Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 41 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,23 +12,28 @@ 12 12 13 13 14 14 14 +**Table of Contents:** 15 15 16 -= 1. Introduction = 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 19 19 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 20 20 ((( 21 21 22 22 23 -((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 31 31 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 32 32 33 33 ))) 34 34 ... ... @@ -35,655 +35,736 @@ 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 39 39 40 40 41 41 42 -== 1.2 46 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 57 57 60 +== 1.3 Specification == 58 58 59 - ==1.3Specification==62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 64 +[[image:image-20220606162220-5.png]] 61 61 62 -(% style="color:#037691" %)**Common DC Characteristics:** 63 63 64 -* Supply Voltage: 2.1v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 66 66 67 - (% style="color:#037691"%)**NB-IoT Spec:**68 +== 1.4 Applications == 68 68 69 -* - B1 @H-FDD: 2100MHz 70 -* - B3 @H-FDD: 1800MHz 71 -* - B8 @H-FDD: 900MHz 72 -* - B5 @H-FDD: 850MHz 73 -* - B20 @H-FDD: 800MHz 74 -* - B28 @H-FDD: 700MHz 75 - 76 -(% style="color:#037691" %)**Battery:** 77 - 78 -* Li/SOCI2 un-chargeable battery 79 -* Capacity: 8500mAh 80 -* Self Discharge: <1% / Year @ 25°C 81 -* Max continuously current: 130mA 82 -* Max boost current: 2A, 1 second 83 - 84 -(% style="color:#037691" %)**Power Consumption** 85 - 86 -* STOP Mode: 10uA @ 3.3v 87 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 88 - 89 - 90 - 91 -== 1.4 Applications == 92 - 93 -* Smart Buildings & Home Automation 94 -* Logistics and Supply Chain Management 95 -* Smart Metering 96 96 * Smart Agriculture 97 -* Smart Cities 98 -* Smart Factory 99 99 100 100 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 101 102 102 75 +== 1.5 Firmware Change log == 103 103 104 104 105 - ==1.5Pin Definitions==78 +**LSE01 v1.0 :** Release 106 106 107 107 108 -[[image:1657328609906-564.png]] 109 109 82 += 2. Configure LSE01 to connect to LoRaWAN network = 110 110 84 +== 2.1 How it works == 111 111 112 -= 2. Use NDDS75 to communicate with IoT Server = 113 - 114 -== 2.1 How it works == 115 - 116 116 ((( 117 -The NDDS75isequippedwithaNB-IoT module,thepre-loadedfirmwareinNDDS75willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNDDS75.87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 - 121 121 ((( 122 - Thediagrambelowshows theworkingflowindefaultfirmwaref NDDS75:91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 123 123 ))) 124 124 125 -((( 126 - 127 -))) 128 128 129 -[[image:1657328659945-416.png]] 130 130 131 -((( 132 - 133 -))) 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 134 134 98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 135 135 136 -== 2.2 Configure the NDDS75 == 137 137 101 +[[image:1654503992078-669.png]] 138 138 139 -=== 2.2.1 Test Requirement === 140 140 141 -((( 142 -To use NDDS75 in your city, make sure meet below requirements: 143 -))) 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 144 144 145 -* Your local operator has already distributed a NB-IoT Network there. 146 -* The local NB-IoT network used the band that NSE01 supports. 147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 148 148 149 -((( 150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 151 -))) 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 152 152 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 153 153 154 -[[image:16 57328756309-230.png]]111 +[[image:image-20220606163732-6.jpeg]] 155 155 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 156 156 115 +**Add APP EUI in the application** 157 157 158 -=== 2.2.2 Insert SIM card === 159 159 160 -((( 161 -Insert the NB-IoT Card get from your provider. 