Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 92.2
edited by Xiaoling
on 2022/07/09 10:02
Change comment: There is no comment for this version
To version 32.9
edited by Xiaoling
on 2022/06/07 11:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,691 +1,726 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
12 12  
13 13  
15 += 1. Introduction =
14 14  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
16 -= 1.  Introduction =
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
19 19  
20 20  (((
21 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
22 22  
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
30 30  )))
31 31  
32 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 33  )))
34 34  
39 +
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
43 +[[image:1654503265560-120.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
43 43  
44 -
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
57 57  
61 +== 1.3 Specification ==
58 58  
59 -== 1.3  Specification ==
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
65 +[[image:image-20220606162220-5.png]]
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
64 -* Supply Voltage: 2.1v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**NB-IoT Spec:**
69 +== ​1.4 Applications ==
68 68  
69 -* - B1 @H-FDD: 2100MHz
70 -* - B3 @H-FDD: 1800MHz
71 -* - B8 @H-FDD: 900MHz
72 -* - B5 @H-FDD: 850MHz
73 -* - B20 @H-FDD: 800MHz
74 -* - B28 @H-FDD: 700MHz
71 +* Smart Agriculture
75 75  
76 -(% style="color:#037691" %)**Battery:**
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
76 +== 1.5 Firmware Change log ==
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
79 +**LSE01 v1.0 :**  Release
88 88  
89 89  
90 90  
91 -== ​1. Applications ==
83 += 2. Configure LSE01 to connect to LoRaWAN network =
92 92  
93 -* Smart Buildings & Home Automation
94 -* Logistics and Supply Chain Management
95 -* Smart Metering
96 -* Smart Agriculture
97 -* Smart Cities
98 -* Smart Factory
85 +== 2.1 How it works ==
99 99  
100 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
101 -​
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
102 102  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
103 103  
104 104  
105 -== 1.5  Pin Definitions ==
106 106  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
107 107  
108 -[[image:1657328609906-564.png]]
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 109  
110 110  
102 +[[image:1654503992078-669.png]]
111 111  
112 -= 2.  Use NDDS75 to communicate with IoT Server =
113 113  
114 -== 2.1  How it works ==
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
115 115  
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
116 116  (((
117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
153 +Uplink payload includes in total 11 bytes.
118 118  )))
119 119  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
120 120  
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
170 +)))
171 +
172 +
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
198 +Check the battery voltage for LSE01.
199 +
200 +Ex1: 0x0B45 = 2885mV
201 +
202 +Ex2: 0x0B49 = 2889mV
203 +
204 +
205 +
206 +=== 2.3.4 Soil Moisture ===
207 +
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 +
210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
211 +
212 +
213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214 +
215 +
216 +
217 +=== 2.3.5 Soil Temperature ===
218 +
219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220 +
221 +**Example**:
222 +
223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224 +
225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 +
227 +
228 +
229 +=== 2.3.6 Soil Conductivity (EC) ===
230 +
121 121  (((
122 -The diagram below shows the working flow in default firmware of NDDS75:
232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
123 123  )))
124 124  
125 125  (((
126 -
236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
127 127  )))
128 128  
129 -[[image:1657328659945-416.png]]
239 +(((
240 +Generally, the EC value of irrigation water is less than 800uS / cm.
241 +)))
130 130  
131 131  (((
132 132  
133 133  )))
134 134  
247 +(((
248 +
249 +)))
135 135  
136 -== 2.2 ​ Configure the NDDS75 ==
251 +=== 2.3.7 MOD ===
137 137  
253 +Firmware version at least v2.1 supports changing mode.
138 138  
139 -=== 2.2.1 Test Requirement ===
255 +For example, bytes[10]=90
140 140  
141 -(((
142 -To use NDDS75 in your city, make sure meet below requirements:
143 -)))
257 +mod=(bytes[10]>>7)&0x01=1.
144 144  
145 -* Your local operator has already distributed a NB-IoT Network there.
146 -* The local NB-IoT network used the band that NSE01 supports.
