Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 41 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,23 +12,28 @@ 12 12 13 13 14 14 14 +**Table of Contents:** 15 15 16 + 17 + 18 + 19 + 20 + 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is N DDS75DistanceDetectionSensor ==23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 23 -((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 31 31 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 32 32 33 33 ))) 34 34 ... ... @@ -35,27 +35,28 @@ 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 39 39 40 40 41 41 42 -== 1.2 46 +== 1.2 Features == 43 43 44 44 45 45 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 46 -* Ultra low power consumption 47 -* Distance Detection by Ultrasonic technology 48 -* Flat object range 280mm - 7500mm 49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 -* Cable Length: 25cm 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 55 55 * Micro SIM card slot for NB-IoT SIM 56 56 * 8500mAh Battery for long term use 57 57 58 58 63 + 59 59 == 1.3 Specification == 60 60 61 61 ... ... @@ -64,6 +64,7 @@ 64 64 * Supply Voltage: 2.1v ~~ 3.6v 65 65 * Operating Temperature: -40 ~~ 85°C 66 66 72 + 67 67 (% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 69 * - B1 @H-FDD: 2100MHz ... ... @@ -73,619 +73,719 @@ 73 73 * - B20 @H-FDD: 800MHz 74 74 * - B28 @H-FDD: 700MHz 75 75 76 -(% style="color:#037691" %)**Battery:** 77 77 78 -* Li/SOCI2 un-chargeable battery 79 -* Capacity: 8500mAh 80 -* Self Discharge: <1% / Year @ 25°C 81 -* Max continuously current: 130mA 82 -* Max boost current: 2A, 1 second 83 +(% style="color:#037691" %)**Probe Specification:** 83 83 84 - (%style="color:#037691"%)**PowerConsumption**85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 85 85 86 -* STOP Mode: 10uA @ 3.3v 87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 87 +[[image:image-20220708101224-1.png]] 88 88 89 89 90 90 91 91 == 1.4 Applications == 92 92 93 -* Smart Buildings & Home Automation 94 -* Logistics and Supply Chain Management 95 -* Smart Metering 96 96 * Smart Agriculture 97 -* Smart Cities 98 -* Smart Factory 99 99 100 100 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 101 102 102 103 - 104 - 105 105 == 1.5 Pin Definitions == 106 106 107 107 108 -[[image:1657 328609906-564.png]]101 +[[image:1657246476176-652.png]] 109 109 110 110 111 111 112 -= 2. UseNDDS75to communicatewithIoTServer=105 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 107 +== 2.1 How it works == 115 115 116 116 ((( 117 -The NDDS75isequippedwithaNB-IoT module,thepre-loadedfirmwareinNDDS75willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNDDS75.110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 - 121 121 ((( 122 - Thediagrambelowshows theworkingflowindefaultfirmwaref NDDS75:114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 123 123 ))) 124 124 125 -((( 126 - 127 -))) 128 128 129 -[[image:1657328659945-416.png]] 130 130 131 -((( 132 - 133 -))) 119 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 134 134 121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 135 135 136 -== 2.2 Configure the NDDS75 == 137 137 124 +[[image:1654503992078-669.png]] 138 138 139 -=== 2.2.1 Test Requirement === 140 140 141 -((( 142 -To use NDDS75 in your city, make sure meet below requirements: 143 -))) 127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 144 144 145 -* Your local operator has already distributed a NB-IoT Network there. 146 -* The local NB-IoT network used the band that NSE01 supports. 147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 148 148 149 -((( 150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 151 -))) 130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 152 152 132 +Each LSE01 is shipped with a sticker with the default device EUI as below: 153 153 154 -[[image:16 57328756309-230.png]]134 +[[image:image-20220606163732-6.jpeg]] 155 155 136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 156 156 138 +**Add APP EUI in the application** 157 157 158 -=== 2.2.2 Insert SIM card === 159 159 160 -((( 161 -Insert the NB-IoT Card get from your provider. 