162 -))) 118 +[[image:1654504596150-405.png]] 163 163 164 -((( 165 -User need to take out the NB-IoT module and insert the SIM card like below: 166 -))) 167 167 168 168 169 - [[image:1657328884227-504.png]]122 +**Add APP KEY and DEV EUI** 170 170 124 +[[image:1654504683289-357.png]] 171 171 172 172 173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 174 174 175 -((( 176 -((( 177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 178 -))) 179 -))) 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 180 180 181 -[[image:image-20220709092052-2.png]] 182 182 183 - **Connection:**131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 184 184 185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND133 +[[image:image-20220606163915-7.png]] 186 186 187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 188 188 189 - background-color:yellow" %)USBTTLRXD<~-~-~-~->UART_TXD136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 190 190 138 +[[image:1654504778294-788.png]] 191 191 192 -In the PC, use below serial tool settings: 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 199 199 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 200 200 ((( 201 - Make sure the switch is in FLASHposition,thenpower ondeviceby connecting the jumper on NDDS75. NDDS75 will output systeminfoonce power onas below,we can enter the (% style="color:green" %)**password:12345678**(%%)to access AT Command input.150 +Uplink payload includes in total 11 bytes. 202 202 ))) 203 203 204 -[[image:1657329814315-101.png]] 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 205 205 206 -((( 207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 208 208 ))) 209 209 169 +=== 2.3.2 MOD~=1(Original value) === 210 210 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 211 211 212 -=== 2.2.4 Use CoAP protocol to uplink data === 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 213 213 214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 215 215 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 216 216 217 -**Use below commands:** 186 +(Optional) 187 +))) 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 189 +=== 2.3.3 Battery Info === 222 222 223 -For parameter description, please refer to AT command set 191 +((( 192 +Check the battery voltage for LSE01. 193 +))) 224 224 225 -[[image:1657330452568-615.png]] 195 +((( 196 +Ex1: 0x0B45 = 2885mV 197 +))) 226 226 199 +((( 200 +Ex2: 0x0B49 = 2889mV 201 +))) 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 229 229 230 -[[image:1657330472797-498.png]] 231 231 205 +=== 2.3.4 Soil Moisture === 232 232 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 211 +((( 212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 +))) 235 235 215 +((( 216 + 217 +))) 236 236 237 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink238 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 **(%%)~/~/toset UDP server address and port239 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary219 +((( 220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 +))) 240 240 241 -[[image:1657330501006-241.png]] 242 242 243 243 244 - [[image:1657330533775-472.png]]225 +=== 2.3.5 Soil Temperature === 245 245 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 246 246 231 +((( 232 +**Example**: 233 +))) 247 247 248 -=== 2.2.6 Use MQTT protocol to uplink data === 235 +((( 236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 237 +))) 249 249 239 +((( 240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 +))) 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 258 259 -[[image:1657249978444-674.png]] 260 260 245 +=== 2.3.6 Soil Conductivity (EC) === 261 261 262 -[[image:1657330723006-866.png]] 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 263 263 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 264 264 265 265 ((( 266 - MQTT protocol has a much higher power consumption comparevs UDP / CoAP protocol. Pleasecheckthepoweranalyzedocumentandadjusttheuplinkperiodtoasuitableinterval.256 +Generally, the EC value of irrigation water is less than 800uS / cm. 267 267 ))) 268 268 259 +((( 260 + 261 +))) 269 269 263 +((( 264 + 265 +))) 270 270 271 -=== 2. 2.7Use TCP protocol to uplink data===267 +=== 2.3.7 MOD === 272 272 269 +Firmware version at least v2.1 supports changing mode. 273 273 274 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 271 +For example, bytes[10]=90 276 276 277 - [[image:image-20220709093918-1.png]]273 +mod=(bytes[10]>>7)&0x01=1. 