147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
148 148  
149 -(((
150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
151 -)))
260 +**Downlink Command:**
152 152  
262 +If payload = 0x0A00, workmode=0
153 153  
154 -[[image:1657328756309-230.png]]
264 +If** **payload =** **0x0A01, workmode=1
155 155  
156 156  
157 157  
158 -=== 2.2.2 Insert SIM card ===
268 +=== 2.3.8 ​Decode payload in The Things Network ===
159 159  
160 -(((
161 -Insert the NB-IoT Card get from your provider.
162 -)))
270 +While using TTN network, you can add the payload format to decode the payload.
163 163  
164 -(((
165 -User need to take out the NB-IoT module and insert the SIM card like below:
166 -)))
167 167  
273 +[[image:1654505570700-128.png]]
168 168  
169 -[[image:1657328884227-504.png]]
275 +The payload decoder function for TTN is here:
170 170  
277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
171 171  
172 172  
173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
174 174  
175 -(((
176 -(((
177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
178 -)))
179 -)))
281 +== 2.4 Uplink Interval ==
180 180  
181 -[[image:image-20220709092052-2.png]]
283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
182 182  
183 -**Connection:**
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
287 +== 2.5 Downlink Payload ==
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
289 +By default, LSE50 prints the downlink payload to console port.
190 190  
291 +[[image:image-20220606165544-8.png]]
191 191  
192 -In the PC, use below serial tool settings:
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
294 +**Examples:**
199 199  
200 -(((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
202 -)))
203 203  
204 -[[image:1657329814315-101.png]]
297 +* **Set TDC**
205 205  
206 -(((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
208 -)))
299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
209 209  
301 +Payload:    01 00 00 1E    TDC=30S
210 210  
303 +Payload:    01 00 00 3C    TDC=60S
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
306 +* **Reset**
215 215  
308 +If payload = 0x04FF, it will reset the LSE01
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
311 +* **CFM**
222 222  
223 -For parameter description, please refer to AT command set
313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
224 224  
225 -[[image:1657330452568-615.png]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
317 +== 2.6 ​Show Data in DataCake IoT Server ==
229 229  
230 -[[image:1657330472797-498.png]]
319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
231 231  
232 232  
322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
235 235  
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
327 +[[image:1654505857935-743.png]]
240 240  
241 -[[image:1657330501006-241.png]]
242 242  
330 +[[image:1654505874829-548.png]]
243 243  
244 -[[image:1657330533775-472.png]]
332 +Step 3: Create an account or log in Datacake.
245 245  
334 +Step 4: Search the LSE01 and add DevEUI.
246 246  
247 247  
248 -=== 2.2.6 Use MQTT protocol to uplink data ===
337 +[[image:1654505905236-553.png]]
249 249  
250 250  
251 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
257 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
258 258  
259 -[[image:1657249978444-674.png]]
342 +[[image:1654505925508-181.png]]
260 260  
261 261  
262 -[[image:1657330723006-866.png]]
263 263  
346 +== 2.7 Frequency Plans ==
264 264  
265 -(((
266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 -)))
348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
268 268  
269 269  
351 +=== 2.7.1 EU863-870 (EU868) ===
270 270  
271 -=== 2.2.7 Use TCP protocol to uplink data ===
353 +(% style="color:#037691" %)** Uplink:**
272 272  
355 +868.1 - SF7BW125 to SF12BW125
273 273  
274 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
276 276  
277 -[[image:image-20220709093918-1.png]]
359 +868.5 - SF7BW125 to SF12BW125
278 278  
361 +867.1 - SF7BW125 to SF12BW125
279 279  
280 -[[image:image-20220709093918-2.png]]
363 +867.3 - SF7BW125 to SF12BW125
281 281  
365 +867.5 - SF7BW125 to SF12BW125
282 282  
367 +867.7 - SF7BW125 to SF12BW125
283 283  
284 -=== 2.2.8 Change Update Interval ===
369 +867.9 - SF7BW125 to SF12BW125
285 285  
286 -User can use below command to change the (% style="color:green" %)**uplink interval**.