162 -))) 141 +[[image:1654504596150-405.png]] 163 163 164 -((( 165 -User need to take out the NB-IoT module and insert the SIM card like below: 166 -))) 167 167 168 168 169 - [[image:1657328884227-504.png]]145 +**Add APP KEY and DEV EUI** 170 170 147 +[[image:1654504683289-357.png]] 171 171 172 172 173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 174 174 175 -((( 176 -((( 177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 178 -))) 179 -))) 151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 180 180 181 -[[image:image-20220709092052-2.png]] 182 182 183 - **Connection:**154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 184 184 185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND156 +[[image:image-20220606163915-7.png]] 186 186 187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 188 188 189 - background-color:yellow" %)USBTTLRXD<~-~-~-~->UART_TXD159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 190 190 161 +[[image:1654504778294-788.png]] 191 191 192 -In the PC, use below serial tool settings: 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 199 199 165 +== 2.3 Uplink Payload == 166 + 167 + 168 +=== 2.3.1 MOD~=0(Default Mode) === 169 + 170 +LSE01 will uplink payload via LoRaWAN with below payload format: 171 + 200 200 ((( 201 - Make sure the switch is in FLASHposition,thenpower ondeviceby connecting the jumper on NDDS75. NDDS75 will output systeminfoonce power onas below,we can enter the (% style="color:green" %)**password:12345678**(%%)to access AT Command input.173 +Uplink payload includes in total 11 bytes. 202 202 ))) 203 203 204 -[[image:1657329814315-101.png]] 176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 +|((( 178 +**Size** 205 205 206 -((( 207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 180 +**(bytes)** 181 +)))|**2**|**2**|**2**|**2**|**2**|**1** 182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 +Temperature 184 + 185 +(Reserve, Ignore now) 186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 187 +MOD & Digital Interrupt 188 + 189 +(Optional) 208 208 ))) 209 209 192 +=== 2.3.2 MOD~=1(Original value) === 210 210 194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 211 211 212 -=== 2.2.4 Use CoAP protocol to uplink data === 196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 197 +|((( 198 +**Size** 213 213 214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 200 +**(bytes)** 201 +)))|**2**|**2**|**2**|**2**|**2**|**1** 202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 203 +Temperature 215 215 205 +(Reserve, Ignore now) 206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 207 +MOD & Digital Interrupt 216 216 217 -**Use below commands:** 209 +(Optional) 210 +))) 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 212 +=== 2.3.3 Battery Info === 222 222 223 -For parameter description, please refer to AT command set 214 +((( 215 +Check the battery voltage for LSE01. 216 +))) 224 224 225 -[[image:1657330452568-615.png]] 218 +((( 219 +Ex1: 0x0B45 = 2885mV 220 +))) 226 226 222 +((( 223 +Ex2: 0x0B49 = 2889mV 224 +))) 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 229 229 230 -[[image:1657330472797-498.png]] 231 231 228 +=== 2.3.4 Soil Moisture === 232 232 230 +((( 231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 232 +))) 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 234 +((( 235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 236 +))) 235 235 238 +((( 239 + 240 +))) 236 236 237 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink238 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 **(%%)~/~/toset UDP server address and port239 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary242 +((( 243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 +))) 240 240 241 -[[image:1657330501006-241.png]] 242 242 243 243 244 - [[image:1657330533775-472.png]]248 +=== 2.3.5 Soil Temperature === 245 245 250 +((( 251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 252 +))) 246 246 254 +((( 255 +**Example**: 256 +))) 247 247 248 -=== 2.2.6 Use MQTT protocol to uplink data === 258 +((( 259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 260 +))) 249 249 262 +((( 263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 264 +))) 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 258 259 -[[image:1657249978444-674.png]] 260 260 268 +=== 2.3.6 Soil Conductivity (EC) === 261 261 262 -[[image:1657330723006-866.png]] 270 +((( 271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 272 +))) 263 263 274 +((( 275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 276 +))) 264 264 265 265 ((( 266 - MQTT protocol has a much higher power consumption comparevs UDP / CoAP protocol. Pleasecheckthepoweranalyzedocumentandadjusttheuplinkperiodtoasuitableinterval.279 +Generally, the EC value of irrigation water is less than 800uS / cm. 267 267 ))) 268 268 282 +((( 283 + 284 +))) 269 269 286 +((( 287 + 288 +))) 270 270 271 -=== 2. 