278 278 279 279 280 - [[image:image-20220709093918-2.png]]276 +**Downlink Command:** 281 281 278 +If payload = 0x0A00, workmode=0 282 282 280 +If** **payload =** **0x0A01, workmode=1 283 283 284 -=== 2.2.8 Change Update Interval === 285 285 286 -User can use below command to change the (% style="color:green" %)**uplink interval**. 287 287 288 - *(%style="color:blue"%)**AT+TDC=600 ** (%%)~/~/ Set UpdateIntervalto600s284 +=== 2.3.8 Decode payload in The Things Network === 289 289 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 290 290 ((( 291 - (%style="color:red"%)**NOTE:**292 +The payload decoder function for TTN is here: 292 292 ))) 293 293 294 294 ((( 295 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 296 296 ))) 297 297 298 298 300 +== 2.4 Uplink Interval == 299 299 300 - ==2.3UplinkPayload ==302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 301 301 302 -In this mode, uplink payload includes in total 14 bytes 303 303 304 304 305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 -|=(% style="width: 60px;" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 306 +== 2.5 Downlink Payload == 310 310 311 -((( 312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 313 -))) 308 +By default, LSE50 prints the downlink payload to console port. 314 314 310 +[[image:image-20220606165544-8.png]] 315 315 316 -[[image:1657331036973-987.png]] 317 317 318 318 ((( 319 - Thepayload is ASCII string, representativesameHEX:314 +(% style="color:blue" %)**Examples:** 320 320 ))) 321 321 322 322 ((( 323 - 0x72403155615900640c6c19029200where:318 + 324 324 ))) 325 325 326 326 * ((( 327 - DeviceID:0x724031556159 = 724031556159322 +(% style="color:blue" %)**Set TDC** 328 328 ))) 329 -* ((( 330 -Version: 0x0064=100=1.0.0 324 + 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 331 ))) 332 332 333 - *(((334 - BAT: 0x0c6c=3180mV=.180V329 +((( 330 +Payload: 01 00 00 1E TDC=30S 335 335 ))) 336 -* ((( 337 -Signal: 0x19 = 25 332 + 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 338 338 ))) 339 -* ((( 340 -Distance: 0x0292= 658 mm 336 + 337 +((( 338 + 341 341 ))) 340 + 342 342 * ((( 343 - Interrupt:0x00 = 0342 +(% style="color:blue" %)**Reset** 344 344 ))) 345 345 345 +((( 346 +If payload = 0x04FF, it will reset the LSE01 347 +))) 346 346 347 -== 2.4 Payload Explanation and Sensor Interface == 348 348 350 +* (% style="color:blue" %)**CFM** 349 349 350 - ===2.4.1DeviceID===352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 351 351 352 -((( 353 -By default, the Device ID equal to the last 6 bytes of IMEI. 354 -))) 355 355 355 + 356 +== 2.6 Show Data in DataCake IoT Server == 357 + 356 356 ((( 357 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 358 358 ))) 359 359 360 360 ((( 361 - **Example:**363 + 362 362 ))) 363 363 364 364 ((( 365 - AT+DEUI=A84041F15612367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 366 366 ))) 367 367 368 368 ((( 369 - TheDeviceID is storedinanone-erasearea,Upgradethefirmwareorrun **AT+FDR**won't erase DeviceID.371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 370 370 ))) 371 371 372 372 375 +[[image:1654505857935-743.png]] 373 373 374 -=== 2.4.2 Version Info === 375 375 376 -((( 377 -Specify the software version: 0x64=100, means firmware version 1.00. 378 -))) 378 +[[image:1654505874829-548.png]] 379 379 380 -((( 381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 382 -))) 383 383 381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 384 384 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 385 385 386 -=== 2.4.3 Battery Info === 387 387 388 -((( 389 -Check the battery voltage for LSE01. 390 -))) 386 +[[image:1654505905236-553.png]] 391 391 392 -((( 393 -Ex1: 0x0B45 = 2885mV 394 -))) 395 395 396 -((( 397 -Ex2: 0x0B49 = 2889mV 398 -))) 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 399 399 391 +[[image:1654505925508-181.png]] 400 400 401 401 402 -=== 2.4.4 Signal Strength === 403 403 404 -((( 405 -NB-IoT Network signal Strength. 