371 +868.8 - FSK
287 287  
288 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
289 289  
290 -(((
291 -(% style="color:red" %)**NOTE:**
292 -)))
374 +(% style="color:#037691" %)** Downlink:**
293 293  
294 -(((
295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 -)))
376 +Uplink channels 1-9 (RX1)
297 297  
378 +869.525 - SF9BW125 (RX2 downlink only)
298 298  
299 299  
300 -== 2.3  Uplink Payload ==
301 301  
302 -In this mode, uplink payload includes in total 14 bytes
382 +=== 2.7.2 US902-928(US915) ===
303 303  
384 +Used in USA, Canada and South America. Default use CHE=2
304 304  
305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 -|=(% style="width: 60px;" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
386 +(% style="color:#037691" %)**Uplink:**
310 310  
311 -(((
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
313 -)))
388 +903.9 - SF7BW125 to SF10BW125
314 314  
390 +904.1 - SF7BW125 to SF10BW125
315 315  
316 -[[image:1657331036973-987.png]]
392 +904.3 - SF7BW125 to SF10BW125
317 317  
318 -(((
319 -The payload is ASCII string, representative same HEX:
320 -)))
394 +904.5 - SF7BW125 to SF10BW125
321 321  
322 -(((
323 -0x72403155615900640c6c19029200 where:
324 -)))
396 +904.7 - SF7BW125 to SF10BW125
325 325  
326 -* (((
327 -Device ID: 0x724031556159 = 724031556159
328 -)))
329 -* (((
330 -Version: 0x0064=100=1.0.0
331 -)))
398 +904.9 - SF7BW125 to SF10BW125
332 332  
333 -* (((
334 -BAT: 0x0c6c = 3180 mV = 3.180V
335 -)))
336 -* (((
337 -Signal: 0x19 = 25
338 -)))
339 -* (((
340 -Distance: 0x0292= 658 mm
341 -)))
342 -* (((
343 -Interrupt: 0x00 = 0
344 -)))
400 +905.1 - SF7BW125 to SF10BW125
345 345  
402 +905.3 - SF7BW125 to SF10BW125
346 346  
347 -== 2.4  Payload Explanation and Sensor Interface ==
348 348  
405 +(% style="color:#037691" %)**Downlink:**
349 349  
350 -=== 2.4.1  Device ID ===
407 +923.3 - SF7BW500 to SF12BW500
351 351  
352 -(((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
354 -)))
409 +923.9 - SF7BW500 to SF12BW500
355 355  
356 -(((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
358 -)))
411 +924.5 - SF7BW500 to SF12BW500
359 359  
360 -(((
361 -**Example:**
362 -)))
413 +925.1 - SF7BW500 to SF12BW500
363 363  
364 -(((
365 -AT+DEUI=A84041F15612
366 -)))
415 +925.7 - SF7BW500 to SF12BW500
367 367  
368 -(((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
370 -)))
417 +926.3 - SF7BW500 to SF12BW500
371 371  
419 +926.9 - SF7BW500 to SF12BW500
372 372  
421 +927.5 - SF7BW500 to SF12BW500
373 373  
374 -=== 2.4.2  Version Info ===
423 +923.3 - SF12BW500(RX2 downlink only)
375 375  
376 -(((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
378 -)))
379 379  
380 -(((
381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 -)))
383 383  
427 +=== 2.7.3 CN470-510 (CN470) ===
384 384  
429 +Used in China, Default use CHE=1
385 385  
386 -=== 2.4.3  Battery Info ===
431 +(% style="color:#037691" %)**Uplink:**
387 387  
388 -(((
389 -Check the battery voltage for LSE01.