2.7Use TCP protocol to uplink data===290 +=== 2.3.7 MOD === 272 272 292 +Firmware version at least v2.1 supports changing mode. 273 273 274 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 294 +For example, bytes[10]=90 276 276 277 - [[image:image-20220709093918-1.png]]296 +mod=(bytes[10]>>7)&0x01=1. 278 278 279 279 280 - [[image:image-20220709093918-2.png]]299 +**Downlink Command:** 281 281 301 +If payload = 0x0A00, workmode=0 282 282 303 +If** **payload =** **0x0A01, workmode=1 283 283 284 -=== 2.2.8 Change Update Interval === 285 285 286 -User can use below command to change the (% style="color:green" %)**uplink interval**. 287 287 288 - *(%style="color:blue"%)**AT+TDC=600 ** (%%)~/~/ Set UpdateIntervalto600s307 +=== 2.3.8 Decode payload in The Things Network === 289 289 309 +While using TTN network, you can add the payload format to decode the payload. 310 + 311 + 312 +[[image:1654505570700-128.png]] 313 + 290 290 ((( 291 - (%style="color:red"%)**NOTE:**315 +The payload decoder function for TTN is here: 292 292 ))) 293 293 294 294 ((( 295 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 296 296 ))) 297 297 298 298 323 +== 2.4 Uplink Interval == 299 299 300 - ==2.3UplinkPayload ==325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 301 301 302 -In this mode, uplink payload includes in total 14 bytes 303 303 304 304 305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 -|=(% style="width: 60px;" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 329 +== 2.5 Downlink Payload == 310 310 311 -((( 312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 313 -))) 331 +By default, LSE50 prints the downlink payload to console port. 314 314 333 +[[image:image-20220606165544-8.png]] 315 315 316 -[[image:1657331036973-987.png]] 317 317 318 318 ((( 319 - Thepayload is ASCII string, representativesameHEX:337 +(% style="color:blue" %)**Examples:** 320 320 ))) 321 321 322 322 ((( 323 - 0x72403155615900640c6c19029200where:341 + 324 324 ))) 325 325 326 326 * ((( 327 - DeviceID:0x724031556159 = 724031556159345 +(% style="color:blue" %)**Set TDC** 328 328 ))) 329 -* ((( 330 -Version: 0x0064=100=1.0.0 347 + 348 +((( 349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 331 ))) 332 332 333 - *(((334 - BAT: 0x0c6c=3180mV=.180V352 +((( 353 +Payload: 01 00 00 1E TDC=30S 335 335 ))) 336 -* ((( 337 -Signal: 0x19 = 25 355 + 356 +((( 357 +Payload: 01 00 00 3C TDC=60S 338 338 ))) 339 -* ((( 340 -Distance: 0x0292= 658 mm 359 + 360 +((( 361 + 341 341 ))) 363 + 342 342 * ((( 343 - Interrupt:0x00 = 0365 +(% style="color:blue" %)**Reset** 344 344 ))) 345 345 368 +((( 369 +If payload = 0x04FF, it will reset the LSE01 370 +))) 346 346 347 -== 2.4 Payload Explanation and Sensor Interface == 348 348 373 +* (% style="color:blue" %)**CFM** 349 349 350 - ===2.4.1DeviceID===375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 351 351 352 -((( 353 -By default, the Device ID equal to the last 6 bytes of IMEI. 354 -))) 355 355 378 + 379 +== 2.6 Show Data in DataCake IoT Server == 380 + 356 356 ((( 357 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 358 358 ))) 359 359 360 360 ((( 361 - **Example:**386 + 362 362 ))) 363 363 364 364 ((( 365 - AT+DEUI=A84041F15612390 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 366 366 ))) 367 367 368 368 ((( 369 - TheDeviceID is storedinanone-erasearea,Upgradethefirmwareorrun **AT+FDR**won't erase DeviceID.394 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 370 370 ))) 371 371 372 372 398 +[[image:1654505857935-743.png]] 373 373 374 -=== 2.4.2 Version Info === 375 375 376 -((( 377 -Specify the software version: 0x64=100, means firmware version 1.00. 378 -))) 401 +[[image:1654505874829-548.png]] 379 379 380 -((( 381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 382 -))) 383 383 404 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 384 384 406 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 385 385 386 -=== 2.4.3 Battery Info === 387 387 388 -((( 389 -Check the battery voltage for LSE01. 