406 -))) 395 +== 2.7 Frequency Plans == 407 407 408 -((( 409 -**Ex1: 0x1d = 29** 410 -))) 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 412 -((( 413 -(% style="color:blue" %)**0**(%%) -113dBm or less 414 -))) 415 415 416 -((( 417 -(% style="color:blue" %)**1**(%%) -111dBm 418 -))) 400 +=== 2.7.1 EU863-870 (EU868) === 419 419 420 -((( 421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 -))) 402 +(% style="color:#037691" %)** Uplink:** 423 423 424 -((( 425 -(% style="color:blue" %)**31** (%%) -51dBm or greater 426 -))) 404 +868.1 - SF7BW125 to SF12BW125 427 427 428 -((( 429 -(% style="color:blue" %)**99** (%%) Not known or not detectable 430 -))) 406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 431 431 408 +868.5 - SF7BW125 to SF12BW125 432 432 410 +867.1 - SF7BW125 to SF12BW125 433 433 434 - ===2.4.5SoilMoisture ===412 +867.3 - SF7BW125 to SF12BW125 435 435 436 - Get the distance. Flatobjectrange280mm - 7500mm.414 +867.5 - SF7BW125 to SF12BW125 437 437 438 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is416 +867.7 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -((( 442 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 443 -))) 444 -))) 418 +867.9 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 420 +868.8 - FSK 449 449 450 -((( 451 - 452 -))) 453 453 454 - ===2.4.6 DigitalInterrupt===423 +(% style="color:#037691" %)** Downlink:** 455 455 456 -((( 457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 458 -))) 425 +Uplink channels 1-9 (RX1) 459 459 460 -((( 461 -The command is: 462 -))) 427 +869.525 - SF9BW125 (RX2 downlink only) 463 463 464 -((( 465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 -))) 467 467 468 468 469 -((( 470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 -))) 431 +=== 2.7.2 US902-928(US915) === 472 472 433 +Used in USA, Canada and South America. Default use CHE=2 473 473 474 -((( 475 -Example: 476 -))) 435 +(% style="color:#037691" %)**Uplink:** 477 477 478 -((( 479 -0x(00): Normal uplink packet. 480 -))) 437 +903.9 - SF7BW125 to SF10BW125 481 481 482 -((( 483 -0x(01): Interrupt Uplink Packet. 484 -))) 439 +904.1 - SF7BW125 to SF10BW125 485 485 441 +904.3 - SF7BW125 to SF10BW125 486 486 443 +904.5 - SF7BW125 to SF10BW125 487 487 488 - === 2.4.7+5VOutput===445 +904.7 - SF7BW125 to SF10BW125 489 489 490 -((( 491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 492 -))) 447 +904.9 - SF7BW125 to SF10BW125 493 493 449 +905.1 - SF7BW125 to SF10BW125 494 494 495 -((( 496 -The 5V output time can be controlled by AT Command. 497 -))) 451 +905.3 - SF7BW125 to SF10BW125 498 498 499 -((( 500 -(% style="color:blue" %)**AT+5VT=1000** 501 -))) 502 502 503 -((( 504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 505 -))) 454 +(% style="color:#037691" %)**Downlink:** 506 506 456 +923.3 - SF7BW500 to SF12BW500 507 507 458 +923.9 - SF7BW500 to SF12BW500 508 508 509 - ==2.5DownlinkPayload==460 +924.5 - SF7BW500 to SF12BW500 510 510 511 - Bydefault,NSE01prints the downlinkpayload to console port.462 +925.1 - SF7BW500 to SF12BW500 512 512 513 - [[image:image-20220708133731-5.png]]464 +925.7 - SF7BW500 to SF12BW500 514 514 466 +926.3 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -(% style="color:blue" %)**Examples:** 518 -))) 468 +926.9 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 470 +927.5 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Set TDC** 526 -))) 472 +923.3 - SF12BW500(RX2 downlink only) 527 527 528 -((( 529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 530 -))) 531 531 532 -((( 533 -Payload: 01 00 00 1E TDC=30S 534 -))) 535 535 536 -((( 537 -Payload: 01 00 00 3C TDC=60S 538 -))) 476 +=== 2.7.3 CN470-510 (CN470) === 539 539 540 -((( 541 - 542 -))) 478 +Used in China, Default use CHE=1 543 543 544 -* ((( 545 -(% style="color:blue" %)**Reset** 546 -))) 480 +(% style="color:#037691" %)**Uplink:** 547 547 548 -((( 549 -If payload = 0x04FF, it will reset the NSE01 550 -))) 482 +486.3 - SF7BW125 to SF12BW125 551 551 484 +486.5 - SF7BW125 to SF12BW125 552 552 553 - *(%style="color:blue"%)**INTMOD**486 +486.7 - SF7BW125 to SF12BW125 554 554 555 -((( 556 -Downlink Payload: 06000003, Set AT+INTMOD=3 557 -))) 488 +486.9 - SF7BW125 to SF12BW125 558 558 490 +487.1 - SF7BW125 to SF12BW125 559 559 492 +487.3 - SF7BW125 to SF12BW125 560 560 561 - == 2.6LEDIndicator==494 +487.5 - SF7BW125 to SF12BW125 562 562 563 -((( 564 -The NSE01 has an internal LED which is to show the status of different state. 496 +487.7 - SF7BW125 to SF12BW125 565 565 566 566 567 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 568 -* Then the LED will be on for 1 second means device is boot normally. 