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
458 458  )))
459 459  
460 460  (((
461 -The command is:
398 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
462 462  )))
463 463  
464 -(((
465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 -)))
467 467  
402 +[[image:1654505857935-743.png]]
468 468  
469 -(((
470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 -)))
472 472  
405 +[[image:1654505874829-548.png]]
473 473  
474 -(((
475 -Example:
476 -)))
477 477  
478 -(((
479 -0x(00): Normal uplink packet.
480 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
481 481  
482 -(((
483 -0x(01): Interrupt Uplink Packet.
484 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
485 485  
486 486  
413 +[[image:1654505905236-553.png]]
487 487  
488 -=== 2.4.7  ​+5V Output ===
489 489  
490 -(((
491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
493 493  
418 +[[image:1654505925508-181.png]]
494 494  
495 -(((
496 -The 5V output time can be controlled by AT Command.
497 -)))
498 498  
499 -(((
500 -(% style="color:blue" %)**AT+5VT=1000**
501 -)))
502 502  
503 -(((
504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 -)))
422 +== 2.7 Frequency Plans ==
506 506  
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
507 507  
508 508  
509 -== 2. Downlink Payload ==
427 +=== 2.7.1 EU863-870 (EU868) ===
510 510  
511 -By default, NDDS75 prints the downlink payload to console port.
429 +(% style="color:#037691" %)** Uplink:**
512 512  
513 -[[image:image-20220709100028-1.png]]
431 +868.1 - SF7BW125 to SF12BW125
514 514  
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
515 515  
516 -(((
517 -(% style="color:blue" %)**Examples:**
518 -)))
435 +868.5 - SF7BW125 to SF12BW125
519 519  
520 -(((
521 -
522 -)))
437 +867.1 - SF7BW125 to SF12BW125
523 523  
524 -* (((
525 -(% style="color:blue" %)**Set TDC**
526 -)))
439 +867.3 - SF7BW125 to SF12BW125
527 527  
528 -(((
529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 -)))
441 +867.5 - SF7BW125 to SF12BW125
531 531  
532 -(((
533 -Payload:    01 00 00 1E    TDC=30S
534 -)))
443 +867.7 - SF7BW125 to SF12BW125
535 535  
536 -(((
537 -Payload:    01 00 00 3C    TDC=60S
538 -)))
445 +867.9 - SF7BW125 to SF12BW125
539 539  
540 -(((
541 -
542 -)))
447 +868.8 - FSK
543 543  
544 -* (((
545 -(% style="color:blue" %)**Reset**
546 -)))
547 547  
548 -(((
549 -If payload = 0x04FF, it will reset the NDDS75
550 -)))
450 +(% style="color:#037691" %)** Downlink:**
551 551  
452 +Uplink channels 1-9 (RX1)
552 552  
553 -* (% style="color:blue" %)**INTMOD**
454 +869.525 - SF9BW125 (RX2 downlink only)
554 554  
555 -(((
556 -Downlink Payload: 06000003, Set AT+INTMOD=3
557 -)))
558 558  
559 559  
458 +=== 2.7.2 US902-928(US915) ===
560 560  
561 -== 2.6  ​LED Indicator ==
460 +Used in USA, Canada and South America. Default use CHE=2
562 562  
462 +(% style="color:#037691" %)**Uplink:**
563 563  
564 -The NDDS75 has an internal LED which is to show the status of different state.
464 +903.9 - SF7BW125 to SF10BW125
565 565  
466 +904.1 - SF7BW125 to SF10BW125
566 566  
567 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 -* Then the LED will be on for 1 second means device is boot normally.
569 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
570 -* For each uplink probe, LED will be on for 500ms.