390 -))) 409 +[[image:1654505905236-553.png]] 391 391 392 -((( 393 -Ex1: 0x0B45 = 2885mV 394 -))) 395 395 396 -((( 397 -Ex2: 0x0B49 = 2889mV 398 -))) 412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 399 399 414 +[[image:1654505925508-181.png]] 400 400 401 401 402 -=== 2.4.4 Signal Strength === 403 403 404 -((( 405 -NB-IoT Network signal Strength. 406 -))) 418 +== 2.7 Frequency Plans == 407 407 408 -((( 409 -**Ex1: 0x1d = 29** 410 -))) 420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 412 -((( 413 -(% style="color:blue" %)**0**(%%) -113dBm or less 414 -))) 415 415 416 -((( 417 -(% style="color:blue" %)**1**(%%) -111dBm 418 -))) 423 +=== 2.7.1 EU863-870 (EU868) === 419 419 420 -((( 421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 -))) 425 +(% style="color:#037691" %)** Uplink:** 423 423 424 -((( 425 -(% style="color:blue" %)**31** (%%) -51dBm or greater 426 -))) 427 +868.1 - SF7BW125 to SF12BW125 427 427 428 -((( 429 -(% style="color:blue" %)**99** (%%) Not known or not detectable 430 -))) 429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 431 431 431 +868.5 - SF7BW125 to SF12BW125 432 432 433 +867.1 - SF7BW125 to SF12BW125 433 433 434 - ===2.4.5SoilMoisture ===435 +867.3 - SF7BW125 to SF12BW125 435 435 436 - Get the distance. Flatobjectrange280mm - 7500mm.437 +867.5 - SF7BW125 to SF12BW125 437 437 438 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is439 +867.7 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -((( 442 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 443 -))) 444 -))) 441 +867.9 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 443 +868.8 - FSK 449 449 450 -((( 451 - 452 -))) 453 453 454 - ===2.4.6 DigitalInterrupt===446 +(% style="color:#037691" %)** Downlink:** 455 455 456 -((( 457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 458 -))) 448 +Uplink channels 1-9 (RX1) 459 459 460 -((( 461 -The command is: 462 -))) 450 +869.525 - SF9BW125 (RX2 downlink only) 463 463 464 -((( 465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 -))) 467 467 468 468 469 -((( 470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 -))) 454 +=== 2.7.2 US902-928(US915) === 472 472 456 +Used in USA, Canada and South America. Default use CHE=2 473 473 474 -((( 475 -Example: 476 -))) 458 +(% style="color:#037691" %)**Uplink:** 477 477 478 -((( 479 -0x(00): Normal uplink packet. 480 -))) 460 +903.9 - SF7BW125 to SF10BW125 481 481 482 -((( 483 -0x(01): Interrupt Uplink Packet. 484 -))) 462 +904.1 - SF7BW125 to SF10BW125 485 485 464 +904.3 - SF7BW125 to SF10BW125 486 486 466 +904.5 - SF7BW125 to SF10BW125 487 487 488 - === 2.4.7+5VOutput===468 +904.7 - SF7BW125 to SF10BW125 489 489 490 -((( 491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 492 -))) 470 +904.9 - SF7BW125 to SF10BW125 493 493 472 +905.1 - SF7BW125 to SF10BW125 494 494 495 -((( 496 -The 5V output time can be controlled by AT Command. 497 -))) 474 +905.3 - SF7BW125 to SF10BW125 498 498 499 -((( 500 -(% style="color:blue" %)**AT+5VT=1000** 501 -))) 502 502 503 -((( 504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 505 -))) 477 +(% style="color:#037691" %)**Downlink:** 506 506 479 +923.3 - SF7BW500 to SF12BW500 507 507 481 +923.9 - SF7BW500 to SF12BW500 508 508 509 - ==2.5DownlinkPayload==483 +924.5 - SF7BW500 to SF12BW500 510 510 511 - Bydefault,NDDS75prints the downlinkpayload to console port.485 +925.1 - SF7BW500 to SF12BW500 512 512 513 - [[image:image-20220709100028-1.png]]487 +925.7 - SF7BW500 to SF12BW500 514 514 489 +926.3 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -(% style="color:blue" %)**Examples:** 518 -))) 491 +926.9 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 493 +927.5 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Set TDC** 526 -))) 495 +923.3 - SF12BW500(RX2 downlink only) 527 527 528 -((( 529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 530 -))) 531 531 532 -((( 533 -Payload: 01 00 00 1E TDC=30S 534 -))) 535 535 536 -((( 537 -Payload: 01 00 00 3C TDC=60S 538 -))) 499 +=== 2.7.3 CN470-510 (CN470) === 539 539 540 -((( 541 - 542 -))) 501 +Used in China, Default use CHE=1 543 543 544 -* ((( 545 -(% style="color:blue" %)**Reset** 546 -))) 503 +(% style="color:#037691" %)**Uplink:** 547 547 548 -((( 549 -If payload = 0x04FF, it will reset the NDDS75 550 -))) 505 +486.3 - SF7BW125 to SF12BW125 551 551 507 +486.5 - SF7BW125 to SF12BW125 552 552 553 - *(%style="color:blue"%)**INTMOD**509 +486.7 - SF7BW125 to SF12BW125 554 554 555 -((( 556 -Downlink Payload: 06000003, Set AT+INTMOD=3 557 -))) 511 +486.9 - SF7BW125 to SF12BW125 558 558 513 +487.1 - SF7BW125 to SF12BW125 559 559 515 +487.3 - SF7BW125 to SF12BW125 560 560 561 - == 2.6LEDIndicator==517 +487.5 - SF7BW125 to SF12BW125 562 562 519 +487.7 - SF7BW125 to SF12BW125 563 563 564 -The NDDS75 has an internal LED which is to show the status of different state. 