390 -)))
433 +486.3 - SF7BW125 to SF12BW125
391 391  
392 -(((
393 -Ex1: 0x0B45 = 2885mV
394 -)))
435 +486.5 - SF7BW125 to SF12BW125
395 395  
396 -(((
397 -Ex2: 0x0B49 = 2889mV
398 -)))
437 +486.7 - SF7BW125 to SF12BW125
399 399  
439 +486.9 - SF7BW125 to SF12BW125
400 400  
441 +487.1 - SF7BW125 to SF12BW125
401 401  
402 -=== 2.4. Signal Strength ===
443 +487.3 - SF7BW125 to SF12BW125
403 403  
404 -(((
405 -NB-IoT Network signal Strength.
406 -)))
445 +487.5 - SF7BW125 to SF12BW125
407 407  
408 -(((
409 -**Ex1: 0x1d = 29**
410 -)))
447 +487.7 - SF7BW125 to SF12BW125
411 411  
412 -(((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
414 -)))
415 415  
416 -(((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
418 -)))
450 +(% style="color:#037691" %)**Downlink:**
419 419  
420 -(((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 -)))
452 +506.7 - SF7BW125 to SF12BW125
423 423  
424 -(((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 -)))
454 +506.9 - SF7BW125 to SF12BW125
427 427  
428 -(((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 -)))
456 +507.1 - SF7BW125 to SF12BW125
431 431  
458 +507.3 - SF7BW125 to SF12BW125
432 432  
460 +507.5 - SF7BW125 to SF12BW125
433 433  
434 -=== 2.4.5  Soil Moisture ===
462 +507.7 - SF7BW125 to SF12BW125
435 435  
436 -Get the distance. Flat object range 280mm - 7500mm.
464 +507.9 - SF7BW125 to SF12BW125
437 437  
438 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
466 +508.1 - SF7BW125 to SF12BW125
439 439  
440 -(((
441 -(((
442 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
443 -)))
444 -)))
468 +505.3 - SF12BW125 (RX2 downlink only)
445 445  
446 -(((
447 -
448 -)))
449 449  
450 -(((
451 -
452 -)))
453 453  
454 -=== 2.4. Digital Interrupt ===
472 +=== 2.7.4 AU915-928(AU915) ===
455 455  
456 -(((
457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 -)))
474 +Default use CHE=2
459 459  
460 -(((
461 -The command is:
462 -)))
476 +(% style="color:#037691" %)**Uplink:**
463 463  
464 -(((
465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 -)))
478 +916.8 - SF7BW125 to SF12BW125
467 467  
480 +917.0 - SF7BW125 to SF12BW125
468 468  
469 -(((
470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 -)))
482 +917.2 - SF7BW125 to SF12BW125
472 472  
484 +917.4 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -Example:
476 -)))
486 +917.6 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -0x(00): Normal uplink packet.
480 -)))
488 +917.8 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -0x(01): Interrupt Uplink Packet.
484 -)))
490 +918.0 - SF7BW125 to SF12BW125
485 485  
492 +918.2 - SF7BW125 to SF12BW125
486 486  
487 487  
488 -=== 2.4.7  ​+5V Output ===
495 +(% style="color:#037691" %)**Downlink:**
489 489  
490 -(((
491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 -)))
497 +923.3 - SF7BW500 to SF12BW500
493 493  
499 +923.9 - SF7BW500 to SF12BW500
494 494  
495 -(((
496 -The 5V output time can be controlled by AT Command.
497 -)))
501 +924.5 - SF7BW500 to SF12BW500
498 498  
499 -(((
500 -(% style="color:blue" %)**AT+5VT=1000**
501 -)))
503 +925.1 - SF7BW500 to SF12BW500
502 502  
503 -(((
504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 -)))
505 +925.7 - SF7BW500 to SF12BW500
506 506  
507 +926.3 - SF7BW500 to SF12BW500
507 507  
509 +926.9 - SF7BW500 to SF12BW500
508 508  
509 -== 2.5  Downlink Payload ==
511 +927.5 - SF7BW500 to SF12BW500
510 510  
511 -By default, NDDS75 prints the downlink payload to console port.