569 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 570 -* For each uplink probe, LED will be on for 500ms. 571 -))) 499 +(% style="color:#037691" %)**Downlink:** 572 572 501 +506.7 - SF7BW125 to SF12BW125 573 573 503 +506.9 - SF7BW125 to SF12BW125 574 574 505 +507.1 - SF7BW125 to SF12BW125 575 575 576 - == 2.7InstallationinSoil ==507 +507.3 - SF7BW125 to SF12BW125 577 577 578 - __**Measurementthesoilsurface**__509 +507.5 - SF7BW125 to SF12BW125 579 579 580 -((( 581 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 582 -))) 511 +507.7 - SF7BW125 to SF12BW125 583 583 584 - [[image:1657259653666-883.png]]513 +507.9 - SF7BW125 to SF12BW125 585 585 515 +508.1 - SF7BW125 to SF12BW125 586 586 587 -((( 588 - 517 +505.3 - SF12BW125 (RX2 downlink only) 589 589 590 -((( 591 -Dig a hole with diameter > 20CM. 592 -))) 593 593 594 -((( 595 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 596 -))) 597 -))) 598 598 599 - [[image:1654506665940-119.png]]521 +=== 2.7.4 AU915-928(AU915) === 600 600 601 -((( 602 - 603 -))) 523 +Default use CHE=2 604 604 525 +(% style="color:#037691" %)**Uplink:** 605 605 606 - == 2.8FirmwareChange Log==527 +916.8 - SF7BW125 to SF12BW125 607 607 529 +917.0 - SF7BW125 to SF12BW125 608 608 609 - DownloadURL&FirmwareChange log531 +917.2 - SF7BW125 to SF12BW125 610 610 611 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]533 +917.4 - SF7BW125 to SF12BW125 612 612 535 +917.6 - SF7BW125 to SF12BW125 613 613 614 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]537 +917.8 - SF7BW125 to SF12BW125 615 615 539 +918.0 - SF7BW125 to SF12BW125 616 616 541 +918.2 - SF7BW125 to SF12BW125 617 617 618 -== 2.9 Battery Analysis == 619 619 620 - ===2.9.1 BatteryType==544 +(% style="color:#037691" %)**Downlink:** 621 621 546 +923.3 - SF7BW500 to SF12BW500 622 622 548 +923.9 - SF7BW500 to SF12BW500 549 + 550 +924.5 - SF7BW500 to SF12BW500 551 + 552 +925.1 - SF7BW500 to SF12BW500 553 + 554 +925.7 - SF7BW500 to SF12BW500 555 + 556 +926.3 - SF7BW500 to SF12BW500 557 + 558 +926.9 - SF7BW500 to SF12BW500 559 + 560 +927.5 - SF7BW500 to SF12BW500 561 + 562 +923.3 - SF12BW500(RX2 downlink only) 563 + 564 + 565 + 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 567 + 568 +(% style="color:#037691" %)**Default Uplink channel:** 569 + 570 +923.2 - SF7BW125 to SF10BW125 571 + 572 +923.4 - SF7BW125 to SF10BW125 573 + 574 + 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 576 + 577 +(OTAA mode, channel added by JoinAccept message) 578 + 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 580 + 581 +922.2 - SF7BW125 to SF10BW125 582 + 583 +922.4 - SF7BW125 to SF10BW125 584 + 585 +922.6 - SF7BW125 to SF10BW125 586 + 587 +922.8 - SF7BW125 to SF10BW125 588 + 589 +923.0 - SF7BW125 to SF10BW125 590 + 591 +922.0 - SF7BW125 to SF10BW125 592 + 593 + 594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 595 + 596 +923.6 - SF7BW125 to SF10BW125 597 + 598 +923.8 - SF7BW125 to SF10BW125 599 + 600 +924.0 - SF7BW125 to SF10BW125 601 + 602 +924.2 - SF7BW125 to SF10BW125 603 + 604 +924.4 - SF7BW125 to SF10BW125 605 + 606 +924.6 - SF7BW125 to SF10BW125 607 + 608 + 609 +(% style="color:#037691" %)** Downlink:** 610 + 611 +Uplink channels 1-8 (RX1) 612 + 613 +923.2 - SF10BW125 (RX2) 614 + 615 + 616 + 617 +=== 2.7.6 KR920-923 (KR920) === 618 + 619 +Default channel: 620 + 621 +922.1 - SF7BW125 to SF12BW125 622 + 623 +922.3 - SF7BW125 to SF12BW125 624 + 625 +922.5 - SF7BW125 to SF12BW125 626 + 627 + 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 + 630 +922.1 - SF7BW125 to SF12BW125 631 + 632 +922.3 - SF7BW125 to SF12BW125 633 + 634 +922.5 - SF7BW125 to SF12BW125 635 + 636 +922.7 - SF7BW125 to SF12BW125 637 + 638 +922.9 - SF7BW125 to SF12BW125 639 + 640 +923.1 - SF7BW125 to SF12BW125 641 + 642 +923.3 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Downlink:** 646 + 647 +Uplink channels 1-7(RX1) 648 + 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 + 651 + 652 + 653 +=== 2.7.7 IN865-867 (IN865) === 654 + 655 +(% style="color:#037691" %)** Uplink:** 656 + 657 +865.0625 - SF7BW125 to SF12BW125 658 + 659 +865.4025 - SF7BW125 to SF12BW125 660 + 661 +865.9850 - SF7BW125 to