565 565 522 +(% style="color:#037691" %)**Downlink:** 566 566 567 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 568 -* Then the LED will be on for 1 second means device is boot normally. 569 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 570 -* For each uplink probe, LED will be on for 500ms. 524 +506.7 - SF7BW125 to SF12BW125 571 571 572 -((( 573 - 574 -))) 526 +506.9 - SF7BW125 to SF12BW125 575 575 528 +507.1 - SF7BW125 to SF12BW125 576 576 530 +507.3 - SF7BW125 to SF12BW125 577 577 578 - == 2.7InstallationinSoil ==532 +507.5 - SF7BW125 to SF12BW125 579 579 580 - __**Measurementthesoilsurface**__534 +507.7 - SF7BW125 to SF12BW125 581 581 582 -((( 583 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 584 -))) 536 +507.9 - SF7BW125 to SF12BW125 585 585 586 - [[image:1657259653666-883.png]]538 +508.1 - SF7BW125 to SF12BW125 587 587 540 +505.3 - SF12BW125 (RX2 downlink only) 588 588 589 -((( 590 - 591 591 592 -((( 593 -Dig a hole with diameter > 20CM. 594 -))) 595 595 596 -((( 597 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 598 -))) 599 -))) 544 +=== 2.7.4 AU915-928(AU915) === 600 600 601 - [[image:1654506665940-119.png]]546 +Default use CHE=2 602 602 603 -((( 604 - 605 -))) 548 +(% style="color:#037691" %)**Uplink:** 606 606 550 +916.8 - SF7BW125 to SF12BW125 607 607 608 - == 2.8FirmwareChange Log==552 +917.0 - SF7BW125 to SF12BW125 609 609 554 +917.2 - SF7BW125 to SF12BW125 610 610 611 - DownloadURL&FirmwareChange log556 +917.4 - SF7BW125 to SF12BW125 612 612 613 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]558 +917.6 - SF7BW125 to SF12BW125 614 614 560 +917.8 - SF7BW125 to SF12BW125 615 615 616 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]562 +918.0 - SF7BW125 to SF12BW125 617 617 564 +918.2 - SF7BW125 to SF12BW125 618 618 619 619 620 - ==2.9 BatteryAnalysis ==567 +(% style="color:#037691" %)**Downlink:** 621 621 622 - ===2.9.1BatteryType ===569 +923.3 - SF7BW500 to SF12BW500 623 623 571 +923.9 - SF7BW500 to SF12BW500 624 624 573 +924.5 - SF7BW500 to SF12BW500 574 + 575 +925.1 - SF7BW500 to SF12BW500 576 + 577 +925.7 - SF7BW500 to SF12BW500 578 + 579 +926.3 - SF7BW500 to SF12BW500 580 + 581 +926.9 - SF7BW500 to SF12BW500 582 + 583 +927.5 - SF7BW500 to SF12BW500 584 + 585 +923.3 - SF12BW500(RX2 downlink only) 586 + 587 + 588 + 589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 590 + 591 +(% style="color:#037691" %)**Default Uplink channel:** 592 + 593 +923.2 - SF7BW125 to SF10BW125 594 + 595 +923.4 - SF7BW125 to SF10BW125 596 + 597 + 598 +(% style="color:#037691" %)**Additional Uplink Channel**: 599 + 600 +(OTAA mode, channel added by JoinAccept message) 601 + 602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 603 + 604 +922.2 - SF7BW125 to SF10BW125 605 + 606 +922.4 - SF7BW125 to SF10BW125 607 + 608 +922.6 - SF7BW125 to SF10BW125 609 + 610 +922.8 - SF7BW125 to SF10BW125 611 + 612 +923.0 - SF7BW125 to SF10BW125 613 + 614 +922.0 - SF7BW125 to SF10BW125 615 + 616 + 617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 618 + 619 +923.6 - SF7BW125 to SF10BW125 620 + 621 +923.8 - SF7BW125 to SF10BW125 622 + 623 +924.0 - SF7BW125 to SF10BW125 624 + 625 +924.2 - SF7BW125 to SF10BW125 626 + 627 +924.4 - SF7BW125 to SF10BW125 628 + 629 +924.6 - SF7BW125 to SF10BW125 630 + 631 + 632 +(% style="color:#037691" %)** Downlink:** 633 + 634 +Uplink channels 1-8 (RX1) 635 + 636 +923.2 - SF10BW125 (RX2) 637 + 638 + 639 + 640 +=== 2.7.6 KR920-923 (KR920) === 641 + 642 +Default channel: 643 + 644 +922.1 - SF7BW125 to SF12BW125 645 + 646 +922.3 - SF7BW125 to SF12BW125 647 + 648 +922.5 - SF7BW125 to SF12BW125 649 + 650 + 651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 652 + 653 +922.1 - SF7BW125 to SF12BW125 654 + 655 +922.3 - SF7BW125 to