513 +923.3 - SF12BW500(RX2 downlink only)
512 512  
513 -[[image:image-20220709100028-1.png]]
514 514  
515 515  
516 -(((
517 -(% style="color:blue" %)**Examples:**
518 -)))
517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
519 519  
520 -(((
521 -
522 -)))
519 +(% style="color:#037691" %)**Default Uplink channel:**
523 523  
524 -* (((
525 -(% style="color:blue" %)**Set TDC**
526 -)))
521 +923.2 - SF7BW125 to SF10BW125
527 527  
528 -(((
529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 -)))
523 +923.4 - SF7BW125 to SF10BW125
531 531  
532 -(((
533 -Payload:    01 00 00 1E    TDC=30S
534 -)))
535 535  
536 -(((
537 -Payload:    01 00 00 3C    TDC=60S
538 -)))
526 +(% style="color:#037691" %)**Additional Uplink Channel**:
539 539  
540 -(((
541 -
542 -)))
528 +(OTAA mode, channel added by JoinAccept message)
543 543  
544 -* (((
545 -(% style="color:blue" %)**Reset**
546 -)))
530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
547 547  
548 -(((
549 -If payload = 0x04FF, it will reset the NDDS75
550 -)))
532 +922.2 - SF7BW125 to SF10BW125
551 551  
534 +922.4 - SF7BW125 to SF10BW125
552 552  
553 -* (% style="color:blue" %)**INTMOD**
536 +922.6 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -Downlink Payload: 06000003, Set AT+INTMOD=3
557 -)))
538 +922.8 - SF7BW125 to SF10BW125
558 558  
540 +923.0 - SF7BW125 to SF10BW125
559 559  
542 +922.0 - SF7BW125 to SF10BW125
560 560  
561 -== 2.6  ​LED Indicator ==
562 562  
545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
563 563  
564 -The NDDS75 has an internal LED which is to show the status of different state.
547 +923.6 - SF7BW125 to SF10BW125
565 565  
549 +923.8 - SF7BW125 to SF10BW125
566 566  
567 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 -* Then the LED will be on for 1 second means device is boot normally.
569 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
570 -* For each uplink probe, LED will be on for 500ms.
551 +924.0 - SF7BW125 to SF10BW125
571 571  
572 -(((
573 -
574 -)))
553 +924.2 - SF7BW125 to SF10BW125
575 575  
555 +924.4 - SF7BW125 to SF10BW125
576 576  
557 +924.6 - SF7BW125 to SF10BW125
577 577  
578 -== 2.7  Installation in Soil ==
579 579  
580 -__**Measurement the soil surface**__
560 +(% style="color:#037691" %)** Downlink:**
581 581  
582 -(((
583 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
584 -)))
562 +Uplink channels 1-8 (RX1)
585 585  
586 -[[image:1657259653666-883.png]]
564 +923.2 - SF10BW125 (RX2)
587 587  
588 588  
589 -(((
590 -
591 591  
592 -(((
593 -Dig a hole with diameter > 20CM.
594 -)))
568 +=== 2.7.6 KR920-923 (KR920) ===
595 595  
596 -(((
597 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
598 -)))
599 -)))
570 +Default channel:
600 600  
601 -[[image:1654506665940-119.png]]
572 +922.1 - SF7BW125 to SF12BW125
602 602  
603 -(((
604 -
605 -)))
574 +922.3 - SF7BW125 to SF12BW125
606 606  
576 +922.5 - SF7BW125 to SF12BW125
607 607  
608 -== 2.8  ​Firmware Change Log ==
609 609  
579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
610 610  
611 -Download URL & Firmware Change log
581 +922.1 - SF7BW125 to SF12BW125
612 612  
613 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
583 +922.3 - SF7BW125 to SF12BW125
614 614  
585 +922.5 - SF7BW125 to SF12BW125
615 615  
616 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
587 +922.7 - SF7BW125 to SF12BW125
617 617  
589 +922.9 - SF7BW125 to SF12BW125
618 618  
591 +923.1 - SF7BW125 to SF12BW125
619 619  
620 -== 2. Battery Analysis ==
593 +923.3 - SF7BW125 to SF12BW125
621 621  
622 -=== 2.9.1  ​Battery Type ===
623 623  
596 +(% style="color:#037691" %)**Downlink:**
624 624  
598 +Uplink channels 1-7(RX1)
599 +
600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
601 +
602 +
603 +
604 +=== 2.7.7 IN865-867 (IN865) ===
605 +
606 +(% style="color:#037691" %)** Uplink:**
607 +
608 +865.0625 - SF7BW125 to SF12BW125
609 +
610 +865.4025 - SF7BW125 to SF12BW125
611 +
612 +865.9850 - SF7BW125 to SF12BW125
613 +
614 +
615 +(% style="color:#037691" %) **Downlink:**
616 +
617 +Uplink channels 1-3 (RX1)
618 +
619 +866.550 - SF10BW125 (RX2)
620 +
621 +
622 +
623 +
624 +== 2.8 LED Indicator ==
625 +
626 +The LSE01 has an internal LED which is to show the status of different state.