SF12BW125 662 + 663 + 664 +(% style="color:#037691" %) **Downlink:** 665 + 666 +Uplink channels 1-3 (RX1) 667 + 668 +866.550 - SF10BW125 (RX2) 669 + 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 623 623 ((( 624 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 625 625 ))) 692 +))) 626 626 627 627 695 + 696 +[[image:1654506665940-119.png]] 697 + 628 628 ((( 629 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 630 630 ))) 631 631 702 +((( 703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 +))) 632 632 706 + 707 +== 2.10 Firmware Change Log == 708 + 633 633 ((( 634 - The battery relateddocumentsasbelow:710 +**Firmware download link:** 635 635 ))) 636 636 637 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]638 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]639 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 640 640 641 641 ((( 642 - [[image:image-20220708140453-6.png]]718 + 643 643 ))) 644 644 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 645 645 725 +((( 726 + 727 +))) 646 646 647 -=== 2.9.2 Power consumption Analyze === 729 +((( 730 +**V1.0.** 731 +))) 648 648 649 649 ((( 650 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.734 +Release 651 651 ))) 652 652 653 653 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 654 654 ((( 655 - Instruction touse as below:743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 656 656 ))) 657 657 658 658 ((( 659 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]747 +The battery is designed to last for more than 5 years for the LSN50. 660 660 ))) 661 661 662 - 663 663 ((( 664 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 665 665 ))) 754 +))) 666 666 667 667 * ((( 668 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 669 669 ))) 670 670 * ((( 671 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 672 672 ))) 673 673 * ((( 674 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 675 675 ))) 676 676 677 -((( 678 -And the Life expectation in difference case will be shown on the right. 679 -))) 766 + [[image:image-20220610172436-1.png]] 680 680 681 -[[image:image-20220708141352-7.jpeg]] 682 682 683 683 770 +=== 2.11.2 Battery Note === 684 684 685 -=== 2.9.3 Battery Note === 686 - 687 687 ((( 688 688 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 689 689 ))) ... ... @@ -690,176 +690,302 @@ 690 690 691 691 692 692 693 -=== 2. 9.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 694 694 695 695 ((( 696 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 697 697 ))) 698 698 699 - 700 - 701 -= 3. Access NB-IoT Module = 702 - 703 703 ((( 704 - Userscan directly accesstheATcommand set of theNB-IoTmodule.785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 705 705 ))) 706 706 707 707 ((( 708 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 709 709 ))) 710 710 711 -[[image:1657261278785-153.png]] 712 712 713 713 794 += 3. Using the AT Commands = 714 714 715 -= 4.UsingtheAT Commands =796 +== 3.1 Access AT Commands == 716 716 717 -== 4.1 Access AT Commands == 718 718 719 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 720 720 801 +[[image:1654501986557-872.png||height="391" width="800"]] 721 721 722 -AT+<CMD>? : Help on <CMD> 723 723 724 - AT+<CMD>: Run<CMD>804 +Or if you have below board, use below connection: 725 725 726 -AT+<CMD>=<value> : Set the value 727 727 728 - AT+<CMD>=?:Get the value807 +[[image:1654502005655-729.png||height="503" width="801"]] 729 729 730 730 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 731 731 (% style="color:#037691" %)**General Commands**(%%) 732 732 733 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 734 734 735 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 736 736 737 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 738 738 739 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 740 740 741 -AT+CFG : Print all configurations 742 742 743 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 744 744 745 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 746 746 747 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 748 748 749 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 750 750 751 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 752 