SF12BW125 656 + 657 +922.5 - SF7BW125 to SF12BW125 658 + 659 +922.7 - SF7BW125 to SF12BW125 660 + 661 +922.9 - SF7BW125 to SF12BW125 662 + 663 +923.1 - SF7BW125 to SF12BW125 664 + 665 +923.3 - SF7BW125 to SF12BW125 666 + 667 + 668 +(% style="color:#037691" %)**Downlink:** 669 + 670 +Uplink channels 1-7(RX1) 671 + 672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 673 + 674 + 675 + 676 +=== 2.7.7 IN865-867 (IN865) === 677 + 678 +(% style="color:#037691" %)** Uplink:** 679 + 680 +865.0625 - SF7BW125 to SF12BW125 681 + 682 +865.4025 - SF7BW125 to SF12BW125 683 + 684 +865.9850 - SF7BW125 to SF12BW125 685 + 686 + 687 +(% style="color:#037691" %) **Downlink:** 688 + 689 +Uplink channels 1-3 (RX1) 690 + 691 +866.550 - SF10BW125 (RX2) 692 + 693 + 694 + 695 + 696 +== 2.8 LED Indicator == 697 + 698 +The LSE01 has an internal LED which is to show the status of different state. 699 + 700 +* Blink once when device power on. 701 +* Solid ON for 5 seconds once device successful Join the network. 702 +* Blink once when device transmit a packet. 703 + 704 +== 2.9 Installation in Soil == 705 + 706 +**Measurement the soil surface** 707 + 708 + 709 +[[image:1654506634463-199.png]] 710 + 625 625 ((( 626 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 712 +((( 713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 627 627 ))) 715 +))) 628 628 629 629 718 + 719 +[[image:1654506665940-119.png]] 720 + 630 630 ((( 631 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.722 +Dig a hole with diameter > 20CM. 632 632 ))) 633 633 725 +((( 726 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 727 +))) 634 634 729 + 730 +== 2.10 Firmware Change Log == 731 + 635 635 ((( 636 - The battery relateddocumentsasbelow:733 +**Firmware download link:** 637 637 ))) 638 638 639 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]640 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]641 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]736 +((( 737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 738 +))) 642 642 643 643 ((( 644 - [[image:image-20220708140453-6.png]]741 + 645 645 ))) 646 646 744 +((( 745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 746 +))) 647 647 748 +((( 749 + 750 +))) 648 648 649 -=== 2.9.2 Power consumption Analyze === 752 +((( 753 +**V1.0.** 754 +))) 650 650 651 651 ((( 652 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.757 +Release 653 653 ))) 654 654 655 655 761 +== 2.11 Battery Analysis == 762 + 763 +=== 2.11.1 Battery Type === 764 + 656 656 ((( 657 - Instruction touse as below:766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 658 ))) 659 659 660 660 ((( 661 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]770 +The battery is designed to last for more than 5 years for the LSN50. 662 662 ))) 663 663 664 - 665 665 ((( 666 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 774 +((( 775 +The battery-related documents are as below: 667 667 ))) 777 +))) 668 668 669 669 * ((( 670 - Product Model780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 671 671 ))) 672 672 * ((( 673 - UplinkInterval783 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 674 674 ))) 675 675 * ((( 676 - WorkingMode786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 677 677 ))) 678 678 679 -((( 680 -And the Life expectation in difference case will be shown on the right. 681 -))) 789 + [[image:image-20220610172436-1.png]] 682 682 683 -[[image:image-20220708141352-7.jpeg]] 684 684 685 685 793 +=== 2.11.2 Battery Note === 686 686 687 -=== 2.9.3 Battery Note === 688 - 689 689 ((( 690 690 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 691 691 ))) ... ... @@ -692,176 +692,302 @@ 692 692 693 693 694 694 695 -=== 2. 