468 +904.3 - SF7BW125 to SF10BW125
571 571  
572 -(((
573 -
574 -)))
470 +904.5 - SF7BW125 to SF10BW125
575 575  
472 +904.7 - SF7BW125 to SF10BW125
576 576  
474 +904.9 - SF7BW125 to SF10BW125
577 577  
578 -== 2. Firmware Change Log ==
476 +905.1 - SF7BW125 to SF10BW125
579 579  
478 +905.3 - SF7BW125 to SF10BW125
580 580  
581 -Download URL & Firmware Change log
582 582  
583 -(((
584 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
585 -)))
481 +(% style="color:#037691" %)**Downlink:**
586 586  
483 +923.3 - SF7BW500 to SF12BW500
587 587  
588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
485 +923.9 - SF7BW500 to SF12BW500
589 589  
487 +924.5 - SF7BW500 to SF12BW500
590 590  
489 +925.1 - SF7BW500 to SF12BW500
591 591  
592 -== 2. Battery Analysis ==
491 +925.7 - SF7BW500 to SF12BW500
593 593  
594 -=== 2.9.1  Battery Type ===
493 +926.3 - SF7BW500 to SF12BW500
595 595  
495 +926.9 - SF7BW500 to SF12BW500
596 596  
497 +927.5 - SF7BW500 to SF12BW500
498 +
499 +923.3 - SF12BW500(RX2 downlink only)
500 +
501 +
502 +
503 +=== 2.7.3 CN470-510 (CN470) ===
504 +
505 +Used in China, Default use CHE=1
506 +
507 +(% style="color:#037691" %)**Uplink:**
508 +
509 +486.3 - SF7BW125 to SF12BW125
510 +
511 +486.5 - SF7BW125 to SF12BW125
512 +
513 +486.7 - SF7BW125 to SF12BW125
514 +
515 +486.9 - SF7BW125 to SF12BW125
516 +
517 +487.1 - SF7BW125 to SF12BW125
518 +
519 +487.3 - SF7BW125 to SF12BW125
520 +
521 +487.5 - SF7BW125 to SF12BW125
522 +
523 +487.7 - SF7BW125 to SF12BW125
524 +
525 +
526 +(% style="color:#037691" %)**Downlink:**
527 +
528 +506.7 - SF7BW125 to SF12BW125
529 +
530 +506.9 - SF7BW125 to SF12BW125
531 +
532 +507.1 - SF7BW125 to SF12BW125
533 +
534 +507.3 - SF7BW125 to SF12BW125
535 +
536 +507.5 - SF7BW125 to SF12BW125
537 +
538 +507.7 - SF7BW125 to SF12BW125
539 +
540 +507.9 - SF7BW125 to SF12BW125
541 +
542 +508.1 - SF7BW125 to SF12BW125
543 +
544 +505.3 - SF12BW125 (RX2 downlink only)
545 +
546 +
547 +
548 +=== 2.7.4 AU915-928(AU915) ===
549 +
550 +Default use CHE=2
551 +
552 +(% style="color:#037691" %)**Uplink:**
553 +
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
597 597  (((
598 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 599  )))
719 +)))
600 600  
601 601  
722 +
723 +[[image:1654506665940-119.png]]
724 +
602 602  (((
603 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
604 604  )))
605 605  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
606 606  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
607 607  (((
608 -The battery related documents as below:
737 +**Firmware download link:**
609 609  )))
610 610  
611 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
613 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
614 614  
615 615  (((
616 -[[image:image-20220708140453-6.png]]
745 +
617 617  )))
618 618  
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
619 619  
752 +(((
753 +
754 +)))
620 620  
621 -=== 2.9.2  Power consumption Analyze ===
756 +(((
757 +**V1.0.**
758 +)))
622 622  
623 623  (((
624 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +Release
625 625  )))
626 626  
627 627  
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
628 628  (((
629 -Instruction to use as below:
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
630 630  )))
631 631  
632 632  (((
633 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The battery is designed to last for more than 5 years for the LSN50.
634 634  )))
635 635  
636 -
637 637  (((
638 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
639 639  )))
781 +)))
640 640  
641 641  * (((
642 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
643 643  )))
644 644  * (((
645 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
646 646  )))
647 647  * (((
648 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
649 649  )))
650 650  
651 -(((
652 -And the Life expectation in difference case will be shown on the right.