627 +
628 +* Blink once when device power on.
629 +* Solid ON for 5 seconds once device successful Join the network.
630 +* Blink once when device transmit a packet.
631 +
632 +
633 +
634 +== 2.9 Installation in Soil ==
635 +
636 +**Measurement the soil surface**
637 +
638 +
639 +[[image:1654506634463-199.png]] ​
640 +
625 625  (((
626 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 +(((
643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
627 627  )))
645 +)))
628 628  
629 629  
648 +[[image:1654506665940-119.png]]
649 +
630 630  (((
631 -The battery is designed to last for several years depends on the actually use environment and update interval. 
651 +Dig a hole with diameter > 20CM.
632 632  )))
633 633  
654 +(((
655 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
656 +)))
634 634  
658 +
659 +== 2.10 ​Firmware Change Log ==
660 +
635 635  (((
636 -The battery related documents as below:
662 +**Firmware download link:**
637 637  )))
638 638  
639 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
665 +(((
666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
667 +)))
642 642  
643 643  (((
644 -[[image:image-20220708140453-6.png]]
670 +
645 645  )))
646 646  
673 +(((
674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
675 +)))
647 647  
677 +(((
678 +
679 +)))
648 648  
649 -=== 2.9.2  Power consumption Analyze ===
681 +(((
682 +**V1.0.**
683 +)))
650 650  
651 651  (((
652 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
686 +Release
653 653  )))
654 654  
655 655  
690 +== 2.11 ​Battery Analysis ==
691 +
692 +=== 2.11.1 ​Battery Type ===
693 +
656 656  (((
657 -Instruction to use as below:
695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
658 658  )))
659 659  
660 660  (((
661 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
699 +The battery is designed to last for more than 5 years for the LSN50.
662 662  )))
663 663  
664 -
665 665  (((
666 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
703 +(((
704 +The battery-related documents are as below:
667 667  )))
706 +)))
668 668  
669 669  * (((
670 -Product Model
709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
671 671  )))
672 672  * (((
673 -Uplink Interval
712 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
674 674  )))
675 675  * (((
676 -Working Mode
715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
677 677  )))
678 678  
679 -(((
680 -And the Life expectation in difference case will be shown on the right.
681 -)))
718 + [[image:image-20220606171726-9.png]]
682 682  
683 -[[image:image-20220708141352-7.jpeg]]
684 684  
685 685  
722 +=== 2.11.2 ​Battery Note ===
686 686  
687 -=== 2.9.3  ​Battery Note ===
688 -
689 689  (((
690 690  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
691 691  )))
... ... @@ -692,176 +692,303 @@
692 692  
693 693  
694 694  
695 -=== 2.9. Replace the battery ===
730 +=== 2.11.3 Replace the battery ===
696 696  
697 697  (((
698 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
733 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
699 699  )))
700 700  
701 -
702 -
703 -= 3. ​ Access NB-IoT Module =
704 -
705 705  (((
706 -Users can directly access the AT command set of the NB-IoT module.