9.4Replace the battery ===801 +=== 2.11.3 Replace the battery === 696 696 697 697 ((( 698 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).804 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 699 699 ))) 700 700 701 - 702 - 703 -= 3. Access NB-IoT Module = 704 - 705 705 ((( 706 - Userscan directly accesstheATcommand set of theNB-IoTmodule.808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 707 707 ))) 708 708 709 709 ((( 710 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 711 711 ))) 712 712 713 -[[image:1657261278785-153.png]] 714 714 715 715 817 += 3. Using the AT Commands = 716 716 717 -= 4.UsingtheAT Commands =819 +== 3.1 Access AT Commands == 718 718 719 -== 4.1 Access AT Commands == 720 720 721 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 722 722 824 +[[image:1654501986557-872.png||height="391" width="800"]] 723 723 724 -AT+<CMD>? : Help on <CMD> 725 725 726 - AT+<CMD>: Run<CMD>827 +Or if you have below board, use below connection: 727 727 728 -AT+<CMD>=<value> : Set the value 729 729 730 - AT+<CMD>=?:Get the value830 +[[image:1654502005655-729.png||height="503" width="801"]] 731 731 732 732 833 + 834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 835 + 836 + 837 + [[image:1654502050864-459.png||height="564" width="806"]] 838 + 839 + 840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 841 + 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 846 + 847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 848 + 849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 850 + 851 + 733 733 (% style="color:#037691" %)**General Commands**(%%) 734 734 735 -AT 854 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 736 736 737 -AT? 856 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 738 738 739 -ATZ 858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 740 740 741 -AT+TDC 860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 742 742 743 -AT+CFG : Print all configurations 744 744 745 - AT+CFGMOD: Workingmode selection863 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 746 746 747 -AT+I NTMOD:Setthe trigger interruptmode865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 748 748 749 -AT+ 5VTSetextend the timeof5V power867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 750 750 751 -AT+P ROChooseagreement869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 752 752 753 -AT+ WEIGREGet weightorsetweight to 0871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 754 754 755 -AT+ WEIGAPGet or SettheGapValue of weight873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 756 756 757 -AT+ RXDL: Extendthe sendingandreceivingtime875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 758 758 759 -AT+ CNTFACGettcountingparameters877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 760 760 761 -AT+ SERVADDR:ServerAddress879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 762 762 881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 763 763 764 -(% style="color:# 037691" %)**COAPManagement**883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 765 765 766 -AT+ URIsourceparameters885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 767 767 887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 768 768 769 -(% style="color:# 037691" %)**UDPManagement**889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 770 770 771 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 772 772 893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 773 773 774 -(% style="color:# 037691" %)**MQTTManagement**895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 775 775 776 -AT+CLIENT : Get or Set MQTT client 777 777 778 - AT+UNAMEGetSetMQTT Username898 +(% style="color:#037691" %)**LoRa Network Management** 779 779 780 -AT+ PWDGetor SetMQTT password900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 781 781 782 -AT+ PUBTOPICGetorSetMQTTpublishtopic902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 783 783 784 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 785 785 906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 786 786 787 -(% style="color:# 037691" %)**Information**908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 788 788 789 -AT+F DRctoryDataReset910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 790 790 791 -AT+ PWORDSerialAccessPassword912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 792 792 914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 793 793 916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 794 794 795 -= 5.FAQ=918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 796 796 797 -= =5.1HowtoUpgradeFirmware==920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 798 798 922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 799 799 924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 929 + 930 + 931 +(% style="color:#037691" %)**Information** 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 944 + 945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 946 + 947 + 948 += 4. FAQ = 949 + 950 +== 4.1 How to change the LoRa Frequency Bands/Region? == 951 + 800 800 ((( 801 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 954 +When downloading the images, choose the required image file for download. 