752 753 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 754 754 755 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 756 756 757 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 758 758 759 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 760 760 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 761 761 762 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 763 763 764 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 765 765 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 766 766 767 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 768 768 769 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 770 770 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 771 771 772 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 773 773 774 -AT+CLIENT : Get or Set MQTT client 775 775 776 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 777 777 778 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 779 779 780 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 781 781 782 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 783 783 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 784 784 785 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 786 786 787 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 788 788 789 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 790 790 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 791 791 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 792 792 793 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 794 794 795 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 796 796 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 797 797 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 798 798 ((( 799 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 800 800 ))) 801 801 802 802 ((( 803 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 804 804 ))) 805 805 806 806 ((( 807 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 808 808 ))) 809 809 942 +((( 943 + 944 +))) 810 810 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 811 811 812 -== 5.2 Can I calibrate NSE01 to different soil types? == 950 +((( 951 + 952 +))) 813 813 814 814 ((( 815 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 816 816 ))) 817 817 958 +[[image:image-20220606154726-3.png]] 818 818 819 -= 6. Trouble Shooting = 820 820 821 - ==6.1 Connection problemwhenuploadingfirmware==961 +When you use the TTN network, the US915 frequency bands use are: 822 822 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 823 823 824 824 ((( 825 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 826 826 ))) 827 827 828 -(% class="wikigeneratedid" %) 829 829 ((( 830 830 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 831 831 ))) 832 832 986 +((( 987 + 988 +))) 833 833 834 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 835 835 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 836 836 ((( 837 837 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 838 838 839 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 840 840 ))) 841 841 842 842 843 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 844 844 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 845 845 846 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 847 847 848 848 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 849 849 (% class="wikigeneratedid" %) 850 850 ((( 851 851 852 852 ))) 853 853 854 -= 8.1064 += 7. Packing Info = 855 855 856 856 ((( 857 857 858 858 859 859 (% style="color:#037691" %)**Package Includes**: 1070 +))) 860 860 861 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1862 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 863 863 ))) 864 864 865 865 ((( ... ... @@ -866,19 +866,24 @@ 866 866 867 867 868 868 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 869 869 870 -* Size: 195 x 125 x 55 mm871 - * Weight:420g1082 +* ((( 1083 +Device Size: cm 872 872 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 873 873 874 -((( 875 875 876 - 877 - 878 - 879 879 ))) 880 880 881 -= 9.1097 += 8. Support = 882 882 883 883 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 884 884 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content