737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
707 707  )))
708 708  
709 709  (((
710 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
711 711  )))
712 712  
713 -[[image:1657261278785-153.png]]
714 714  
715 715  
746 += 3. ​Using the AT Commands =
716 716  
717 -= 4.  Using the AT Commands =
748 +== 3.1 Access AT Commands ==
718 718  
719 -== 4.1  Access AT Commands ==
720 720  
721 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
722 722  
753 +[[image:1654501986557-872.png||height="391" width="800"]]
723 723  
724 -AT+<CMD>?  : Help on <CMD>
725 725  
726 -AT+<CMD>         : Run <CMD>
756 +Or if you have below board, use below connection:
727 727  
728 -AT+<CMD>=<value> : Set the value
729 729  
730 -AT+<CMD>=?  : Get the value
759 +[[image:1654502005655-729.png||height="503" width="801"]]
731 731  
732 732  
762 +
763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 +
765 +
766 + [[image:1654502050864-459.png||height="564" width="806"]]
767 +
768 +
769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 +
771 +
772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 +
774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 +
776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 +
778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 +
780 +
733 733  (% style="color:#037691" %)**General Commands**(%%)      
734 734  
735 -AT  : Attention       
783 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
736 736  
737 -AT?  : Short Help     
785 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
738 738  
739 -ATZ  : MCU Reset    
787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
740 740  
741 -AT+TDC  : Application Data Transmission Interval
789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
742 742  
743 -AT+CFG  : Print all configurations
744 744  
745 -AT+CFGMOD           : Working mode selection
792 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
746 746  
747 -AT+INTMOD            : Set the trigger interrupt mode
794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
748 748  
749 -AT+5VT  : Set extend the time of 5V power  
796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
750 750  
751 -AT+PRO  : Choose agreement
798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
752 752  
753 -AT+WEIGRE  : Get weight or set weight to 0
800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
754 754  
755 -AT+WEIGAP  : Get or Set the GapValue of weight
802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
756 756  
757 -AT+RXDL  : Extend the sending and receiving time
804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
758 758  
759 -AT+CNTFAC  : Get or set counting parameters
806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
760 760  
761 -AT+SERVADDR  : Server Address
808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
762 762  
810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
763 763  
764 -(% style="color:#037691" %)**COAP Management**      
812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
765 765  
766 -AT+URI            : Resource parameters
814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
767 767  
816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
768 768  
769 -(% style="color:#037691" %)**UDP Management**
818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
770 770  
771 -AT+CFM          : Upload confirmation mode (only valid for UDP)
820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
772 772  
822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
773 773  
774 -(% style="color:#037691" %)**MQTT Management**
824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
775 775  
776 -AT+CLIENT               : Get or Set MQTT client
777 777  
778 -AT+UNAME  : Get or Set MQTT Username
827 +(% style="color:#037691" %)**LoRa Network Management**
779 779  
780 -AT+PWD                  : Get or Set MQTT password
829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
781 781  
782 -AT+PUBTOPI : Get or Set MQTT publish topic
831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
783 783  
784 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
785 785  
835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
786 786  
787 -(% style="color:#037691" %)**Information**          
837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
788 788  
789 -AT+FDR  : Factory Data Reset
839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
790 790  
791 -AT+PWOR : Serial Access Password
841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
792 792  
843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
793 793  
845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
794 794  
795 -= ​5.  FAQ =
847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
796 796  
797 -== 5.1 How to Upgrade Firmware ==
849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
798 798  
851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