802 802 ))) 803 803 804 804 ((( 805 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]958 + 806 806 ))) 807 807 808 808 ((( 809 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 810 810 ))) 811 811 965 +((( 966 + 967 +))) 812 812 969 +((( 970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 971 +))) 813 813 814 -== 5.2 Can I calibrate NSE01 to different soil types? == 973 +((( 974 + 975 +))) 815 815 816 816 ((( 817 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 818 818 ))) 819 819 981 +[[image:image-20220606154726-3.png]] 820 820 821 -= 6. Trouble Shooting = 822 822 823 - ==6.1 Connection problemwhenuploadingfirmware==984 +When you use the TTN network, the US915 frequency bands use are: 824 824 986 +* 903.9 - SF7BW125 to SF10BW125 987 +* 904.1 - SF7BW125 to SF10BW125 988 +* 904.3 - SF7BW125 to SF10BW125 989 +* 904.5 - SF7BW125 to SF10BW125 990 +* 904.7 - SF7BW125 to SF10BW125 991 +* 904.9 - SF7BW125 to SF10BW125 992 +* 905.1 - SF7BW125 to SF10BW125 993 +* 905.3 - SF7BW125 to SF10BW125 994 +* 904.6 - SF8BW500 825 825 826 826 ((( 827 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 998 + 999 +* (% style="color:#037691" %)**AT+CHE=2** 1000 +* (% style="color:#037691" %)**ATZ** 828 828 ))) 829 829 830 -(% class="wikigeneratedid" %) 831 831 ((( 832 832 1005 + 1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 833 833 ))) 834 834 1009 +((( 1010 + 1011 +))) 835 835 836 -== 6.2 AT Command input doesn't work == 1013 +((( 1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1015 +))) 837 837 1017 +[[image:image-20220606154825-4.png]] 1018 + 1019 + 1020 +== 4.2 Can I calibrate LSE01 to different soil types? == 1021 + 1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1023 + 1024 + 1025 += 5. Trouble Shooting = 1026 + 1027 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1028 + 1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1030 + 1031 + 1032 +== 5.2 AT Command input doesn't work == 1033 + 838 838 ((( 839 839 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1036 +))) 840 840 841 - 1038 + 1039 +== 5.3 Device rejoin in at the second uplink packet == 1040 + 1041 +(% style="color:#4f81bd" %)**Issue describe as below:** 1042 + 1043 +[[image:1654500909990-784.png]] 1044 + 1045 + 1046 +(% style="color:#4f81bd" %)**Cause for this issue:** 1047 + 1048 +((( 1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 842 842 ))) 843 843 844 844 845 - =7. OrderInfo=1053 +(% style="color:#4f81bd" %)**Solution: ** 846 846 1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 847 847 848 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1057 +[[image:1654500929571-736.png||height="458" width="832"]] 849 849 850 850 1060 += 6. Order Info = 1061 + 1062 + 1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1064 + 1065 + 1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1067 + 1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1074 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1076 + 1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1078 + 1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1081 + 851 851 (% class="wikigeneratedid" %) 852 852 ((( 853 853 854 854 ))) 855 855 856 -= 8.1087 += 7. Packing Info = 857 857 858 858 ((( 859 859 860 860 861 861 (% style="color:#037691" %)**Package Includes**: 1093 +))) 862 862 863 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1864 - *Externalantennax 11095 +* ((( 1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 865 865 ))) 866 866 867 867 ((( ... ... @@ -868,19 +868,24 @@ 868 868 869 869 870 870 (% style="color:#037691" %)**Dimension and weight**: 1103 +))) 871 871 872 -* Size: 195 x 125 x 55 mm873 - * Weight:420g1105 +* ((( 1106 +Device Size: cm 874 874 ))) 1108 +* ((( 1109 +Device Weight: g 1110 +))) 1111 +* ((( 1112 +Package Size / pcs : cm 1113 +))) 1114 +* ((( 1115 +Weight / pcs : g 875 875 876 -((( 877 877 878 - 879 - 880 - 881 881 ))) 882 882 883 -= 9.1120 += 8. Support = 884 884 885 885 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 886 886 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content