653 -)))
793 + [[image:image-20220610172436-1.png]]
654 654  
655 -[[image:image-20220708141352-7.jpeg]]
656 656  
657 657  
797 +=== 2.11.2 ​Battery Note ===
658 658  
659 -=== 2.9.3  ​Battery Note ===
660 -
661 661  (((
662 662  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
663 663  )))
... ... @@ -664,176 +664,298 @@
664 664  
665 665  
666 666  
667 -=== 2.9. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
668 668  
669 669  (((
670 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
671 671  )))
672 672  
673 -
674 -
675 -= 3. ​ Access NB-IoT Module =
676 -
677 677  (((
678 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
679 679  )))
680 680  
681 681  (((
682 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
683 683  )))
684 684  
685 -[[image:1657261278785-153.png]]
686 686  
687 687  
821 += 3. ​Using the AT Commands =
688 688  
689 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
690 690  
691 -== 4.1  Access AT Commands ==
692 692  
693 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
694 694  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
695 695  
696 -AT+<CMD>?  : Help on <CMD>
697 697  
698 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
699 699  
700 -AT+<CMD>=<value> : Set the value
701 701  
702 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
703 703  
704 704  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
705 705  (% style="color:#037691" %)**General Commands**(%%)      
706 706  
707 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
708 708  
709 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
710 710  
711 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
712 712  
713 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
714 714  
715 -AT+CFG  : Print all configurations
716 716  
717 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
718 718  
719 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
720 720  
721 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
722 722  
723 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
724 724  
725 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
726 726  
727 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
728 728  
729 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
730 730  
731 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
732 732  
733 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
734 734  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
735 735  
736 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
737 737  
738 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
739 739  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
740 740  
741 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
742 742  
743 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
744 744  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
745 745  
746 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
747 747  
748 -AT+CLIENT               : Get or Set MQTT client
749 749  
750 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
751 751  
752 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
753 753  
754 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
755 755  
756 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
757 757  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
758 758  
759 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
760 760  
761 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
762 762  
763 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
764 764  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
765 765  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
766 766  
767 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
768 768  
769 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
770 770  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
771 771  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
772 772  (((
773 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
774 774  )))
775 775  
776 776  (((
777 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
778 778  )))
779 779  
780 780  (((
781 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
782 782  )))
783 783  
969 +(((
970 +
971 +)))
784 784  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
785 785  
786 -== 5.2  Can I calibrate NSE01 to different soil types? ==
977 +(((
978 +
979 +)))
787 787  
788 788  (((
789 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
790 790  )))
791 791  
985 +[[image:image-20220606154726-3.png]]
792 792  
793 -= 6.  Trouble Shooting =
794 794  
795 -== 6.1  ​Connection problem when uploading firmware ==
988 +When you use the TTN network, the US915 frequency bands use are:
796 796  
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
797 797  
798 798  (((
799 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
800 800  )))
801 801  
802 -(% class="wikigeneratedid" %)
803 803  (((
804 804  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
805 805  )))
806 806  
1013 +(((
1014 +
1015 +)))
807 807  
808 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
809 809  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
810 810  (((
811 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
812 812  
813 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
814 814  )))
815 815  
816 816  
817 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
818 818  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
819 819  
820 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
821 821  
822 822  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
823 823  (% class="wikigeneratedid" %)
824 824  (((
825 825  
826 826  )))
827 827  
828 -= 8.  Packing Info =
1087 += 7. Packing Info =
829 829  
830 830  (((
831 831  
832 832  
833 833  (% style="color:#037691" %)**Package Includes**:
1093 +)))
834 834  
835 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
836 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
837 837  )))
838 838  
839 839  (((
... ... @@ -840,19 +840,24 @@
840 840  
841 841  
842 842  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
843 843  
844 -* Size: 195 x 125 x 55 mm
845 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
846 846  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
847 847  
848 -(((
849 849  
850 -
851 -
852 -
853 853  )))
854 854  
855 -= 9.  Support =
1120 += 8. Support =
856 856  
857 857  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
858 858  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content