799 799  
853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 +
859 +
860 +(% style="color:#037691" %)**Information** 
861 +
862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 +
864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 +
866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 +
868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 +
870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 +
872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 +
874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 +
876 +
877 += ​4. FAQ =
878 +
879 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 +
800 800  (((
801 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 +When downloading the images, choose the required image file for download. ​
802 802  )))
803 803  
804 804  (((
805 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
887 +
806 806  )))
807 807  
808 808  (((
809 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
810 810  )))
811 811  
894 +(((
895 +
896 +)))
812 812  
898 +(((
899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 +)))
813 813  
814 -== 5.2  Can I calibrate NSE01 to different soil types? ==
902 +(((
903 +
904 +)))
815 815  
816 816  (((
817 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
818 818  )))
819 819  
910 +[[image:image-20220606154726-3.png]]
820 820  
821 -= 6.  Trouble Shooting =
822 822  
823 -== 6.1  ​Connection problem when uploading firmware ==
913 +When you use the TTN network, the US915 frequency bands use are:
824 824  
915 +* 903.9 - SF7BW125 to SF10BW125
916 +* 904.1 - SF7BW125 to SF10BW125
917 +* 904.3 - SF7BW125 to SF10BW125
918 +* 904.5 - SF7BW125 to SF10BW125
919 +* 904.7 - SF7BW125 to SF10BW125
920 +* 904.9 - SF7BW125 to SF10BW125
921 +* 905.1 - SF7BW125 to SF10BW125
922 +* 905.3 - SF7BW125 to SF10BW125
923 +* 904.6 - SF8BW500
825 825  
826 826  (((
827 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
828 828  )))
829 829  
830 -(% class="wikigeneratedid" %)
929 +(% class="box infomessage" %)
831 831  (((
931 +**AT+CHE=2**
932 +)))
933 +
934 +(% class="box infomessage" %)
935 +(((
936 +**ATZ**
937 +)))
938 +
939 +(((
940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 +)))
942 +
943 +(((
832 832  
833 833  )))
834 834  
947 +(((
948 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 +)))
835 835  
836 -== 6.2  AT Command input doesn't work ==
951 +[[image:image-20220606154825-4.png]]
837 837  
953 +
954 +
955 += 5. Trouble Shooting =
956 +
957 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
958 +
959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 +
961 +
962 +== 5.2 AT Command input doesn’t work ==
963 +
838 838  (((
839 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 +)))
840 840  
841 -
968 +
969 +== 5.3 Device rejoin in at the second uplink packet ==
970 +
971 +(% style="color:#4f81bd" %)**Issue describe as below:**
972 +
973 +[[image:1654500909990-784.png]]
974 +
975 +
976 +(% style="color:#4f81bd" %)**Cause for this issue:**
977 +
978 +(((
979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
842 842  )))
843 843  
844 844  
845 -= 7. ​ Order Info =
983 +(% style="color:#4f81bd" %)**Solution: **
846 846  
985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
847 847  
848 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
987 +[[image:1654500929571-736.png||height="458" width="832"]]
849 849  
850 850  
990 += 6. ​Order Info =
991 +
992 +
993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 +
995 +
996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 +
998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 +
1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 +
1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 +
851 851  (% class="wikigeneratedid" %)
852 852  (((
853 853  
854 854  )))
855 855  
856 -= 8.  Packing Info =
1017 += 7. Packing Info =
857 857  
858 858  (((
859 859  
860 860  
861 861  (% style="color:#037691" %)**Package Includes**:
1023 +)))
862 862  
863 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
864 -* External antenna x 1
1025 +* (((
1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
865 865  )))
866 866  
867 867  (((
... ... @@ -868,19 +868,30 @@
868 868  
869 869  
870 870  (% style="color:#037691" %)**Dimension and weight**:
1033 +)))
871 871  
872 -* Size: 195 x 125 x 55 mm
873 -* Weight:   420g
1035 +* (((
1036 +Device Size: cm
874 874  )))
1038 +* (((
1039 +Device Weight: g
1040 +)))
1041 +* (((
1042 +Package Size / pcs : cm
1043 +)))
1044 +* (((
1045 +Weight / pcs : g
875 875  
876 -(((
877 -
878 878  
879 -
880 880  
881 881  )))
882 882  
883 -= 9.  Support =
1051 += 8. Support =
884 884  
885 885  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
886 886  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 +
1056 +
1057 +~)~)~)
1058 +~)~)~)
1059 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content